1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Red Hat, Inc.
4 *
5 * Author: Mikulas Patocka <[email protected]>
6 *
7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8 *
9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11 * hash device. Setting this greatly improves performance when data and hash
12 * are on the same disk on different partitions on devices with poor random
13 * access behavior.
14 */
15
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18 #include "dm-verity-verify-sig.h"
19 #include "dm-audit.h"
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22 #include <linux/scatterlist.h>
23 #include <linux/string.h>
24 #include <linux/jump_label.h>
25 #include <linux/security.h>
26
27 #define DM_MSG_PREFIX "verity"
28
29 #define DM_VERITY_ENV_LENGTH 42
30 #define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR"
31
32 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
33
34 #define DM_VERITY_MAX_CORRUPTED_ERRS 100
35
36 #define DM_VERITY_OPT_LOGGING "ignore_corruption"
37 #define DM_VERITY_OPT_RESTART "restart_on_corruption"
38 #define DM_VERITY_OPT_PANIC "panic_on_corruption"
39 #define DM_VERITY_OPT_ERROR_RESTART "restart_on_error"
40 #define DM_VERITY_OPT_ERROR_PANIC "panic_on_error"
41 #define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks"
42 #define DM_VERITY_OPT_AT_MOST_ONCE "check_at_most_once"
43 #define DM_VERITY_OPT_TASKLET_VERIFY "try_verify_in_tasklet"
44
45 #define DM_VERITY_OPTS_MAX (5 + DM_VERITY_OPTS_FEC + \
46 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
47
48 static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
49
50 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644);
51
52 static DEFINE_STATIC_KEY_FALSE(use_bh_wq_enabled);
53
54 /* Is at least one dm-verity instance using ahash_tfm instead of shash_tfm? */
55 static DEFINE_STATIC_KEY_FALSE(ahash_enabled);
56
57 struct dm_verity_prefetch_work {
58 struct work_struct work;
59 struct dm_verity *v;
60 unsigned short ioprio;
61 sector_t block;
62 unsigned int n_blocks;
63 };
64
65 /*
66 * Auxiliary structure appended to each dm-bufio buffer. If the value
67 * hash_verified is nonzero, hash of the block has been verified.
68 *
69 * The variable hash_verified is set to 0 when allocating the buffer, then
70 * it can be changed to 1 and it is never reset to 0 again.
71 *
72 * There is no lock around this value, a race condition can at worst cause
73 * that multiple processes verify the hash of the same buffer simultaneously
74 * and write 1 to hash_verified simultaneously.
75 * This condition is harmless, so we don't need locking.
76 */
77 struct buffer_aux {
78 int hash_verified;
79 };
80
81 /*
82 * Initialize struct buffer_aux for a freshly created buffer.
83 */
dm_bufio_alloc_callback(struct dm_buffer * buf)84 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
85 {
86 struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
87
88 aux->hash_verified = 0;
89 }
90
91 /*
92 * Translate input sector number to the sector number on the target device.
93 */
verity_map_sector(struct dm_verity * v,sector_t bi_sector)94 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
95 {
96 return dm_target_offset(v->ti, bi_sector);
97 }
98
99 /*
100 * Return hash position of a specified block at a specified tree level
101 * (0 is the lowest level).
102 * The lowest "hash_per_block_bits"-bits of the result denote hash position
103 * inside a hash block. The remaining bits denote location of the hash block.
104 */
verity_position_at_level(struct dm_verity * v,sector_t block,int level)105 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
106 int level)
107 {
108 return block >> (level * v->hash_per_block_bits);
109 }
110
verity_ahash_update(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,struct crypto_wait * wait)111 static int verity_ahash_update(struct dm_verity *v, struct ahash_request *req,
112 const u8 *data, size_t len,
113 struct crypto_wait *wait)
114 {
115 struct scatterlist sg;
116
117 if (likely(!is_vmalloc_addr(data))) {
118 sg_init_one(&sg, data, len);
119 ahash_request_set_crypt(req, &sg, NULL, len);
120 return crypto_wait_req(crypto_ahash_update(req), wait);
121 }
122
123 do {
124 int r;
125 size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
126
127 flush_kernel_vmap_range((void *)data, this_step);
128 sg_init_table(&sg, 1);
129 sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
130 ahash_request_set_crypt(req, &sg, NULL, this_step);
131 r = crypto_wait_req(crypto_ahash_update(req), wait);
132 if (unlikely(r))
133 return r;
134 data += this_step;
135 len -= this_step;
136 } while (len);
137
138 return 0;
139 }
140
141 /*
142 * Wrapper for crypto_ahash_init, which handles verity salting.
143 */
verity_ahash_init(struct dm_verity * v,struct ahash_request * req,struct crypto_wait * wait,bool may_sleep)144 static int verity_ahash_init(struct dm_verity *v, struct ahash_request *req,
145 struct crypto_wait *wait, bool may_sleep)
146 {
147 int r;
148
149 ahash_request_set_tfm(req, v->ahash_tfm);
150 ahash_request_set_callback(req,
151 may_sleep ? CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG : 0,
152 crypto_req_done, (void *)wait);
153 crypto_init_wait(wait);
154
155 r = crypto_wait_req(crypto_ahash_init(req), wait);
156
157 if (unlikely(r < 0)) {
158 if (r != -ENOMEM)
159 DMERR("crypto_ahash_init failed: %d", r);
160 return r;
161 }
162
163 if (likely(v->salt_size && (v->version >= 1)))
164 r = verity_ahash_update(v, req, v->salt, v->salt_size, wait);
165
166 return r;
167 }
168
verity_ahash_final(struct dm_verity * v,struct ahash_request * req,u8 * digest,struct crypto_wait * wait)169 static int verity_ahash_final(struct dm_verity *v, struct ahash_request *req,
170 u8 *digest, struct crypto_wait *wait)
171 {
172 int r;
173
174 if (unlikely(v->salt_size && (!v->version))) {
175 r = verity_ahash_update(v, req, v->salt, v->salt_size, wait);
176
177 if (r < 0) {
178 DMERR("%s failed updating salt: %d", __func__, r);
179 goto out;
180 }
181 }
182
183 ahash_request_set_crypt(req, NULL, digest, 0);
184 r = crypto_wait_req(crypto_ahash_final(req), wait);
185 out:
186 return r;
187 }
188
verity_hash(struct dm_verity * v,struct dm_verity_io * io,const u8 * data,size_t len,u8 * digest,bool may_sleep)189 int verity_hash(struct dm_verity *v, struct dm_verity_io *io,
190 const u8 *data, size_t len, u8 *digest, bool may_sleep)
191 {
192 int r;
193
194 if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm) {
195 struct ahash_request *req = verity_io_hash_req(v, io);
196 struct crypto_wait wait;
197
198 r = verity_ahash_init(v, req, &wait, may_sleep) ?:
199 verity_ahash_update(v, req, data, len, &wait) ?:
200 verity_ahash_final(v, req, digest, &wait);
201 } else {
202 struct shash_desc *desc = verity_io_hash_req(v, io);
203
204 desc->tfm = v->shash_tfm;
205 r = crypto_shash_import(desc, v->initial_hashstate) ?:
206 crypto_shash_finup(desc, data, len, digest);
207 }
208 if (unlikely(r))
209 DMERR("Error hashing block: %d", r);
210 return r;
211 }
212
verity_hash_at_level(struct dm_verity * v,sector_t block,int level,sector_t * hash_block,unsigned int * offset)213 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
214 sector_t *hash_block, unsigned int *offset)
215 {
216 sector_t position = verity_position_at_level(v, block, level);
217 unsigned int idx;
218
219 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
220
221 if (!offset)
222 return;
223
224 idx = position & ((1 << v->hash_per_block_bits) - 1);
225 if (!v->version)
226 *offset = idx * v->digest_size;
227 else
228 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
229 }
230
231 /*
232 * Handle verification errors.
233 */
verity_handle_err(struct dm_verity * v,enum verity_block_type type,unsigned long long block)234 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
235 unsigned long long block)
236 {
237 char verity_env[DM_VERITY_ENV_LENGTH];
238 char *envp[] = { verity_env, NULL };
239 const char *type_str = "";
240 struct mapped_device *md = dm_table_get_md(v->ti->table);
241
242 /* Corruption should be visible in device status in all modes */
243 v->hash_failed = true;
244
245 if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
246 goto out;
247
248 v->corrupted_errs++;
249
250 switch (type) {
251 case DM_VERITY_BLOCK_TYPE_DATA:
252 type_str = "data";
253 break;
254 case DM_VERITY_BLOCK_TYPE_METADATA:
255 type_str = "metadata";
256 break;
257 default:
258 BUG();
259 }
260
261 DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
262 type_str, block);
263
264 if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) {
265 DMERR("%s: reached maximum errors", v->data_dev->name);
266 dm_audit_log_target(DM_MSG_PREFIX, "max-corrupted-errors", v->ti, 0);
267 }
268
269 snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
270 DM_VERITY_ENV_VAR_NAME, type, block);
271
272 kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
273
274 out:
275 if (v->mode == DM_VERITY_MODE_LOGGING)
276 return 0;
277
278 if (v->mode == DM_VERITY_MODE_RESTART)
279 kernel_restart("dm-verity device corrupted");
280
281 if (v->mode == DM_VERITY_MODE_PANIC)
282 panic("dm-verity device corrupted");
283
284 return 1;
285 }
286
287 /*
288 * Verify hash of a metadata block pertaining to the specified data block
289 * ("block" argument) at a specified level ("level" argument).
290 *
291 * On successful return, verity_io_want_digest(v, io) contains the hash value
292 * for a lower tree level or for the data block (if we're at the lowest level).
293 *
294 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
295 * If "skip_unverified" is false, unverified buffer is hashed and verified
296 * against current value of verity_io_want_digest(v, io).
297 */
verity_verify_level(struct dm_verity * v,struct dm_verity_io * io,sector_t block,int level,bool skip_unverified,u8 * want_digest)298 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
299 sector_t block, int level, bool skip_unverified,
300 u8 *want_digest)
301 {
302 struct dm_buffer *buf;
303 struct buffer_aux *aux;
304 u8 *data;
305 int r;
306 sector_t hash_block;
307 unsigned int offset;
308 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
309
310 verity_hash_at_level(v, block, level, &hash_block, &offset);
311
312 if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
313 data = dm_bufio_get(v->bufio, hash_block, &buf);
314 if (data == NULL) {
315 /*
316 * In tasklet and the hash was not in the bufio cache.
317 * Return early and resume execution from a work-queue
318 * to read the hash from disk.
319 */
320 return -EAGAIN;
321 }
322 } else {
323 data = dm_bufio_read_with_ioprio(v->bufio, hash_block,
324 &buf, bio->bi_ioprio);
325 }
326
327 if (IS_ERR(data))
328 return PTR_ERR(data);
329
330 aux = dm_bufio_get_aux_data(buf);
331
332 if (!aux->hash_verified) {
333 if (skip_unverified) {
334 r = 1;
335 goto release_ret_r;
336 }
337
338 r = verity_hash(v, io, data, 1 << v->hash_dev_block_bits,
339 verity_io_real_digest(v, io), !io->in_bh);
340 if (unlikely(r < 0))
341 goto release_ret_r;
342
343 if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
344 v->digest_size) == 0))
345 aux->hash_verified = 1;
346 else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
347 /*
348 * Error handling code (FEC included) cannot be run in a
349 * tasklet since it may sleep, so fallback to work-queue.
350 */
351 r = -EAGAIN;
352 goto release_ret_r;
353 } else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
354 hash_block, data) == 0)
355 aux->hash_verified = 1;
356 else if (verity_handle_err(v,
357 DM_VERITY_BLOCK_TYPE_METADATA,
358 hash_block)) {
359 struct bio *bio;
360 io->had_mismatch = true;
361 bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
362 dm_audit_log_bio(DM_MSG_PREFIX, "verify-metadata", bio,
363 block, 0);
364 r = -EIO;
365 goto release_ret_r;
366 }
367 }
368
369 data += offset;
370 memcpy(want_digest, data, v->digest_size);
371 r = 0;
372
373 release_ret_r:
374 dm_bufio_release(buf);
375 return r;
376 }
377
378 /*
379 * Find a hash for a given block, write it to digest and verify the integrity
380 * of the hash tree if necessary.
381 */
verity_hash_for_block(struct dm_verity * v,struct dm_verity_io * io,sector_t block,u8 * digest,bool * is_zero)382 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
383 sector_t block, u8 *digest, bool *is_zero)
384 {
385 int r = 0, i;
386
387 if (likely(v->levels)) {
388 /*
389 * First, we try to get the requested hash for
390 * the current block. If the hash block itself is
391 * verified, zero is returned. If it isn't, this
392 * function returns 1 and we fall back to whole
393 * chain verification.
394 */
395 r = verity_verify_level(v, io, block, 0, true, digest);
396 if (likely(r <= 0))
397 goto out;
398 }
399
400 memcpy(digest, v->root_digest, v->digest_size);
401
402 for (i = v->levels - 1; i >= 0; i--) {
403 r = verity_verify_level(v, io, block, i, false, digest);
404 if (unlikely(r))
405 goto out;
406 }
407 out:
408 if (!r && v->zero_digest)
409 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
410 else
411 *is_zero = false;
412
413 return r;
414 }
415
verity_recheck(struct dm_verity * v,struct dm_verity_io * io,sector_t cur_block,u8 * dest)416 static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io,
417 sector_t cur_block, u8 *dest)
418 {
419 struct page *page;
420 void *buffer;
421 int r;
422 struct dm_io_request io_req;
423 struct dm_io_region io_loc;
424
425 page = mempool_alloc(&v->recheck_pool, GFP_NOIO);
426 buffer = page_to_virt(page);
427
428 io_req.bi_opf = REQ_OP_READ;
429 io_req.mem.type = DM_IO_KMEM;
430 io_req.mem.ptr.addr = buffer;
431 io_req.notify.fn = NULL;
432 io_req.client = v->io;
433 io_loc.bdev = v->data_dev->bdev;
434 io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT);
435 io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT);
436 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
437 if (unlikely(r))
438 goto free_ret;
439
440 r = verity_hash(v, io, buffer, 1 << v->data_dev_block_bits,
441 verity_io_real_digest(v, io), true);
442 if (unlikely(r))
443 goto free_ret;
444
445 if (memcmp(verity_io_real_digest(v, io),
446 verity_io_want_digest(v, io), v->digest_size)) {
447 r = -EIO;
448 goto free_ret;
449 }
450
451 memcpy(dest, buffer, 1 << v->data_dev_block_bits);
452 r = 0;
453 free_ret:
454 mempool_free(page, &v->recheck_pool);
455
456 return r;
457 }
458
verity_handle_data_hash_mismatch(struct dm_verity * v,struct dm_verity_io * io,struct bio * bio,sector_t blkno,u8 * data)459 static int verity_handle_data_hash_mismatch(struct dm_verity *v,
460 struct dm_verity_io *io,
461 struct bio *bio, sector_t blkno,
462 u8 *data)
463 {
464 if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
465 /*
466 * Error handling code (FEC included) cannot be run in the
467 * BH workqueue, so fallback to a standard workqueue.
468 */
469 return -EAGAIN;
470 }
471 if (verity_recheck(v, io, blkno, data) == 0) {
472 if (v->validated_blocks)
473 set_bit(blkno, v->validated_blocks);
474 return 0;
475 }
476 #if defined(CONFIG_DM_VERITY_FEC)
477 if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA, blkno,
478 data) == 0)
479 return 0;
480 #endif
481 if (bio->bi_status)
482 return -EIO; /* Error correction failed; Just return error */
483
484 if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA, blkno)) {
485 io->had_mismatch = true;
486 dm_audit_log_bio(DM_MSG_PREFIX, "verify-data", bio, blkno, 0);
487 return -EIO;
488 }
489 return 0;
490 }
491
492 /*
493 * Verify one "dm_verity_io" structure.
494 */
verity_verify_io(struct dm_verity_io * io)495 static int verity_verify_io(struct dm_verity_io *io)
496 {
497 struct dm_verity *v = io->v;
498 const unsigned int block_size = 1 << v->data_dev_block_bits;
499 struct bvec_iter iter_copy;
500 struct bvec_iter *iter;
501 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
502 unsigned int b;
503
504 if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
505 /*
506 * Copy the iterator in case we need to restart
507 * verification in a work-queue.
508 */
509 iter_copy = io->iter;
510 iter = &iter_copy;
511 } else
512 iter = &io->iter;
513
514 for (b = 0; b < io->n_blocks;
515 b++, bio_advance_iter(bio, iter, block_size)) {
516 int r;
517 sector_t cur_block = io->block + b;
518 bool is_zero;
519 struct bio_vec bv;
520 void *data;
521
522 if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
523 likely(test_bit(cur_block, v->validated_blocks)))
524 continue;
525
526 r = verity_hash_for_block(v, io, cur_block,
527 verity_io_want_digest(v, io),
528 &is_zero);
529 if (unlikely(r < 0))
530 return r;
531
532 bv = bio_iter_iovec(bio, *iter);
533 if (unlikely(bv.bv_len < block_size)) {
534 /*
535 * Data block spans pages. This should not happen,
536 * since dm-verity sets dma_alignment to the data block
537 * size minus 1, and dm-verity also doesn't allow the
538 * data block size to be greater than PAGE_SIZE.
539 */
540 DMERR_LIMIT("unaligned io (data block spans pages)");
541 return -EIO;
542 }
543
544 data = bvec_kmap_local(&bv);
545
546 if (is_zero) {
547 /*
548 * If we expect a zero block, don't validate, just
549 * return zeros.
550 */
551 memset(data, 0, block_size);
552 kunmap_local(data);
553 continue;
554 }
555
556 r = verity_hash(v, io, data, block_size,
557 verity_io_real_digest(v, io), !io->in_bh);
558 if (unlikely(r < 0)) {
559 kunmap_local(data);
560 return r;
561 }
562
563 if (likely(memcmp(verity_io_real_digest(v, io),
564 verity_io_want_digest(v, io), v->digest_size) == 0)) {
565 if (v->validated_blocks)
566 set_bit(cur_block, v->validated_blocks);
567 kunmap_local(data);
568 continue;
569 }
570 r = verity_handle_data_hash_mismatch(v, io, bio, cur_block,
571 data);
572 kunmap_local(data);
573 if (unlikely(r))
574 return r;
575 }
576
577 return 0;
578 }
579
580 /*
581 * Skip verity work in response to I/O error when system is shutting down.
582 */
verity_is_system_shutting_down(void)583 static inline bool verity_is_system_shutting_down(void)
584 {
585 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
586 || system_state == SYSTEM_RESTART;
587 }
588
restart_io_error(struct work_struct * w)589 static void restart_io_error(struct work_struct *w)
590 {
591 kernel_restart("dm-verity device has I/O error");
592 }
593
594 /*
595 * End one "io" structure with a given error.
596 */
verity_finish_io(struct dm_verity_io * io,blk_status_t status)597 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
598 {
599 struct dm_verity *v = io->v;
600 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
601
602 bio->bi_end_io = io->orig_bi_end_io;
603 bio->bi_status = status;
604
605 if (!static_branch_unlikely(&use_bh_wq_enabled) || !io->in_bh)
606 verity_fec_finish_io(io);
607
608 if (unlikely(status != BLK_STS_OK) &&
609 unlikely(!(bio->bi_opf & REQ_RAHEAD)) &&
610 !io->had_mismatch &&
611 !verity_is_system_shutting_down()) {
612 if (v->error_mode == DM_VERITY_MODE_PANIC) {
613 panic("dm-verity device has I/O error");
614 }
615 if (v->error_mode == DM_VERITY_MODE_RESTART) {
616 static DECLARE_WORK(restart_work, restart_io_error);
617 queue_work(v->verify_wq, &restart_work);
618 /*
619 * We deliberately don't call bio_endio here, because
620 * the machine will be restarted anyway.
621 */
622 return;
623 }
624 }
625
626 bio_endio(bio);
627 }
628
verity_work(struct work_struct * w)629 static void verity_work(struct work_struct *w)
630 {
631 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
632
633 io->in_bh = false;
634
635 verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
636 }
637
verity_bh_work(struct work_struct * w)638 static void verity_bh_work(struct work_struct *w)
639 {
640 struct dm_verity_io *io = container_of(w, struct dm_verity_io, bh_work);
641 int err;
642
643 io->in_bh = true;
644 err = verity_verify_io(io);
645 if (err == -EAGAIN || err == -ENOMEM) {
646 /* fallback to retrying with work-queue */
647 INIT_WORK(&io->work, verity_work);
648 queue_work(io->v->verify_wq, &io->work);
649 return;
650 }
651
652 verity_finish_io(io, errno_to_blk_status(err));
653 }
654
verity_end_io(struct bio * bio)655 static void verity_end_io(struct bio *bio)
656 {
657 struct dm_verity_io *io = bio->bi_private;
658
659 if (bio->bi_status &&
660 (!verity_fec_is_enabled(io->v) ||
661 verity_is_system_shutting_down() ||
662 (bio->bi_opf & REQ_RAHEAD))) {
663 verity_finish_io(io, bio->bi_status);
664 return;
665 }
666
667 if (static_branch_unlikely(&use_bh_wq_enabled) && io->v->use_bh_wq) {
668 INIT_WORK(&io->bh_work, verity_bh_work);
669 queue_work(system_bh_wq, &io->bh_work);
670 } else {
671 INIT_WORK(&io->work, verity_work);
672 queue_work(io->v->verify_wq, &io->work);
673 }
674 }
675
676 /*
677 * Prefetch buffers for the specified io.
678 * The root buffer is not prefetched, it is assumed that it will be cached
679 * all the time.
680 */
verity_prefetch_io(struct work_struct * work)681 static void verity_prefetch_io(struct work_struct *work)
682 {
683 struct dm_verity_prefetch_work *pw =
684 container_of(work, struct dm_verity_prefetch_work, work);
685 struct dm_verity *v = pw->v;
686 int i;
687
688 for (i = v->levels - 2; i >= 0; i--) {
689 sector_t hash_block_start;
690 sector_t hash_block_end;
691
692 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
693 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
694
695 if (!i) {
696 unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster);
697
698 cluster >>= v->data_dev_block_bits;
699 if (unlikely(!cluster))
700 goto no_prefetch_cluster;
701
702 if (unlikely(cluster & (cluster - 1)))
703 cluster = 1 << __fls(cluster);
704
705 hash_block_start &= ~(sector_t)(cluster - 1);
706 hash_block_end |= cluster - 1;
707 if (unlikely(hash_block_end >= v->hash_blocks))
708 hash_block_end = v->hash_blocks - 1;
709 }
710 no_prefetch_cluster:
711 dm_bufio_prefetch_with_ioprio(v->bufio, hash_block_start,
712 hash_block_end - hash_block_start + 1,
713 pw->ioprio);
714 }
715
716 kfree(pw);
717 }
718
verity_submit_prefetch(struct dm_verity * v,struct dm_verity_io * io,unsigned short ioprio)719 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io,
720 unsigned short ioprio)
721 {
722 sector_t block = io->block;
723 unsigned int n_blocks = io->n_blocks;
724 struct dm_verity_prefetch_work *pw;
725
726 if (v->validated_blocks) {
727 while (n_blocks && test_bit(block, v->validated_blocks)) {
728 block++;
729 n_blocks--;
730 }
731 while (n_blocks && test_bit(block + n_blocks - 1,
732 v->validated_blocks))
733 n_blocks--;
734 if (!n_blocks)
735 return;
736 }
737
738 pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
739 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
740
741 if (!pw)
742 return;
743
744 INIT_WORK(&pw->work, verity_prefetch_io);
745 pw->v = v;
746 pw->block = block;
747 pw->n_blocks = n_blocks;
748 pw->ioprio = ioprio;
749 queue_work(v->verify_wq, &pw->work);
750 }
751
752 /*
753 * Bio map function. It allocates dm_verity_io structure and bio vector and
754 * fills them. Then it issues prefetches and the I/O.
755 */
verity_map(struct dm_target * ti,struct bio * bio)756 static int verity_map(struct dm_target *ti, struct bio *bio)
757 {
758 struct dm_verity *v = ti->private;
759 struct dm_verity_io *io;
760
761 bio_set_dev(bio, v->data_dev->bdev);
762 bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
763
764 if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
765 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
766 DMERR_LIMIT("unaligned io");
767 return DM_MAPIO_KILL;
768 }
769
770 if (bio_end_sector(bio) >>
771 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
772 DMERR_LIMIT("io out of range");
773 return DM_MAPIO_KILL;
774 }
775
776 if (bio_data_dir(bio) == WRITE)
777 return DM_MAPIO_KILL;
778
779 io = dm_per_bio_data(bio, ti->per_io_data_size);
780 io->v = v;
781 io->orig_bi_end_io = bio->bi_end_io;
782 io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
783 io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
784 io->had_mismatch = false;
785
786 bio->bi_end_io = verity_end_io;
787 bio->bi_private = io;
788 io->iter = bio->bi_iter;
789
790 verity_fec_init_io(io);
791
792 verity_submit_prefetch(v, io, bio->bi_ioprio);
793
794 submit_bio_noacct(bio);
795
796 return DM_MAPIO_SUBMITTED;
797 }
798
verity_postsuspend(struct dm_target * ti)799 static void verity_postsuspend(struct dm_target *ti)
800 {
801 struct dm_verity *v = ti->private;
802 flush_workqueue(v->verify_wq);
803 dm_bufio_client_reset(v->bufio);
804 }
805
806 /*
807 * Status: V (valid) or C (corruption found)
808 */
verity_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)809 static void verity_status(struct dm_target *ti, status_type_t type,
810 unsigned int status_flags, char *result, unsigned int maxlen)
811 {
812 struct dm_verity *v = ti->private;
813 unsigned int args = 0;
814 unsigned int sz = 0;
815 unsigned int x;
816
817 switch (type) {
818 case STATUSTYPE_INFO:
819 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
820 break;
821 case STATUSTYPE_TABLE:
822 DMEMIT("%u %s %s %u %u %llu %llu %s ",
823 v->version,
824 v->data_dev->name,
825 v->hash_dev->name,
826 1 << v->data_dev_block_bits,
827 1 << v->hash_dev_block_bits,
828 (unsigned long long)v->data_blocks,
829 (unsigned long long)v->hash_start,
830 v->alg_name
831 );
832 for (x = 0; x < v->digest_size; x++)
833 DMEMIT("%02x", v->root_digest[x]);
834 DMEMIT(" ");
835 if (!v->salt_size)
836 DMEMIT("-");
837 else
838 for (x = 0; x < v->salt_size; x++)
839 DMEMIT("%02x", v->salt[x]);
840 if (v->mode != DM_VERITY_MODE_EIO)
841 args++;
842 if (v->error_mode != DM_VERITY_MODE_EIO)
843 args++;
844 if (verity_fec_is_enabled(v))
845 args += DM_VERITY_OPTS_FEC;
846 if (v->zero_digest)
847 args++;
848 if (v->validated_blocks)
849 args++;
850 if (v->use_bh_wq)
851 args++;
852 if (v->signature_key_desc)
853 args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
854 if (!args)
855 return;
856 DMEMIT(" %u", args);
857 if (v->mode != DM_VERITY_MODE_EIO) {
858 DMEMIT(" ");
859 switch (v->mode) {
860 case DM_VERITY_MODE_LOGGING:
861 DMEMIT(DM_VERITY_OPT_LOGGING);
862 break;
863 case DM_VERITY_MODE_RESTART:
864 DMEMIT(DM_VERITY_OPT_RESTART);
865 break;
866 case DM_VERITY_MODE_PANIC:
867 DMEMIT(DM_VERITY_OPT_PANIC);
868 break;
869 default:
870 BUG();
871 }
872 }
873 if (v->error_mode != DM_VERITY_MODE_EIO) {
874 DMEMIT(" ");
875 switch (v->error_mode) {
876 case DM_VERITY_MODE_RESTART:
877 DMEMIT(DM_VERITY_OPT_ERROR_RESTART);
878 break;
879 case DM_VERITY_MODE_PANIC:
880 DMEMIT(DM_VERITY_OPT_ERROR_PANIC);
881 break;
882 default:
883 BUG();
884 }
885 }
886 if (v->zero_digest)
887 DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
888 if (v->validated_blocks)
889 DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
890 if (v->use_bh_wq)
891 DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
892 sz = verity_fec_status_table(v, sz, result, maxlen);
893 if (v->signature_key_desc)
894 DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
895 " %s", v->signature_key_desc);
896 break;
897
898 case STATUSTYPE_IMA:
899 DMEMIT_TARGET_NAME_VERSION(ti->type);
900 DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
901 DMEMIT(",verity_version=%u", v->version);
902 DMEMIT(",data_device_name=%s", v->data_dev->name);
903 DMEMIT(",hash_device_name=%s", v->hash_dev->name);
904 DMEMIT(",verity_algorithm=%s", v->alg_name);
905
906 DMEMIT(",root_digest=");
907 for (x = 0; x < v->digest_size; x++)
908 DMEMIT("%02x", v->root_digest[x]);
909
910 DMEMIT(",salt=");
911 if (!v->salt_size)
912 DMEMIT("-");
913 else
914 for (x = 0; x < v->salt_size; x++)
915 DMEMIT("%02x", v->salt[x]);
916
917 DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
918 DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
919 if (v->signature_key_desc)
920 DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
921
922 if (v->mode != DM_VERITY_MODE_EIO) {
923 DMEMIT(",verity_mode=");
924 switch (v->mode) {
925 case DM_VERITY_MODE_LOGGING:
926 DMEMIT(DM_VERITY_OPT_LOGGING);
927 break;
928 case DM_VERITY_MODE_RESTART:
929 DMEMIT(DM_VERITY_OPT_RESTART);
930 break;
931 case DM_VERITY_MODE_PANIC:
932 DMEMIT(DM_VERITY_OPT_PANIC);
933 break;
934 default:
935 DMEMIT("invalid");
936 }
937 }
938 if (v->error_mode != DM_VERITY_MODE_EIO) {
939 DMEMIT(",verity_error_mode=");
940 switch (v->error_mode) {
941 case DM_VERITY_MODE_RESTART:
942 DMEMIT(DM_VERITY_OPT_ERROR_RESTART);
943 break;
944 case DM_VERITY_MODE_PANIC:
945 DMEMIT(DM_VERITY_OPT_ERROR_PANIC);
946 break;
947 default:
948 DMEMIT("invalid");
949 }
950 }
951 DMEMIT(";");
952 break;
953 }
954 }
955
verity_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev)956 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
957 {
958 struct dm_verity *v = ti->private;
959
960 *bdev = v->data_dev->bdev;
961
962 if (ti->len != bdev_nr_sectors(v->data_dev->bdev))
963 return 1;
964 return 0;
965 }
966
verity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)967 static int verity_iterate_devices(struct dm_target *ti,
968 iterate_devices_callout_fn fn, void *data)
969 {
970 struct dm_verity *v = ti->private;
971
972 return fn(ti, v->data_dev, 0, ti->len, data);
973 }
974
verity_io_hints(struct dm_target * ti,struct queue_limits * limits)975 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
976 {
977 struct dm_verity *v = ti->private;
978
979 if (limits->logical_block_size < 1 << v->data_dev_block_bits)
980 limits->logical_block_size = 1 << v->data_dev_block_bits;
981
982 if (limits->physical_block_size < 1 << v->data_dev_block_bits)
983 limits->physical_block_size = 1 << v->data_dev_block_bits;
984
985 limits->io_min = limits->logical_block_size;
986
987 /*
988 * Similar to what dm-crypt does, opt dm-verity out of support for
989 * direct I/O that is aligned to less than the traditional direct I/O
990 * alignment requirement of logical_block_size. This prevents dm-verity
991 * data blocks from crossing pages, eliminating various edge cases.
992 */
993 limits->dma_alignment = limits->logical_block_size - 1;
994 }
995
996 #ifdef CONFIG_SECURITY
997
verity_init_sig(struct dm_verity * v,const void * sig,size_t sig_size)998 static int verity_init_sig(struct dm_verity *v, const void *sig,
999 size_t sig_size)
1000 {
1001 v->sig_size = sig_size;
1002
1003 if (sig) {
1004 v->root_digest_sig = kmemdup(sig, v->sig_size, GFP_KERNEL);
1005 if (!v->root_digest_sig)
1006 return -ENOMEM;
1007 }
1008
1009 return 0;
1010 }
1011
verity_free_sig(struct dm_verity * v)1012 static void verity_free_sig(struct dm_verity *v)
1013 {
1014 kfree(v->root_digest_sig);
1015 }
1016
1017 #else
1018
verity_init_sig(struct dm_verity * v,const void * sig,size_t sig_size)1019 static inline int verity_init_sig(struct dm_verity *v, const void *sig,
1020 size_t sig_size)
1021 {
1022 return 0;
1023 }
1024
verity_free_sig(struct dm_verity * v)1025 static inline void verity_free_sig(struct dm_verity *v)
1026 {
1027 }
1028
1029 #endif /* CONFIG_SECURITY */
1030
verity_dtr(struct dm_target * ti)1031 static void verity_dtr(struct dm_target *ti)
1032 {
1033 struct dm_verity *v = ti->private;
1034
1035 if (v->verify_wq)
1036 destroy_workqueue(v->verify_wq);
1037
1038 mempool_exit(&v->recheck_pool);
1039 if (v->io)
1040 dm_io_client_destroy(v->io);
1041
1042 if (v->bufio)
1043 dm_bufio_client_destroy(v->bufio);
1044
1045 kvfree(v->validated_blocks);
1046 kfree(v->salt);
1047 kfree(v->initial_hashstate);
1048 kfree(v->root_digest);
1049 kfree(v->zero_digest);
1050 verity_free_sig(v);
1051
1052 if (v->ahash_tfm) {
1053 static_branch_dec(&ahash_enabled);
1054 crypto_free_ahash(v->ahash_tfm);
1055 } else {
1056 crypto_free_shash(v->shash_tfm);
1057 }
1058
1059 kfree(v->alg_name);
1060
1061 if (v->hash_dev)
1062 dm_put_device(ti, v->hash_dev);
1063
1064 if (v->data_dev)
1065 dm_put_device(ti, v->data_dev);
1066
1067 verity_fec_dtr(v);
1068
1069 kfree(v->signature_key_desc);
1070
1071 if (v->use_bh_wq)
1072 static_branch_dec(&use_bh_wq_enabled);
1073
1074 kfree(v);
1075
1076 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
1077 }
1078
verity_alloc_most_once(struct dm_verity * v)1079 static int verity_alloc_most_once(struct dm_verity *v)
1080 {
1081 struct dm_target *ti = v->ti;
1082
1083 /* the bitset can only handle INT_MAX blocks */
1084 if (v->data_blocks > INT_MAX) {
1085 ti->error = "device too large to use check_at_most_once";
1086 return -E2BIG;
1087 }
1088
1089 v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
1090 sizeof(unsigned long),
1091 GFP_KERNEL);
1092 if (!v->validated_blocks) {
1093 ti->error = "failed to allocate bitset for check_at_most_once";
1094 return -ENOMEM;
1095 }
1096
1097 return 0;
1098 }
1099
verity_alloc_zero_digest(struct dm_verity * v)1100 static int verity_alloc_zero_digest(struct dm_verity *v)
1101 {
1102 int r = -ENOMEM;
1103 struct dm_verity_io *io;
1104 u8 *zero_data;
1105
1106 v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1107
1108 if (!v->zero_digest)
1109 return r;
1110
1111 io = kmalloc(sizeof(*io) + v->hash_reqsize, GFP_KERNEL);
1112
1113 if (!io)
1114 return r; /* verity_dtr will free zero_digest */
1115
1116 zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1117
1118 if (!zero_data)
1119 goto out;
1120
1121 r = verity_hash(v, io, zero_data, 1 << v->data_dev_block_bits,
1122 v->zero_digest, true);
1123
1124 out:
1125 kfree(io);
1126 kfree(zero_data);
1127
1128 return r;
1129 }
1130
verity_is_verity_mode(const char * arg_name)1131 static inline bool verity_is_verity_mode(const char *arg_name)
1132 {
1133 return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1134 !strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1135 !strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1136 }
1137
verity_parse_verity_mode(struct dm_verity * v,const char * arg_name)1138 static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1139 {
1140 if (v->mode)
1141 return -EINVAL;
1142
1143 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1144 v->mode = DM_VERITY_MODE_LOGGING;
1145 else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1146 v->mode = DM_VERITY_MODE_RESTART;
1147 else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1148 v->mode = DM_VERITY_MODE_PANIC;
1149
1150 return 0;
1151 }
1152
verity_is_verity_error_mode(const char * arg_name)1153 static inline bool verity_is_verity_error_mode(const char *arg_name)
1154 {
1155 return (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART) ||
1156 !strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC));
1157 }
1158
verity_parse_verity_error_mode(struct dm_verity * v,const char * arg_name)1159 static int verity_parse_verity_error_mode(struct dm_verity *v, const char *arg_name)
1160 {
1161 if (v->error_mode)
1162 return -EINVAL;
1163
1164 if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART))
1165 v->error_mode = DM_VERITY_MODE_RESTART;
1166 else if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC))
1167 v->error_mode = DM_VERITY_MODE_PANIC;
1168
1169 return 0;
1170 }
1171
verity_parse_opt_args(struct dm_arg_set * as,struct dm_verity * v,struct dm_verity_sig_opts * verify_args,bool only_modifier_opts)1172 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1173 struct dm_verity_sig_opts *verify_args,
1174 bool only_modifier_opts)
1175 {
1176 int r = 0;
1177 unsigned int argc;
1178 struct dm_target *ti = v->ti;
1179 const char *arg_name;
1180
1181 static const struct dm_arg _args[] = {
1182 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1183 };
1184
1185 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1186 if (r)
1187 return -EINVAL;
1188
1189 if (!argc)
1190 return 0;
1191
1192 do {
1193 arg_name = dm_shift_arg(as);
1194 argc--;
1195
1196 if (verity_is_verity_mode(arg_name)) {
1197 if (only_modifier_opts)
1198 continue;
1199 r = verity_parse_verity_mode(v, arg_name);
1200 if (r) {
1201 ti->error = "Conflicting error handling parameters";
1202 return r;
1203 }
1204 continue;
1205
1206 } else if (verity_is_verity_error_mode(arg_name)) {
1207 if (only_modifier_opts)
1208 continue;
1209 r = verity_parse_verity_error_mode(v, arg_name);
1210 if (r) {
1211 ti->error = "Conflicting error handling parameters";
1212 return r;
1213 }
1214 continue;
1215
1216 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1217 if (only_modifier_opts)
1218 continue;
1219 r = verity_alloc_zero_digest(v);
1220 if (r) {
1221 ti->error = "Cannot allocate zero digest";
1222 return r;
1223 }
1224 continue;
1225
1226 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1227 if (only_modifier_opts)
1228 continue;
1229 r = verity_alloc_most_once(v);
1230 if (r)
1231 return r;
1232 continue;
1233
1234 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1235 v->use_bh_wq = true;
1236 static_branch_inc(&use_bh_wq_enabled);
1237 continue;
1238
1239 } else if (verity_is_fec_opt_arg(arg_name)) {
1240 if (only_modifier_opts)
1241 continue;
1242 r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1243 if (r)
1244 return r;
1245 continue;
1246
1247 } else if (verity_verify_is_sig_opt_arg(arg_name)) {
1248 if (only_modifier_opts)
1249 continue;
1250 r = verity_verify_sig_parse_opt_args(as, v,
1251 verify_args,
1252 &argc, arg_name);
1253 if (r)
1254 return r;
1255 continue;
1256
1257 } else if (only_modifier_opts) {
1258 /*
1259 * Ignore unrecognized opt, could easily be an extra
1260 * argument to an option whose parsing was skipped.
1261 * Normal parsing (@only_modifier_opts=false) will
1262 * properly parse all options (and their extra args).
1263 */
1264 continue;
1265 }
1266
1267 DMERR("Unrecognized verity feature request: %s", arg_name);
1268 ti->error = "Unrecognized verity feature request";
1269 return -EINVAL;
1270 } while (argc && !r);
1271
1272 return r;
1273 }
1274
verity_setup_hash_alg(struct dm_verity * v,const char * alg_name)1275 static int verity_setup_hash_alg(struct dm_verity *v, const char *alg_name)
1276 {
1277 struct dm_target *ti = v->ti;
1278 struct crypto_ahash *ahash;
1279 struct crypto_shash *shash = NULL;
1280 const char *driver_name;
1281
1282 v->alg_name = kstrdup(alg_name, GFP_KERNEL);
1283 if (!v->alg_name) {
1284 ti->error = "Cannot allocate algorithm name";
1285 return -ENOMEM;
1286 }
1287
1288 /*
1289 * Allocate the hash transformation object that this dm-verity instance
1290 * will use. The vast majority of dm-verity users use CPU-based
1291 * hashing, so when possible use the shash API to minimize the crypto
1292 * API overhead. If the ahash API resolves to a different driver
1293 * (likely an off-CPU hardware offload), use ahash instead. Also use
1294 * ahash if the obsolete dm-verity format with the appended salt is
1295 * being used, so that quirk only needs to be handled in one place.
1296 */
1297 ahash = crypto_alloc_ahash(alg_name, 0,
1298 v->use_bh_wq ? CRYPTO_ALG_ASYNC : 0);
1299 if (IS_ERR(ahash)) {
1300 ti->error = "Cannot initialize hash function";
1301 return PTR_ERR(ahash);
1302 }
1303 driver_name = crypto_ahash_driver_name(ahash);
1304 if (v->version >= 1 /* salt prepended, not appended? */) {
1305 shash = crypto_alloc_shash(alg_name, 0, 0);
1306 if (!IS_ERR(shash) &&
1307 strcmp(crypto_shash_driver_name(shash), driver_name) != 0) {
1308 /*
1309 * ahash gave a different driver than shash, so probably
1310 * this is a case of real hardware offload. Use ahash.
1311 */
1312 crypto_free_shash(shash);
1313 shash = NULL;
1314 }
1315 }
1316 if (!IS_ERR_OR_NULL(shash)) {
1317 crypto_free_ahash(ahash);
1318 ahash = NULL;
1319 v->shash_tfm = shash;
1320 v->digest_size = crypto_shash_digestsize(shash);
1321 v->hash_reqsize = sizeof(struct shash_desc) +
1322 crypto_shash_descsize(shash);
1323 DMINFO("%s using shash \"%s\"", alg_name, driver_name);
1324 } else {
1325 v->ahash_tfm = ahash;
1326 static_branch_inc(&ahash_enabled);
1327 v->digest_size = crypto_ahash_digestsize(ahash);
1328 v->hash_reqsize = sizeof(struct ahash_request) +
1329 crypto_ahash_reqsize(ahash);
1330 DMINFO("%s using ahash \"%s\"", alg_name, driver_name);
1331 }
1332 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1333 ti->error = "Digest size too big";
1334 return -EINVAL;
1335 }
1336 return 0;
1337 }
1338
verity_setup_salt_and_hashstate(struct dm_verity * v,const char * arg)1339 static int verity_setup_salt_and_hashstate(struct dm_verity *v, const char *arg)
1340 {
1341 struct dm_target *ti = v->ti;
1342
1343 if (strcmp(arg, "-") != 0) {
1344 v->salt_size = strlen(arg) / 2;
1345 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1346 if (!v->salt) {
1347 ti->error = "Cannot allocate salt";
1348 return -ENOMEM;
1349 }
1350 if (strlen(arg) != v->salt_size * 2 ||
1351 hex2bin(v->salt, arg, v->salt_size)) {
1352 ti->error = "Invalid salt";
1353 return -EINVAL;
1354 }
1355 }
1356 if (v->shash_tfm) {
1357 SHASH_DESC_ON_STACK(desc, v->shash_tfm);
1358 int r;
1359
1360 /*
1361 * Compute the pre-salted hash state that can be passed to
1362 * crypto_shash_import() for each block later.
1363 */
1364 v->initial_hashstate = kmalloc(
1365 crypto_shash_statesize(v->shash_tfm), GFP_KERNEL);
1366 if (!v->initial_hashstate) {
1367 ti->error = "Cannot allocate initial hash state";
1368 return -ENOMEM;
1369 }
1370 desc->tfm = v->shash_tfm;
1371 r = crypto_shash_init(desc) ?:
1372 crypto_shash_update(desc, v->salt, v->salt_size) ?:
1373 crypto_shash_export(desc, v->initial_hashstate);
1374 if (r) {
1375 ti->error = "Cannot set up initial hash state";
1376 return r;
1377 }
1378 }
1379 return 0;
1380 }
1381
1382 /*
1383 * Target parameters:
1384 * <version> The current format is version 1.
1385 * Vsn 0 is compatible with original Chromium OS releases.
1386 * <data device>
1387 * <hash device>
1388 * <data block size>
1389 * <hash block size>
1390 * <the number of data blocks>
1391 * <hash start block>
1392 * <algorithm>
1393 * <digest>
1394 * <salt> Hex string or "-" if no salt.
1395 */
verity_ctr(struct dm_target * ti,unsigned int argc,char ** argv)1396 static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1397 {
1398 struct dm_verity *v;
1399 struct dm_verity_sig_opts verify_args = {0};
1400 struct dm_arg_set as;
1401 unsigned int num;
1402 unsigned long long num_ll;
1403 int r;
1404 int i;
1405 sector_t hash_position;
1406 char dummy;
1407 char *root_hash_digest_to_validate;
1408
1409 v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1410 if (!v) {
1411 ti->error = "Cannot allocate verity structure";
1412 return -ENOMEM;
1413 }
1414 ti->private = v;
1415 v->ti = ti;
1416
1417 r = verity_fec_ctr_alloc(v);
1418 if (r)
1419 goto bad;
1420
1421 if ((dm_table_get_mode(ti->table) & ~BLK_OPEN_READ)) {
1422 ti->error = "Device must be readonly";
1423 r = -EINVAL;
1424 goto bad;
1425 }
1426
1427 if (argc < 10) {
1428 ti->error = "Not enough arguments";
1429 r = -EINVAL;
1430 goto bad;
1431 }
1432
1433 /* Parse optional parameters that modify primary args */
1434 if (argc > 10) {
1435 as.argc = argc - 10;
1436 as.argv = argv + 10;
1437 r = verity_parse_opt_args(&as, v, &verify_args, true);
1438 if (r < 0)
1439 goto bad;
1440 }
1441
1442 if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1443 num > 1) {
1444 ti->error = "Invalid version";
1445 r = -EINVAL;
1446 goto bad;
1447 }
1448 v->version = num;
1449
1450 r = dm_get_device(ti, argv[1], BLK_OPEN_READ, &v->data_dev);
1451 if (r) {
1452 ti->error = "Data device lookup failed";
1453 goto bad;
1454 }
1455
1456 r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &v->hash_dev);
1457 if (r) {
1458 ti->error = "Hash device lookup failed";
1459 goto bad;
1460 }
1461
1462 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1463 !num || (num & (num - 1)) ||
1464 num < bdev_logical_block_size(v->data_dev->bdev) ||
1465 num > PAGE_SIZE) {
1466 ti->error = "Invalid data device block size";
1467 r = -EINVAL;
1468 goto bad;
1469 }
1470 v->data_dev_block_bits = __ffs(num);
1471
1472 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1473 !num || (num & (num - 1)) ||
1474 num < bdev_logical_block_size(v->hash_dev->bdev) ||
1475 num > INT_MAX) {
1476 ti->error = "Invalid hash device block size";
1477 r = -EINVAL;
1478 goto bad;
1479 }
1480 v->hash_dev_block_bits = __ffs(num);
1481
1482 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1483 (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1484 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1485 ti->error = "Invalid data blocks";
1486 r = -EINVAL;
1487 goto bad;
1488 }
1489 v->data_blocks = num_ll;
1490
1491 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1492 ti->error = "Data device is too small";
1493 r = -EINVAL;
1494 goto bad;
1495 }
1496
1497 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1498 (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1499 >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1500 ti->error = "Invalid hash start";
1501 r = -EINVAL;
1502 goto bad;
1503 }
1504 v->hash_start = num_ll;
1505
1506 r = verity_setup_hash_alg(v, argv[7]);
1507 if (r)
1508 goto bad;
1509
1510 v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1511 if (!v->root_digest) {
1512 ti->error = "Cannot allocate root digest";
1513 r = -ENOMEM;
1514 goto bad;
1515 }
1516 if (strlen(argv[8]) != v->digest_size * 2 ||
1517 hex2bin(v->root_digest, argv[8], v->digest_size)) {
1518 ti->error = "Invalid root digest";
1519 r = -EINVAL;
1520 goto bad;
1521 }
1522 root_hash_digest_to_validate = argv[8];
1523
1524 r = verity_setup_salt_and_hashstate(v, argv[9]);
1525 if (r)
1526 goto bad;
1527
1528 argv += 10;
1529 argc -= 10;
1530
1531 /* Optional parameters */
1532 if (argc) {
1533 as.argc = argc;
1534 as.argv = argv;
1535 r = verity_parse_opt_args(&as, v, &verify_args, false);
1536 if (r < 0)
1537 goto bad;
1538 }
1539
1540 /* Root hash signature is a optional parameter*/
1541 r = verity_verify_root_hash(root_hash_digest_to_validate,
1542 strlen(root_hash_digest_to_validate),
1543 verify_args.sig,
1544 verify_args.sig_size);
1545 if (r < 0) {
1546 ti->error = "Root hash verification failed";
1547 goto bad;
1548 }
1549
1550 r = verity_init_sig(v, verify_args.sig, verify_args.sig_size);
1551 if (r < 0) {
1552 ti->error = "Cannot allocate root digest signature";
1553 goto bad;
1554 }
1555
1556 v->hash_per_block_bits =
1557 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
1558
1559 v->levels = 0;
1560 if (v->data_blocks)
1561 while (v->hash_per_block_bits * v->levels < 64 &&
1562 (unsigned long long)(v->data_blocks - 1) >>
1563 (v->hash_per_block_bits * v->levels))
1564 v->levels++;
1565
1566 if (v->levels > DM_VERITY_MAX_LEVELS) {
1567 ti->error = "Too many tree levels";
1568 r = -E2BIG;
1569 goto bad;
1570 }
1571
1572 hash_position = v->hash_start;
1573 for (i = v->levels - 1; i >= 0; i--) {
1574 sector_t s;
1575
1576 v->hash_level_block[i] = hash_position;
1577 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1578 >> ((i + 1) * v->hash_per_block_bits);
1579 if (hash_position + s < hash_position) {
1580 ti->error = "Hash device offset overflow";
1581 r = -E2BIG;
1582 goto bad;
1583 }
1584 hash_position += s;
1585 }
1586 v->hash_blocks = hash_position;
1587
1588 r = mempool_init_page_pool(&v->recheck_pool, 1, 0);
1589 if (unlikely(r)) {
1590 ti->error = "Cannot allocate mempool";
1591 goto bad;
1592 }
1593
1594 v->io = dm_io_client_create();
1595 if (IS_ERR(v->io)) {
1596 r = PTR_ERR(v->io);
1597 v->io = NULL;
1598 ti->error = "Cannot allocate dm io";
1599 goto bad;
1600 }
1601
1602 v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1603 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1604 dm_bufio_alloc_callback, NULL,
1605 v->use_bh_wq ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1606 if (IS_ERR(v->bufio)) {
1607 ti->error = "Cannot initialize dm-bufio";
1608 r = PTR_ERR(v->bufio);
1609 v->bufio = NULL;
1610 goto bad;
1611 }
1612
1613 if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1614 ti->error = "Hash device is too small";
1615 r = -E2BIG;
1616 goto bad;
1617 }
1618
1619 /*
1620 * Using WQ_HIGHPRI improves throughput and completion latency by
1621 * reducing wait times when reading from a dm-verity device.
1622 *
1623 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1624 * allows verify_wq to preempt softirq since verification in BH workqueue
1625 * will fall-back to using it for error handling (or if the bufio cache
1626 * doesn't have required hashes).
1627 */
1628 v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1629 if (!v->verify_wq) {
1630 ti->error = "Cannot allocate workqueue";
1631 r = -ENOMEM;
1632 goto bad;
1633 }
1634
1635 ti->per_io_data_size = sizeof(struct dm_verity_io) + v->hash_reqsize;
1636
1637 r = verity_fec_ctr(v);
1638 if (r)
1639 goto bad;
1640
1641 ti->per_io_data_size = roundup(ti->per_io_data_size,
1642 __alignof__(struct dm_verity_io));
1643
1644 verity_verify_sig_opts_cleanup(&verify_args);
1645
1646 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
1647
1648 return 0;
1649
1650 bad:
1651
1652 verity_verify_sig_opts_cleanup(&verify_args);
1653 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
1654 verity_dtr(ti);
1655
1656 return r;
1657 }
1658
1659 /*
1660 * Get the verity mode (error behavior) of a verity target.
1661 *
1662 * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1663 * target.
1664 */
dm_verity_get_mode(struct dm_target * ti)1665 int dm_verity_get_mode(struct dm_target *ti)
1666 {
1667 struct dm_verity *v = ti->private;
1668
1669 if (!dm_is_verity_target(ti))
1670 return -EINVAL;
1671
1672 return v->mode;
1673 }
1674
1675 /*
1676 * Get the root digest of a verity target.
1677 *
1678 * Returns a copy of the root digest, the caller is responsible for
1679 * freeing the memory of the digest.
1680 */
dm_verity_get_root_digest(struct dm_target * ti,u8 ** root_digest,unsigned int * digest_size)1681 int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1682 {
1683 struct dm_verity *v = ti->private;
1684
1685 if (!dm_is_verity_target(ti))
1686 return -EINVAL;
1687
1688 *root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1689 if (*root_digest == NULL)
1690 return -ENOMEM;
1691
1692 *digest_size = v->digest_size;
1693
1694 return 0;
1695 }
1696
1697 #ifdef CONFIG_SECURITY
1698
1699 #ifdef CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG
1700
verity_security_set_signature(struct block_device * bdev,struct dm_verity * v)1701 static int verity_security_set_signature(struct block_device *bdev,
1702 struct dm_verity *v)
1703 {
1704 /*
1705 * if the dm-verity target is unsigned, v->root_digest_sig will
1706 * be NULL, and the hook call is still required to let LSMs mark
1707 * the device as unsigned. This information is crucial for LSMs to
1708 * block operations such as execution on unsigned files
1709 */
1710 return security_bdev_setintegrity(bdev,
1711 LSM_INT_DMVERITY_SIG_VALID,
1712 v->root_digest_sig,
1713 v->sig_size);
1714 }
1715
1716 #else
1717
verity_security_set_signature(struct block_device * bdev,struct dm_verity * v)1718 static inline int verity_security_set_signature(struct block_device *bdev,
1719 struct dm_verity *v)
1720 {
1721 return 0;
1722 }
1723
1724 #endif /* CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG */
1725
1726 /*
1727 * Expose verity target's root hash and signature data to LSMs before resume.
1728 *
1729 * Returns 0 on success, or -ENOMEM if the system is out of memory.
1730 */
verity_preresume(struct dm_target * ti)1731 static int verity_preresume(struct dm_target *ti)
1732 {
1733 struct block_device *bdev;
1734 struct dm_verity_digest root_digest;
1735 struct dm_verity *v;
1736 int r;
1737
1738 v = ti->private;
1739 bdev = dm_disk(dm_table_get_md(ti->table))->part0;
1740 root_digest.digest = v->root_digest;
1741 root_digest.digest_len = v->digest_size;
1742 if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm)
1743 root_digest.alg = crypto_ahash_alg_name(v->ahash_tfm);
1744 else
1745 root_digest.alg = crypto_shash_alg_name(v->shash_tfm);
1746
1747 r = security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, &root_digest,
1748 sizeof(root_digest));
1749 if (r)
1750 return r;
1751
1752 r = verity_security_set_signature(bdev, v);
1753 if (r)
1754 goto bad;
1755
1756 return 0;
1757
1758 bad:
1759
1760 security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, NULL, 0);
1761
1762 return r;
1763 }
1764
1765 #endif /* CONFIG_SECURITY */
1766
1767 static struct target_type verity_target = {
1768 .name = "verity",
1769 /* Note: the LSMs depend on the singleton and immutable features */
1770 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1771 .version = {1, 10, 0},
1772 .module = THIS_MODULE,
1773 .ctr = verity_ctr,
1774 .dtr = verity_dtr,
1775 .map = verity_map,
1776 .postsuspend = verity_postsuspend,
1777 .status = verity_status,
1778 .prepare_ioctl = verity_prepare_ioctl,
1779 .iterate_devices = verity_iterate_devices,
1780 .io_hints = verity_io_hints,
1781 #ifdef CONFIG_SECURITY
1782 .preresume = verity_preresume,
1783 #endif /* CONFIG_SECURITY */
1784 };
1785 module_dm(verity);
1786
1787 /*
1788 * Check whether a DM target is a verity target.
1789 */
dm_is_verity_target(struct dm_target * ti)1790 bool dm_is_verity_target(struct dm_target *ti)
1791 {
1792 return ti->type == &verity_target;
1793 }
1794
1795 MODULE_AUTHOR("Mikulas Patocka <[email protected]>");
1796 MODULE_AUTHOR("Mandeep Baines <[email protected]>");
1797 MODULE_AUTHOR("Will Drewry <[email protected]>");
1798 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1799 MODULE_LICENSE("GPL");
1800