1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the declaration of the MachineInstr class, which is the 10 // basic representation for all target dependent machine instructions used by 11 // the back end. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CODEGEN_MACHINEINSTR_H 16 #define LLVM_CODEGEN_MACHINEINSTR_H 17 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/PointerSumType.h" 20 #include "llvm/ADT/ilist.h" 21 #include "llvm/ADT/ilist_node.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/MemoryLocation.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineOperand.h" 26 #include "llvm/CodeGen/TargetOpcodes.h" 27 #include "llvm/IR/DebugLoc.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/MC/MCInstrDesc.h" 30 #include "llvm/MC/MCSymbol.h" 31 #include "llvm/Support/ArrayRecycler.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/TrailingObjects.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstdint> 37 #include <utility> 38 39 namespace llvm { 40 41 class DILabel; 42 class Instruction; 43 class MDNode; 44 class AAResults; 45 template <typename T> class ArrayRef; 46 class DIExpression; 47 class DILocalVariable; 48 class MachineBasicBlock; 49 class MachineFunction; 50 class MachineRegisterInfo; 51 class ModuleSlotTracker; 52 class raw_ostream; 53 template <typename T> class SmallVectorImpl; 54 class SmallBitVector; 55 class StringRef; 56 class TargetInstrInfo; 57 class TargetRegisterClass; 58 class TargetRegisterInfo; 59 60 //===----------------------------------------------------------------------===// 61 /// Representation of each machine instruction. 62 /// 63 /// This class isn't a POD type, but it must have a trivial destructor. When a 64 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated 65 /// without having their destructor called. 66 /// 67 class MachineInstr 68 : public ilist_node_with_parent<MachineInstr, MachineBasicBlock, 69 ilist_sentinel_tracking<true>> { 70 public: 71 using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator; 72 73 /// Flags to specify different kinds of comments to output in 74 /// assembly code. These flags carry semantic information not 75 /// otherwise easily derivable from the IR text. 76 /// 77 enum CommentFlag { 78 ReloadReuse = 0x1, // higher bits are reserved for target dep comments. 79 NoSchedComment = 0x2, 80 TAsmComments = 0x4 // Target Asm comments should start from this value. 81 }; 82 83 enum MIFlag { 84 NoFlags = 0, 85 FrameSetup = 1 << 0, // Instruction is used as a part of 86 // function frame setup code. 87 FrameDestroy = 1 << 1, // Instruction is used as a part of 88 // function frame destruction code. 89 BundledPred = 1 << 2, // Instruction has bundled predecessors. 90 BundledSucc = 1 << 3, // Instruction has bundled successors. 91 FmNoNans = 1 << 4, // Instruction does not support Fast 92 // math nan values. 93 FmNoInfs = 1 << 5, // Instruction does not support Fast 94 // math infinity values. 95 FmNsz = 1 << 6, // Instruction is not required to retain 96 // signed zero values. 97 FmArcp = 1 << 7, // Instruction supports Fast math 98 // reciprocal approximations. 99 FmContract = 1 << 8, // Instruction supports Fast math 100 // contraction operations like fma. 101 FmAfn = 1 << 9, // Instruction may map to Fast math 102 // intrinsic approximation. 103 FmReassoc = 1 << 10, // Instruction supports Fast math 104 // reassociation of operand order. 105 NoUWrap = 1 << 11, // Instruction supports binary operator 106 // no unsigned wrap. 107 NoSWrap = 1 << 12, // Instruction supports binary operator 108 // no signed wrap. 109 IsExact = 1 << 13, // Instruction supports division is 110 // known to be exact. 111 NoFPExcept = 1 << 14, // Instruction does not raise 112 // floatint-point exceptions. 113 NoMerge = 1 << 15, // Passes that drop source location info 114 // (e.g. branch folding) should skip 115 // this instruction. 116 Unpredictable = 1 << 16, // Instruction with unpredictable condition. 117 NoConvergent = 1 << 17, // Call does not require convergence guarantees. 118 NonNeg = 1 << 18, // The operand is non-negative. 119 Disjoint = 1 << 19, // Each bit is zero in at least one of the inputs. 120 }; 121 122 private: 123 const MCInstrDesc *MCID; // Instruction descriptor. 124 MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block. 125 126 // Operands are allocated by an ArrayRecycler. 127 MachineOperand *Operands = nullptr; // Pointer to the first operand. 128 129 #define LLVM_MI_NUMOPERANDS_BITS 24 130 #define LLVM_MI_FLAGS_BITS 24 131 #define LLVM_MI_ASMPRINTERFLAGS_BITS 8 132 133 /// Number of operands on instruction. 134 uint32_t NumOperands : LLVM_MI_NUMOPERANDS_BITS; 135 136 // OperandCapacity has uint8_t size, so it should be next to NumOperands 137 // to properly pack. 138 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity; 139 OperandCapacity CapOperands; // Capacity of the Operands array. 140 141 /// Various bits of additional information about the machine instruction. 142 uint32_t Flags : LLVM_MI_FLAGS_BITS; 143 144 /// Various bits of information used by the AsmPrinter to emit helpful 145 /// comments. This is *not* semantic information. Do not use this for 146 /// anything other than to convey comment information to AsmPrinter. 147 uint8_t AsmPrinterFlags : LLVM_MI_ASMPRINTERFLAGS_BITS; 148 149 /// Internal implementation detail class that provides out-of-line storage for 150 /// extra info used by the machine instruction when this info cannot be stored 151 /// in-line within the instruction itself. 152 /// 153 /// This has to be defined eagerly due to the implementation constraints of 154 /// `PointerSumType` where it is used. 155 class ExtraInfo final : TrailingObjects<ExtraInfo, MachineMemOperand *, 156 MCSymbol *, MDNode *, uint32_t> { 157 public: 158 static ExtraInfo *create(BumpPtrAllocator &Allocator, 159 ArrayRef<MachineMemOperand *> MMOs, 160 MCSymbol *PreInstrSymbol = nullptr, 161 MCSymbol *PostInstrSymbol = nullptr, 162 MDNode *HeapAllocMarker = nullptr, 163 MDNode *PCSections = nullptr, uint32_t CFIType = 0, 164 MDNode *MMRAs = nullptr) { 165 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 166 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 167 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 168 bool HasMMRAs = MMRAs != nullptr; 169 bool HasCFIType = CFIType != 0; 170 bool HasPCSections = PCSections != nullptr; 171 auto *Result = new (Allocator.Allocate( 172 totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *, uint32_t>( 173 MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol, 174 HasHeapAllocMarker + HasPCSections + HasMMRAs, HasCFIType), 175 alignof(ExtraInfo))) 176 ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol, 177 HasHeapAllocMarker, HasPCSections, HasCFIType, HasMMRAs); 178 179 // Copy the actual data into the trailing objects. 180 std::copy(MMOs.begin(), MMOs.end(), 181 Result->getTrailingObjects<MachineMemOperand *>()); 182 183 unsigned MDNodeIdx = 0; 184 185 if (HasPreInstrSymbol) 186 Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol; 187 if (HasPostInstrSymbol) 188 Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] = 189 PostInstrSymbol; 190 if (HasHeapAllocMarker) 191 Result->getTrailingObjects<MDNode *>()[MDNodeIdx++] = HeapAllocMarker; 192 if (HasPCSections) 193 Result->getTrailingObjects<MDNode *>()[MDNodeIdx++] = PCSections; 194 if (HasCFIType) 195 Result->getTrailingObjects<uint32_t>()[0] = CFIType; 196 if (HasMMRAs) 197 Result->getTrailingObjects<MDNode *>()[MDNodeIdx++] = MMRAs; 198 199 return Result; 200 } 201 getMMOs()202 ArrayRef<MachineMemOperand *> getMMOs() const { 203 return ArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs); 204 } 205 getPreInstrSymbol()206 MCSymbol *getPreInstrSymbol() const { 207 return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr; 208 } 209 getPostInstrSymbol()210 MCSymbol *getPostInstrSymbol() const { 211 return HasPostInstrSymbol 212 ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] 213 : nullptr; 214 } 215 getHeapAllocMarker()216 MDNode *getHeapAllocMarker() const { 217 return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr; 218 } 219 getPCSections()220 MDNode *getPCSections() const { 221 return HasPCSections 222 ? getTrailingObjects<MDNode *>()[HasHeapAllocMarker] 223 : nullptr; 224 } 225 getCFIType()226 uint32_t getCFIType() const { 227 return HasCFIType ? getTrailingObjects<uint32_t>()[0] : 0; 228 } 229 getMMRAMetadata()230 MDNode *getMMRAMetadata() const { 231 return HasMMRAs ? getTrailingObjects<MDNode *>()[HasHeapAllocMarker + 232 HasPCSections] 233 : nullptr; 234 } 235 236 private: 237 friend TrailingObjects; 238 239 // Description of the extra info, used to interpret the actual optional 240 // data appended. 241 // 242 // Note that this is not terribly space optimized. This leaves a great deal 243 // of flexibility to fit more in here later. 244 const int NumMMOs; 245 const bool HasPreInstrSymbol; 246 const bool HasPostInstrSymbol; 247 const bool HasHeapAllocMarker; 248 const bool HasPCSections; 249 const bool HasCFIType; 250 const bool HasMMRAs; 251 252 // Implement the `TrailingObjects` internal API. numTrailingObjects(OverloadToken<MachineMemOperand * >)253 size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const { 254 return NumMMOs; 255 } numTrailingObjects(OverloadToken<MCSymbol * >)256 size_t numTrailingObjects(OverloadToken<MCSymbol *>) const { 257 return HasPreInstrSymbol + HasPostInstrSymbol; 258 } numTrailingObjects(OverloadToken<MDNode * >)259 size_t numTrailingObjects(OverloadToken<MDNode *>) const { 260 return HasHeapAllocMarker + HasPCSections; 261 } numTrailingObjects(OverloadToken<uint32_t>)262 size_t numTrailingObjects(OverloadToken<uint32_t>) const { 263 return HasCFIType; 264 } 265 266 // Just a boring constructor to allow us to initialize the sizes. Always use 267 // the `create` routine above. ExtraInfo(int NumMMOs,bool HasPreInstrSymbol,bool HasPostInstrSymbol,bool HasHeapAllocMarker,bool HasPCSections,bool HasCFIType,bool HasMMRAs)268 ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol, 269 bool HasHeapAllocMarker, bool HasPCSections, bool HasCFIType, 270 bool HasMMRAs) 271 : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol), 272 HasPostInstrSymbol(HasPostInstrSymbol), 273 HasHeapAllocMarker(HasHeapAllocMarker), HasPCSections(HasPCSections), 274 HasCFIType(HasCFIType), HasMMRAs(HasMMRAs) {} 275 }; 276 277 /// Enumeration of the kinds of inline extra info available. It is important 278 /// that the `MachineMemOperand` inline kind has a tag value of zero to make 279 /// it accessible as an `ArrayRef`. 280 enum ExtraInfoInlineKinds { 281 EIIK_MMO = 0, 282 EIIK_PreInstrSymbol, 283 EIIK_PostInstrSymbol, 284 EIIK_OutOfLine 285 }; 286 287 // We store extra information about the instruction here. The common case is 288 // expected to be nothing or a single pointer (typically a MMO or a symbol). 289 // We work to optimize this common case by storing it inline here rather than 290 // requiring a separate allocation, but we fall back to an allocation when 291 // multiple pointers are needed. 292 PointerSumType<ExtraInfoInlineKinds, 293 PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>, 294 PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>, 295 PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>, 296 PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>> 297 Info; 298 299 DebugLoc DbgLoc; // Source line information. 300 301 /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values 302 /// defined by this instruction. 303 unsigned DebugInstrNum; 304 305 // Intrusive list support 306 friend struct ilist_traits<MachineInstr>; 307 friend struct ilist_callback_traits<MachineBasicBlock>; 308 void setParent(MachineBasicBlock *P) { Parent = P; } 309 310 /// This constructor creates a copy of the given 311 /// MachineInstr in the given MachineFunction. 312 MachineInstr(MachineFunction &, const MachineInstr &); 313 314 /// This constructor create a MachineInstr and add the implicit operands. 315 /// It reserves space for number of operands specified by 316 /// MCInstrDesc. An explicit DebugLoc is supplied. 317 MachineInstr(MachineFunction &, const MCInstrDesc &TID, DebugLoc DL, 318 bool NoImp = false); 319 320 // MachineInstrs are pool-allocated and owned by MachineFunction. 321 friend class MachineFunction; 322 323 void 324 dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 325 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const; 326 327 static bool opIsRegDef(const MachineOperand &Op) { 328 return Op.isReg() && Op.isDef(); 329 } 330 331 static bool opIsRegUse(const MachineOperand &Op) { 332 return Op.isReg() && Op.isUse(); 333 } 334 335 public: 336 MachineInstr(const MachineInstr &) = delete; 337 MachineInstr &operator=(const MachineInstr &) = delete; 338 // Use MachineFunction::DeleteMachineInstr() instead. 339 ~MachineInstr() = delete; 340 341 const MachineBasicBlock* getParent() const { return Parent; } 342 MachineBasicBlock* getParent() { return Parent; } 343 344 /// Move the instruction before \p MovePos. 345 void moveBefore(MachineInstr *MovePos); 346 347 /// Return the function that contains the basic block that this instruction 348 /// belongs to. 349 /// 350 /// Note: this is undefined behaviour if the instruction does not have a 351 /// parent. 352 const MachineFunction *getMF() const; 353 MachineFunction *getMF() { 354 return const_cast<MachineFunction *>( 355 static_cast<const MachineInstr *>(this)->getMF()); 356 } 357 358 /// Return the asm printer flags bitvector. 359 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } 360 361 /// Clear the AsmPrinter bitvector. 362 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } 363 364 /// Return whether an AsmPrinter flag is set. 365 bool getAsmPrinterFlag(CommentFlag Flag) const { 366 assert(isUInt<LLVM_MI_ASMPRINTERFLAGS_BITS>(unsigned(Flag)) && 367 "Flag is out of range for the AsmPrinterFlags field"); 368 return AsmPrinterFlags & Flag; 369 } 370 371 /// Set a flag for the AsmPrinter. 372 void setAsmPrinterFlag(uint8_t Flag) { 373 assert(isUInt<LLVM_MI_ASMPRINTERFLAGS_BITS>(unsigned(Flag)) && 374 "Flag is out of range for the AsmPrinterFlags field"); 375 AsmPrinterFlags |= Flag; 376 } 377 378 /// Clear specific AsmPrinter flags. 379 void clearAsmPrinterFlag(CommentFlag Flag) { 380 assert(isUInt<LLVM_MI_ASMPRINTERFLAGS_BITS>(unsigned(Flag)) && 381 "Flag is out of range for the AsmPrinterFlags field"); 382 AsmPrinterFlags &= ~Flag; 383 } 384 385 /// Return the MI flags bitvector. 386 uint32_t getFlags() const { 387 return Flags; 388 } 389 390 /// Return whether an MI flag is set. 391 bool getFlag(MIFlag Flag) const { 392 assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) && 393 "Flag is out of range for the Flags field"); 394 return Flags & Flag; 395 } 396 397 /// Set a MI flag. 398 void setFlag(MIFlag Flag) { 399 assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) && 400 "Flag is out of range for the Flags field"); 401 Flags |= (uint32_t)Flag; 402 } 403 404 void setFlags(unsigned flags) { 405 assert(isUInt<LLVM_MI_FLAGS_BITS>(flags) && 406 "flags to be set are out of range for the Flags field"); 407 // Filter out the automatically maintained flags. 408 unsigned Mask = BundledPred | BundledSucc; 409 Flags = (Flags & Mask) | (flags & ~Mask); 410 } 411 412 /// clearFlag - Clear a MI flag. 413 void clearFlag(MIFlag Flag) { 414 assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) && 415 "Flag to clear is out of range for the Flags field"); 416 Flags &= ~((uint32_t)Flag); 417 } 418 419 /// Return true if MI is in a bundle (but not the first MI in a bundle). 420 /// 421 /// A bundle looks like this before it's finalized: 422 /// ---------------- 423 /// | MI | 424 /// ---------------- 425 /// | 426 /// ---------------- 427 /// | MI * | 428 /// ---------------- 429 /// | 430 /// ---------------- 431 /// | MI * | 432 /// ---------------- 433 /// In this case, the first MI starts a bundle but is not inside a bundle, the 434 /// next 2 MIs are considered "inside" the bundle. 435 /// 436 /// After a bundle is finalized, it looks like this: 437 /// ---------------- 438 /// | Bundle | 439 /// ---------------- 440 /// | 441 /// ---------------- 442 /// | MI * | 443 /// ---------------- 444 /// | 445 /// ---------------- 446 /// | MI * | 447 /// ---------------- 448 /// | 449 /// ---------------- 450 /// | MI * | 451 /// ---------------- 452 /// The first instruction has the special opcode "BUNDLE". It's not "inside" 453 /// a bundle, but the next three MIs are. 454 bool isInsideBundle() const { 455 return getFlag(BundledPred); 456 } 457 458 /// Return true if this instruction part of a bundle. This is true 459 /// if either itself or its following instruction is marked "InsideBundle". 460 bool isBundled() const { 461 return isBundledWithPred() || isBundledWithSucc(); 462 } 463 464 /// Return true if this instruction is part of a bundle, and it is not the 465 /// first instruction in the bundle. 466 bool isBundledWithPred() const { return getFlag(BundledPred); } 467 468 /// Return true if this instruction is part of a bundle, and it is not the 469 /// last instruction in the bundle. 470 bool isBundledWithSucc() const { return getFlag(BundledSucc); } 471 472 /// Bundle this instruction with its predecessor. This can be an unbundled 473 /// instruction, or it can be the first instruction in a bundle. 474 void bundleWithPred(); 475 476 /// Bundle this instruction with its successor. This can be an unbundled 477 /// instruction, or it can be the last instruction in a bundle. 478 void bundleWithSucc(); 479 480 /// Break bundle above this instruction. 481 void unbundleFromPred(); 482 483 /// Break bundle below this instruction. 484 void unbundleFromSucc(); 485 486 /// Returns the debug location id of this MachineInstr. 487 const DebugLoc &getDebugLoc() const { return DbgLoc; } 488 489 /// Return the operand containing the offset to be used if this DBG_VALUE 490 /// instruction is indirect; will be an invalid register if this value is 491 /// not indirect, and an immediate with value 0 otherwise. 492 const MachineOperand &getDebugOffset() const { 493 assert(isNonListDebugValue() && "not a DBG_VALUE"); 494 return getOperand(1); 495 } 496 MachineOperand &getDebugOffset() { 497 assert(isNonListDebugValue() && "not a DBG_VALUE"); 498 return getOperand(1); 499 } 500 501 /// Return the operand for the debug variable referenced by 502 /// this DBG_VALUE instruction. 503 const MachineOperand &getDebugVariableOp() const; 504 MachineOperand &getDebugVariableOp(); 505 506 /// Return the debug variable referenced by 507 /// this DBG_VALUE instruction. 508 const DILocalVariable *getDebugVariable() const; 509 510 /// Return the operand for the complex address expression referenced by 511 /// this DBG_VALUE instruction. 512 const MachineOperand &getDebugExpressionOp() const; 513 MachineOperand &getDebugExpressionOp(); 514 515 /// Return the complex address expression referenced by 516 /// this DBG_VALUE instruction. 517 const DIExpression *getDebugExpression() const; 518 519 /// Return the debug label referenced by 520 /// this DBG_LABEL instruction. 521 const DILabel *getDebugLabel() const; 522 523 /// Fetch the instruction number of this MachineInstr. If it does not have 524 /// one already, a new and unique number will be assigned. 525 unsigned getDebugInstrNum(); 526 527 /// Fetch instruction number of this MachineInstr -- but before it's inserted 528 /// into \p MF. Needed for transformations that create an instruction but 529 /// don't immediately insert them. 530 unsigned getDebugInstrNum(MachineFunction &MF); 531 532 /// Examine the instruction number of this MachineInstr. May be zero if 533 /// it hasn't been assigned a number yet. 534 unsigned peekDebugInstrNum() const { return DebugInstrNum; } 535 536 /// Set instruction number of this MachineInstr. Avoid using unless you're 537 /// deserializing this information. 538 void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; } 539 540 /// Drop any variable location debugging information associated with this 541 /// instruction. Use when an instruction is modified in such a way that it no 542 /// longer defines the value it used to. Variable locations using that value 543 /// will be dropped. 544 void dropDebugNumber() { DebugInstrNum = 0; } 545 546 /// Emit an error referring to the source location of this instruction. 547 /// This should only be used for inline assembly that is somehow 548 /// impossible to compile. Other errors should have been handled much 549 /// earlier. 550 /// 551 /// If this method returns, the caller should try to recover from the error. 552 void emitError(StringRef Msg) const; 553 554 /// Returns the target instruction descriptor of this MachineInstr. 555 const MCInstrDesc &getDesc() const { return *MCID; } 556 557 /// Returns the opcode of this MachineInstr. 558 unsigned getOpcode() const { return MCID->Opcode; } 559 560 /// Retuns the total number of operands. 561 unsigned getNumOperands() const { return NumOperands; } 562 563 /// Returns the total number of operands which are debug locations. 564 unsigned getNumDebugOperands() const { 565 return std::distance(debug_operands().begin(), debug_operands().end()); 566 } 567 568 const MachineOperand& getOperand(unsigned i) const { 569 assert(i < getNumOperands() && "getOperand() out of range!"); 570 return Operands[i]; 571 } 572 MachineOperand& getOperand(unsigned i) { 573 assert(i < getNumOperands() && "getOperand() out of range!"); 574 return Operands[i]; 575 } 576 577 MachineOperand &getDebugOperand(unsigned Index) { 578 assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!"); 579 return *(debug_operands().begin() + Index); 580 } 581 const MachineOperand &getDebugOperand(unsigned Index) const { 582 assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!"); 583 return *(debug_operands().begin() + Index); 584 } 585 586 /// Returns whether this debug value has at least one debug operand with the 587 /// register \p Reg. 588 bool hasDebugOperandForReg(Register Reg) const { 589 return any_of(debug_operands(), [Reg](const MachineOperand &Op) { 590 return Op.isReg() && Op.getReg() == Reg; 591 }); 592 } 593 594 /// Returns a range of all of the operands that correspond to a debug use of 595 /// \p Reg. 596 template <typename Operand, typename Instruction> 597 static iterator_range< 598 filter_iterator<Operand *, std::function<bool(Operand &Op)>>> 599 getDebugOperandsForReg(Instruction *MI, Register Reg) { 600 std::function<bool(Operand & Op)> OpUsesReg( 601 [Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; }); 602 return make_filter_range(MI->debug_operands(), OpUsesReg); 603 } 604 iterator_range<filter_iterator<const MachineOperand *, 605 std::function<bool(const MachineOperand &Op)>>> 606 getDebugOperandsForReg(Register Reg) const { 607 return MachineInstr::getDebugOperandsForReg<const MachineOperand, 608 const MachineInstr>(this, Reg); 609 } 610 iterator_range<filter_iterator<MachineOperand *, 611 std::function<bool(MachineOperand &Op)>>> 612 getDebugOperandsForReg(Register Reg) { 613 return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>( 614 this, Reg); 615 } 616 617 bool isDebugOperand(const MachineOperand *Op) const { 618 return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands()); 619 } 620 621 unsigned getDebugOperandIndex(const MachineOperand *Op) const { 622 assert(isDebugOperand(Op) && "Expected a debug operand."); 623 return std::distance(adl_begin(debug_operands()), Op); 624 } 625 626 /// Returns the total number of definitions. 627 unsigned getNumDefs() const { 628 return getNumExplicitDefs() + MCID->implicit_defs().size(); 629 } 630 631 /// Returns true if the instruction has implicit definition. 632 bool hasImplicitDef() const { 633 for (const MachineOperand &MO : implicit_operands()) 634 if (MO.isDef() && MO.isImplicit()) 635 return true; 636 return false; 637 } 638 639 /// Returns the implicit operands number. 640 unsigned getNumImplicitOperands() const { 641 return getNumOperands() - getNumExplicitOperands(); 642 } 643 644 /// Return true if operand \p OpIdx is a subregister index. 645 bool isOperandSubregIdx(unsigned OpIdx) const { 646 assert(getOperand(OpIdx).isImm() && "Expected MO_Immediate operand type."); 647 if (isExtractSubreg() && OpIdx == 2) 648 return true; 649 if (isInsertSubreg() && OpIdx == 3) 650 return true; 651 if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0) 652 return true; 653 if (isSubregToReg() && OpIdx == 3) 654 return true; 655 return false; 656 } 657 658 /// Returns the number of non-implicit operands. 659 unsigned getNumExplicitOperands() const; 660 661 /// Returns the number of non-implicit definitions. 662 unsigned getNumExplicitDefs() const; 663 664 /// iterator/begin/end - Iterate over all operands of a machine instruction. 665 using mop_iterator = MachineOperand *; 666 using const_mop_iterator = const MachineOperand *; 667 668 mop_iterator operands_begin() { return Operands; } 669 mop_iterator operands_end() { return Operands + NumOperands; } 670 671 const_mop_iterator operands_begin() const { return Operands; } 672 const_mop_iterator operands_end() const { return Operands + NumOperands; } 673 674 iterator_range<mop_iterator> operands() { 675 return make_range(operands_begin(), operands_end()); 676 } 677 iterator_range<const_mop_iterator> operands() const { 678 return make_range(operands_begin(), operands_end()); 679 } 680 iterator_range<mop_iterator> explicit_operands() { 681 return make_range(operands_begin(), 682 operands_begin() + getNumExplicitOperands()); 683 } 684 iterator_range<const_mop_iterator> explicit_operands() const { 685 return make_range(operands_begin(), 686 operands_begin() + getNumExplicitOperands()); 687 } 688 iterator_range<mop_iterator> implicit_operands() { 689 return make_range(explicit_operands().end(), operands_end()); 690 } 691 iterator_range<const_mop_iterator> implicit_operands() const { 692 return make_range(explicit_operands().end(), operands_end()); 693 } 694 /// Returns a range over all operands that are used to determine the variable 695 /// location for this DBG_VALUE instruction. 696 iterator_range<mop_iterator> debug_operands() { 697 assert((isDebugValueLike()) && "Must be a debug value instruction."); 698 return isNonListDebugValue() 699 ? make_range(operands_begin(), operands_begin() + 1) 700 : make_range(operands_begin() + 2, operands_end()); 701 } 702 /// \copydoc debug_operands() 703 iterator_range<const_mop_iterator> debug_operands() const { 704 assert((isDebugValueLike()) && "Must be a debug value instruction."); 705 return isNonListDebugValue() 706 ? make_range(operands_begin(), operands_begin() + 1) 707 : make_range(operands_begin() + 2, operands_end()); 708 } 709 /// Returns a range over all explicit operands that are register definitions. 710 /// Implicit definition are not included! 711 iterator_range<mop_iterator> defs() { 712 return make_range(operands_begin(), 713 operands_begin() + getNumExplicitDefs()); 714 } 715 /// \copydoc defs() 716 iterator_range<const_mop_iterator> defs() const { 717 return make_range(operands_begin(), 718 operands_begin() + getNumExplicitDefs()); 719 } 720 /// Returns a range that includes all operands that are register uses. 721 /// This may include unrelated operands which are not register uses. 722 iterator_range<mop_iterator> uses() { 723 return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); 724 } 725 /// \copydoc uses() 726 iterator_range<const_mop_iterator> uses() const { 727 return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); 728 } 729 iterator_range<mop_iterator> explicit_uses() { 730 return make_range(operands_begin() + getNumExplicitDefs(), 731 operands_begin() + getNumExplicitOperands()); 732 } 733 iterator_range<const_mop_iterator> explicit_uses() const { 734 return make_range(operands_begin() + getNumExplicitDefs(), 735 operands_begin() + getNumExplicitOperands()); 736 } 737 738 using filtered_mop_iterator = 739 filter_iterator<mop_iterator, bool (*)(const MachineOperand &)>; 740 using filtered_const_mop_iterator = 741 filter_iterator<const_mop_iterator, bool (*)(const MachineOperand &)>; 742 743 /// Returns an iterator range over all operands that are (explicit or 744 /// implicit) register defs. 745 iterator_range<filtered_mop_iterator> all_defs() { 746 return make_filter_range(operands(), opIsRegDef); 747 } 748 /// \copydoc all_defs() 749 iterator_range<filtered_const_mop_iterator> all_defs() const { 750 return make_filter_range(operands(), opIsRegDef); 751 } 752 753 /// Returns an iterator range over all operands that are (explicit or 754 /// implicit) register uses. 755 iterator_range<filtered_mop_iterator> all_uses() { 756 return make_filter_range(uses(), opIsRegUse); 757 } 758 /// \copydoc all_uses() 759 iterator_range<filtered_const_mop_iterator> all_uses() const { 760 return make_filter_range(uses(), opIsRegUse); 761 } 762 763 /// Returns the number of the operand iterator \p I points to. 764 unsigned getOperandNo(const_mop_iterator I) const { 765 return I - operands_begin(); 766 } 767 768 /// Access to memory operands of the instruction. If there are none, that does 769 /// not imply anything about whether the function accesses memory. Instead, 770 /// the caller must behave conservatively. 771 ArrayRef<MachineMemOperand *> memoperands() const { 772 if (!Info) 773 return {}; 774 775 if (Info.is<EIIK_MMO>()) 776 return ArrayRef(Info.getAddrOfZeroTagPointer(), 1); 777 778 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 779 return EI->getMMOs(); 780 781 return {}; 782 } 783 784 /// Access to memory operands of the instruction. 785 /// 786 /// If `memoperands_begin() == memoperands_end()`, that does not imply 787 /// anything about whether the function accesses memory. Instead, the caller 788 /// must behave conservatively. 789 mmo_iterator memoperands_begin() const { return memoperands().begin(); } 790 791 /// Access to memory operands of the instruction. 792 /// 793 /// If `memoperands_begin() == memoperands_end()`, that does not imply 794 /// anything about whether the function accesses memory. Instead, the caller 795 /// must behave conservatively. 796 mmo_iterator memoperands_end() const { return memoperands().end(); } 797 798 /// Return true if we don't have any memory operands which described the 799 /// memory access done by this instruction. If this is true, calling code 800 /// must be conservative. 801 bool memoperands_empty() const { return memoperands().empty(); } 802 803 /// Return true if this instruction has exactly one MachineMemOperand. 804 bool hasOneMemOperand() const { return memoperands().size() == 1; } 805 806 /// Return the number of memory operands. 807 unsigned getNumMemOperands() const { return memoperands().size(); } 808 809 /// Helper to extract a pre-instruction symbol if one has been added. 810 MCSymbol *getPreInstrSymbol() const { 811 if (!Info) 812 return nullptr; 813 if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>()) 814 return S; 815 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 816 return EI->getPreInstrSymbol(); 817 818 return nullptr; 819 } 820 821 /// Helper to extract a post-instruction symbol if one has been added. 822 MCSymbol *getPostInstrSymbol() const { 823 if (!Info) 824 return nullptr; 825 if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>()) 826 return S; 827 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 828 return EI->getPostInstrSymbol(); 829 830 return nullptr; 831 } 832 833 /// Helper to extract a heap alloc marker if one has been added. 834 MDNode *getHeapAllocMarker() const { 835 if (!Info) 836 return nullptr; 837 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 838 return EI->getHeapAllocMarker(); 839 840 return nullptr; 841 } 842 843 /// Helper to extract PCSections metadata target sections. 844 MDNode *getPCSections() const { 845 if (!Info) 846 return nullptr; 847 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 848 return EI->getPCSections(); 849 850 return nullptr; 851 } 852 853 /// Helper to extract mmra.op metadata. 854 MDNode *getMMRAMetadata() const { 855 if (!Info) 856 return nullptr; 857 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 858 return EI->getMMRAMetadata(); 859 return nullptr; 860 } 861 862 /// Helper to extract a CFI type hash if one has been added. 863 uint32_t getCFIType() const { 864 if (!Info) 865 return 0; 866 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 867 return EI->getCFIType(); 868 869 return 0; 870 } 871 872 /// API for querying MachineInstr properties. They are the same as MCInstrDesc 873 /// queries but they are bundle aware. 874 875 enum QueryType { 876 IgnoreBundle, // Ignore bundles 877 AnyInBundle, // Return true if any instruction in bundle has property 878 AllInBundle // Return true if all instructions in bundle have property 879 }; 880 881 /// Return true if the instruction (or in the case of a bundle, 882 /// the instructions inside the bundle) has the specified property. 883 /// The first argument is the property being queried. 884 /// The second argument indicates whether the query should look inside 885 /// instruction bundles. 886 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { 887 assert(MCFlag < 64 && 888 "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle."); 889 // Inline the fast path for unbundled or bundle-internal instructions. 890 if (Type == IgnoreBundle || !isBundled() || isBundledWithPred()) 891 return getDesc().getFlags() & (1ULL << MCFlag); 892 893 // If this is the first instruction in a bundle, take the slow path. 894 return hasPropertyInBundle(1ULL << MCFlag, Type); 895 } 896 897 /// Return true if this is an instruction that should go through the usual 898 /// legalization steps. 899 bool isPreISelOpcode(QueryType Type = IgnoreBundle) const { 900 return hasProperty(MCID::PreISelOpcode, Type); 901 } 902 903 /// Return true if this instruction can have a variable number of operands. 904 /// In this case, the variable operands will be after the normal 905 /// operands but before the implicit definitions and uses (if any are 906 /// present). 907 bool isVariadic(QueryType Type = IgnoreBundle) const { 908 return hasProperty(MCID::Variadic, Type); 909 } 910 911 /// Set if this instruction has an optional definition, e.g. 912 /// ARM instructions which can set condition code if 's' bit is set. 913 bool hasOptionalDef(QueryType Type = IgnoreBundle) const { 914 return hasProperty(MCID::HasOptionalDef, Type); 915 } 916 917 /// Return true if this is a pseudo instruction that doesn't 918 /// correspond to a real machine instruction. 919 bool isPseudo(QueryType Type = IgnoreBundle) const { 920 return hasProperty(MCID::Pseudo, Type); 921 } 922 923 /// Return true if this instruction doesn't produce any output in the form of 924 /// executable instructions. 925 bool isMetaInstruction(QueryType Type = IgnoreBundle) const { 926 return hasProperty(MCID::Meta, Type); 927 } 928 929 bool isReturn(QueryType Type = AnyInBundle) const { 930 return hasProperty(MCID::Return, Type); 931 } 932 933 /// Return true if this is an instruction that marks the end of an EH scope, 934 /// i.e., a catchpad or a cleanuppad instruction. 935 bool isEHScopeReturn(QueryType Type = AnyInBundle) const { 936 return hasProperty(MCID::EHScopeReturn, Type); 937 } 938 939 bool isCall(QueryType Type = AnyInBundle) const { 940 return hasProperty(MCID::Call, Type); 941 } 942 943 /// Return true if this is a call instruction that may have an associated 944 /// call site entry in the debug info. 945 bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const; 946 /// Return true if copying, moving, or erasing this instruction requires 947 /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo, 948 /// \ref eraseCallSiteInfo). 949 bool shouldUpdateCallSiteInfo() const; 950 951 /// Returns true if the specified instruction stops control flow 952 /// from executing the instruction immediately following it. Examples include 953 /// unconditional branches and return instructions. 954 bool isBarrier(QueryType Type = AnyInBundle) const { 955 return hasProperty(MCID::Barrier, Type); 956 } 957 958 /// Returns true if this instruction part of the terminator for a basic block. 959 /// Typically this is things like return and branch instructions. 960 /// 961 /// Various passes use this to insert code into the bottom of a basic block, 962 /// but before control flow occurs. 963 bool isTerminator(QueryType Type = AnyInBundle) const { 964 return hasProperty(MCID::Terminator, Type); 965 } 966 967 /// Returns true if this is a conditional, unconditional, or indirect branch. 968 /// Predicates below can be used to discriminate between 969 /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to 970 /// get more information. 971 bool isBranch(QueryType Type = AnyInBundle) const { 972 return hasProperty(MCID::Branch, Type); 973 } 974 975 /// Return true if this is an indirect branch, such as a 976 /// branch through a register. 977 bool isIndirectBranch(QueryType Type = AnyInBundle) const { 978 return hasProperty(MCID::IndirectBranch, Type); 979 } 980 981 /// Return true if this is a branch which may fall 982 /// through to the next instruction or may transfer control flow to some other 983 /// block. The TargetInstrInfo::analyzeBranch method can be used to get more 984 /// information about this branch. 985 bool isConditionalBranch(QueryType Type = AnyInBundle) const { 986 return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type); 987 } 988 989 /// Return true if this is a branch which always 990 /// transfers control flow to some other block. The 991 /// TargetInstrInfo::analyzeBranch method can be used to get more information 992 /// about this branch. 993 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { 994 return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type); 995 } 996 997 /// Return true if this instruction has a predicate operand that 998 /// controls execution. It may be set to 'always', or may be set to other 999 /// values. There are various methods in TargetInstrInfo that can be used to 1000 /// control and modify the predicate in this instruction. 1001 bool isPredicable(QueryType Type = AllInBundle) const { 1002 // If it's a bundle than all bundled instructions must be predicable for this 1003 // to return true. 1004 return hasProperty(MCID::Predicable, Type); 1005 } 1006 1007 /// Return true if this instruction is a comparison. 1008 bool isCompare(QueryType Type = IgnoreBundle) const { 1009 return hasProperty(MCID::Compare, Type); 1010 } 1011 1012 /// Return true if this instruction is a move immediate 1013 /// (including conditional moves) instruction. 1014 bool isMoveImmediate(QueryType Type = IgnoreBundle) const { 1015 return hasProperty(MCID::MoveImm, Type); 1016 } 1017 1018 /// Return true if this instruction is a register move. 1019 /// (including moving values from subreg to reg) 1020 bool isMoveReg(QueryType Type = IgnoreBundle) const { 1021 return hasProperty(MCID::MoveReg, Type); 1022 } 1023 1024 /// Return true if this instruction is a bitcast instruction. 1025 bool isBitcast(QueryType Type = IgnoreBundle) const { 1026 return hasProperty(MCID::Bitcast, Type); 1027 } 1028 1029 /// Return true if this instruction is a select instruction. 1030 bool isSelect(QueryType Type = IgnoreBundle) const { 1031 return hasProperty(MCID::Select, Type); 1032 } 1033 1034 /// Return true if this instruction cannot be safely duplicated. 1035 /// For example, if the instruction has a unique labels attached 1036 /// to it, duplicating it would cause multiple definition errors. 1037 bool isNotDuplicable(QueryType Type = AnyInBundle) const { 1038 if (getPreInstrSymbol() || getPostInstrSymbol()) 1039 return true; 1040 return hasProperty(MCID::NotDuplicable, Type); 1041 } 1042 1043 /// Return true if this instruction is convergent. 1044 /// Convergent instructions can not be made control-dependent on any 1045 /// additional values. 1046 bool isConvergent(QueryType Type = AnyInBundle) const { 1047 if (isInlineAsm()) { 1048 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1049 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1050 return true; 1051 } 1052 if (getFlag(NoConvergent)) 1053 return false; 1054 return hasProperty(MCID::Convergent, Type); 1055 } 1056 1057 /// Returns true if the specified instruction has a delay slot 1058 /// which must be filled by the code generator. 1059 bool hasDelaySlot(QueryType Type = AnyInBundle) const { 1060 return hasProperty(MCID::DelaySlot, Type); 1061 } 1062 1063 /// Return true for instructions that can be folded as 1064 /// memory operands in other instructions. The most common use for this 1065 /// is instructions that are simple loads from memory that don't modify 1066 /// the loaded value in any way, but it can also be used for instructions 1067 /// that can be expressed as constant-pool loads, such as V_SETALLONES 1068 /// on x86, to allow them to be folded when it is beneficial. 1069 /// This should only be set on instructions that return a value in their 1070 /// only virtual register definition. 1071 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { 1072 return hasProperty(MCID::FoldableAsLoad, Type); 1073 } 1074 1075 /// Return true if this instruction behaves 1076 /// the same way as the generic REG_SEQUENCE instructions. 1077 /// E.g., on ARM, 1078 /// dX VMOVDRR rY, rZ 1079 /// is equivalent to 1080 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. 1081 /// 1082 /// Note that for the optimizers to be able to take advantage of 1083 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be 1084 /// override accordingly. 1085 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const { 1086 return hasProperty(MCID::RegSequence, Type); 1087 } 1088 1089 /// Return true if this instruction behaves 1090 /// the same way as the generic EXTRACT_SUBREG instructions. 1091 /// E.g., on ARM, 1092 /// rX, rY VMOVRRD dZ 1093 /// is equivalent to two EXTRACT_SUBREG: 1094 /// rX = EXTRACT_SUBREG dZ, ssub_0 1095 /// rY = EXTRACT_SUBREG dZ, ssub_1 1096 /// 1097 /// Note that for the optimizers to be able to take advantage of 1098 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be 1099 /// override accordingly. 1100 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const { 1101 return hasProperty(MCID::ExtractSubreg, Type); 1102 } 1103 1104 /// Return true if this instruction behaves 1105 /// the same way as the generic INSERT_SUBREG instructions. 1106 /// E.g., on ARM, 1107 /// dX = VSETLNi32 dY, rZ, Imm 1108 /// is equivalent to a INSERT_SUBREG: 1109 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) 1110 /// 1111 /// Note that for the optimizers to be able to take advantage of 1112 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be 1113 /// override accordingly. 1114 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const { 1115 return hasProperty(MCID::InsertSubreg, Type); 1116 } 1117 1118 //===--------------------------------------------------------------------===// 1119 // Side Effect Analysis 1120 //===--------------------------------------------------------------------===// 1121 1122 /// Return true if this instruction could possibly read memory. 1123 /// Instructions with this flag set are not necessarily simple load 1124 /// instructions, they may load a value and modify it, for example. 1125 bool mayLoad(QueryType Type = AnyInBundle) const { 1126 if (isInlineAsm()) { 1127 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1128 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1129 return true; 1130 } 1131 return hasProperty(MCID::MayLoad, Type); 1132 } 1133 1134 /// Return true if this instruction could possibly modify memory. 1135 /// Instructions with this flag set are not necessarily simple store 1136 /// instructions, they may store a modified value based on their operands, or 1137 /// may not actually modify anything, for example. 1138 bool mayStore(QueryType Type = AnyInBundle) const { 1139 if (isInlineAsm()) { 1140 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1141 if (ExtraInfo & InlineAsm::Extra_MayStore) 1142 return true; 1143 } 1144 return hasProperty(MCID::MayStore, Type); 1145 } 1146 1147 /// Return true if this instruction could possibly read or modify memory. 1148 bool mayLoadOrStore(QueryType Type = AnyInBundle) const { 1149 return mayLoad(Type) || mayStore(Type); 1150 } 1151 1152 /// Return true if this instruction could possibly raise a floating-point 1153 /// exception. This is the case if the instruction is a floating-point 1154 /// instruction that can in principle raise an exception, as indicated 1155 /// by the MCID::MayRaiseFPException property, *and* at the same time, 1156 /// the instruction is used in a context where we expect floating-point 1157 /// exceptions are not disabled, as indicated by the NoFPExcept MI flag. 1158 bool mayRaiseFPException() const { 1159 return hasProperty(MCID::MayRaiseFPException) && 1160 !getFlag(MachineInstr::MIFlag::NoFPExcept); 1161 } 1162 1163 //===--------------------------------------------------------------------===// 1164 // Flags that indicate whether an instruction can be modified by a method. 1165 //===--------------------------------------------------------------------===// 1166 1167 /// Return true if this may be a 2- or 3-address 1168 /// instruction (of the form "X = op Y, Z, ..."), which produces the same 1169 /// result if Y and Z are exchanged. If this flag is set, then the 1170 /// TargetInstrInfo::commuteInstruction method may be used to hack on the 1171 /// instruction. 1172 /// 1173 /// Note that this flag may be set on instructions that are only commutable 1174 /// sometimes. In these cases, the call to commuteInstruction will fail. 1175 /// Also note that some instructions require non-trivial modification to 1176 /// commute them. 1177 bool isCommutable(QueryType Type = IgnoreBundle) const { 1178 return hasProperty(MCID::Commutable, Type); 1179 } 1180 1181 /// Return true if this is a 2-address instruction 1182 /// which can be changed into a 3-address instruction if needed. Doing this 1183 /// transformation can be profitable in the register allocator, because it 1184 /// means that the instruction can use a 2-address form if possible, but 1185 /// degrade into a less efficient form if the source and dest register cannot 1186 /// be assigned to the same register. For example, this allows the x86 1187 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which 1188 /// is the same speed as the shift but has bigger code size. 1189 /// 1190 /// If this returns true, then the target must implement the 1191 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which 1192 /// is allowed to fail if the transformation isn't valid for this specific 1193 /// instruction (e.g. shl reg, 4 on x86). 1194 /// 1195 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { 1196 return hasProperty(MCID::ConvertibleTo3Addr, Type); 1197 } 1198 1199 /// Return true if this instruction requires 1200 /// custom insertion support when the DAG scheduler is inserting it into a 1201 /// machine basic block. If this is true for the instruction, it basically 1202 /// means that it is a pseudo instruction used at SelectionDAG time that is 1203 /// expanded out into magic code by the target when MachineInstrs are formed. 1204 /// 1205 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method 1206 /// is used to insert this into the MachineBasicBlock. 1207 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { 1208 return hasProperty(MCID::UsesCustomInserter, Type); 1209 } 1210 1211 /// Return true if this instruction requires *adjustment* 1212 /// after instruction selection by calling a target hook. For example, this 1213 /// can be used to fill in ARM 's' optional operand depending on whether 1214 /// the conditional flag register is used. 1215 bool hasPostISelHook(QueryType Type = IgnoreBundle) const { 1216 return hasProperty(MCID::HasPostISelHook, Type); 1217 } 1218 1219 /// Returns true if this instruction is a candidate for remat. 1220 /// This flag is deprecated, please don't use it anymore. If this 1221 /// flag is set, the isReallyTriviallyReMaterializable() method is called to 1222 /// verify the instruction is really rematerializable. 1223 bool isRematerializable(QueryType Type = AllInBundle) const { 1224 // It's only possible to re-mat a bundle if all bundled instructions are 1225 // re-materializable. 1226 return hasProperty(MCID::Rematerializable, Type); 1227 } 1228 1229 /// Returns true if this instruction has the same cost (or less) than a move 1230 /// instruction. This is useful during certain types of optimizations 1231 /// (e.g., remat during two-address conversion or machine licm) 1232 /// where we would like to remat or hoist the instruction, but not if it costs 1233 /// more than moving the instruction into the appropriate register. Note, we 1234 /// are not marking copies from and to the same register class with this flag. 1235 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { 1236 // Only returns true for a bundle if all bundled instructions are cheap. 1237 return hasProperty(MCID::CheapAsAMove, Type); 1238 } 1239 1240 /// Returns true if this instruction source operands 1241 /// have special register allocation requirements that are not captured by the 1242 /// operand register classes. e.g. ARM::STRD's two source registers must be an 1243 /// even / odd pair, ARM::STM registers have to be in ascending order. 1244 /// Post-register allocation passes should not attempt to change allocations 1245 /// for sources of instructions with this flag. 1246 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { 1247 return hasProperty(MCID::ExtraSrcRegAllocReq, Type); 1248 } 1249 1250 /// Returns true if this instruction def operands 1251 /// have special register allocation requirements that are not captured by the 1252 /// operand register classes. e.g. ARM::LDRD's two def registers must be an 1253 /// even / odd pair, ARM::LDM registers have to be in ascending order. 1254 /// Post-register allocation passes should not attempt to change allocations 1255 /// for definitions of instructions with this flag. 1256 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { 1257 return hasProperty(MCID::ExtraDefRegAllocReq, Type); 1258 } 1259 1260 enum MICheckType { 1261 CheckDefs, // Check all operands for equality 1262 CheckKillDead, // Check all operands including kill / dead markers 1263 IgnoreDefs, // Ignore all definitions 1264 IgnoreVRegDefs // Ignore virtual register definitions 1265 }; 1266 1267 /// Return true if this instruction is identical to \p Other. 1268 /// Two instructions are identical if they have the same opcode and all their 1269 /// operands are identical (with respect to MachineOperand::isIdenticalTo()). 1270 /// Note that this means liveness related flags (dead, undef, kill) do not 1271 /// affect the notion of identical. 1272 bool isIdenticalTo(const MachineInstr &Other, 1273 MICheckType Check = CheckDefs) const; 1274 1275 /// Returns true if this instruction is a debug instruction that represents an 1276 /// identical debug value to \p Other. 1277 /// This function considers these debug instructions equivalent if they have 1278 /// identical variables, debug locations, and debug operands, and if the 1279 /// DIExpressions combined with the directness flags are equivalent. 1280 bool isEquivalentDbgInstr(const MachineInstr &Other) const; 1281 1282 /// Unlink 'this' from the containing basic block, and return it without 1283 /// deleting it. 1284 /// 1285 /// This function can not be used on bundled instructions, use 1286 /// removeFromBundle() to remove individual instructions from a bundle. 1287 MachineInstr *removeFromParent(); 1288 1289 /// Unlink this instruction from its basic block and return it without 1290 /// deleting it. 1291 /// 1292 /// If the instruction is part of a bundle, the other instructions in the 1293 /// bundle remain bundled. 1294 MachineInstr *removeFromBundle(); 1295 1296 /// Unlink 'this' from the containing basic block and delete it. 1297 /// 1298 /// If this instruction is the header of a bundle, the whole bundle is erased. 1299 /// This function can not be used for instructions inside a bundle, use 1300 /// eraseFromBundle() to erase individual bundled instructions. 1301 void eraseFromParent(); 1302 1303 /// Unlink 'this' from its basic block and delete it. 1304 /// 1305 /// If the instruction is part of a bundle, the other instructions in the 1306 /// bundle remain bundled. 1307 void eraseFromBundle(); 1308 1309 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } 1310 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } 1311 bool isAnnotationLabel() const { 1312 return getOpcode() == TargetOpcode::ANNOTATION_LABEL; 1313 } 1314 1315 /// Returns true if the MachineInstr represents a label. 1316 bool isLabel() const { 1317 return isEHLabel() || isGCLabel() || isAnnotationLabel(); 1318 } 1319 1320 bool isCFIInstruction() const { 1321 return getOpcode() == TargetOpcode::CFI_INSTRUCTION; 1322 } 1323 1324 bool isPseudoProbe() const { 1325 return getOpcode() == TargetOpcode::PSEUDO_PROBE; 1326 } 1327 1328 // True if the instruction represents a position in the function. 1329 bool isPosition() const { return isLabel() || isCFIInstruction(); } 1330 1331 bool isNonListDebugValue() const { 1332 return getOpcode() == TargetOpcode::DBG_VALUE; 1333 } 1334 bool isDebugValueList() const { 1335 return getOpcode() == TargetOpcode::DBG_VALUE_LIST; 1336 } 1337 bool isDebugValue() const { 1338 return isNonListDebugValue() || isDebugValueList(); 1339 } 1340 bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; } 1341 bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; } 1342 bool isDebugValueLike() const { return isDebugValue() || isDebugRef(); } 1343 bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; } 1344 bool isDebugInstr() const { 1345 return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI(); 1346 } 1347 bool isDebugOrPseudoInstr() const { 1348 return isDebugInstr() || isPseudoProbe(); 1349 } 1350 1351 bool isDebugOffsetImm() const { 1352 return isNonListDebugValue() && getDebugOffset().isImm(); 1353 } 1354 1355 /// A DBG_VALUE is indirect iff the location operand is a register and 1356 /// the offset operand is an immediate. 1357 bool isIndirectDebugValue() const { 1358 return isDebugOffsetImm() && getDebugOperand(0).isReg(); 1359 } 1360 1361 /// A DBG_VALUE is an entry value iff its debug expression contains the 1362 /// DW_OP_LLVM_entry_value operation. 1363 bool isDebugEntryValue() const; 1364 1365 /// Return true if the instruction is a debug value which describes a part of 1366 /// a variable as unavailable. 1367 bool isUndefDebugValue() const { 1368 if (!isDebugValue()) 1369 return false; 1370 // If any $noreg locations are given, this DV is undef. 1371 for (const MachineOperand &Op : debug_operands()) 1372 if (Op.isReg() && !Op.getReg().isValid()) 1373 return true; 1374 return false; 1375 } 1376 1377 bool isJumpTableDebugInfo() const { 1378 return getOpcode() == TargetOpcode::JUMP_TABLE_DEBUG_INFO; 1379 } 1380 1381 bool isPHI() const { 1382 return getOpcode() == TargetOpcode::PHI || 1383 getOpcode() == TargetOpcode::G_PHI; 1384 } 1385 bool isKill() const { return getOpcode() == TargetOpcode::KILL; } 1386 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } 1387 bool isInlineAsm() const { 1388 return getOpcode() == TargetOpcode::INLINEASM || 1389 getOpcode() == TargetOpcode::INLINEASM_BR; 1390 } 1391 /// Returns true if the register operand can be folded with a load or store 1392 /// into a frame index. Does so by checking the InlineAsm::Flag immediate 1393 /// operand at OpId - 1. 1394 bool mayFoldInlineAsmRegOp(unsigned OpId) const; 1395 1396 bool isStackAligningInlineAsm() const; 1397 InlineAsm::AsmDialect getInlineAsmDialect() const; 1398 1399 bool isInsertSubreg() const { 1400 return getOpcode() == TargetOpcode::INSERT_SUBREG; 1401 } 1402 1403 bool isSubregToReg() const { 1404 return getOpcode() == TargetOpcode::SUBREG_TO_REG; 1405 } 1406 1407 bool isRegSequence() const { 1408 return getOpcode() == TargetOpcode::REG_SEQUENCE; 1409 } 1410 1411 bool isBundle() const { 1412 return getOpcode() == TargetOpcode::BUNDLE; 1413 } 1414 1415 bool isCopy() const { 1416 return getOpcode() == TargetOpcode::COPY; 1417 } 1418 1419 bool isFullCopy() const { 1420 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); 1421 } 1422 1423 bool isExtractSubreg() const { 1424 return getOpcode() == TargetOpcode::EXTRACT_SUBREG; 1425 } 1426 1427 /// Return true if the instruction behaves like a copy. 1428 /// This does not include native copy instructions. 1429 bool isCopyLike() const { 1430 return isCopy() || isSubregToReg(); 1431 } 1432 1433 /// Return true is the instruction is an identity copy. 1434 bool isIdentityCopy() const { 1435 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && 1436 getOperand(0).getSubReg() == getOperand(1).getSubReg(); 1437 } 1438 1439 /// Return true if this is a transient instruction that is either very likely 1440 /// to be eliminated during register allocation (such as copy-like 1441 /// instructions), or if this instruction doesn't have an execution-time cost. 1442 bool isTransient() const { 1443 switch (getOpcode()) { 1444 default: 1445 return isMetaInstruction(); 1446 // Copy-like instructions are usually eliminated during register allocation. 1447 case TargetOpcode::PHI: 1448 case TargetOpcode::G_PHI: 1449 case TargetOpcode::COPY: 1450 case TargetOpcode::INSERT_SUBREG: 1451 case TargetOpcode::SUBREG_TO_REG: 1452 case TargetOpcode::REG_SEQUENCE: 1453 return true; 1454 } 1455 } 1456 1457 /// Return the number of instructions inside the MI bundle, excluding the 1458 /// bundle header. 1459 /// 1460 /// This is the number of instructions that MachineBasicBlock::iterator 1461 /// skips, 0 for unbundled instructions. 1462 unsigned getBundleSize() const; 1463 1464 /// Return true if the MachineInstr reads the specified register. 1465 /// If TargetRegisterInfo is non-null, then it also checks if there 1466 /// is a read of a super-register. 1467 /// This does not count partial redefines of virtual registers as reads: 1468 /// %reg1024:6 = OP. 1469 bool readsRegister(Register Reg, const TargetRegisterInfo *TRI) const { 1470 return findRegisterUseOperandIdx(Reg, TRI, false) != -1; 1471 } 1472 1473 /// Return true if the MachineInstr reads the specified virtual register. 1474 /// Take into account that a partial define is a 1475 /// read-modify-write operation. 1476 bool readsVirtualRegister(Register Reg) const { 1477 return readsWritesVirtualRegister(Reg).first; 1478 } 1479 1480 /// Return a pair of bools (reads, writes) indicating if this instruction 1481 /// reads or writes Reg. This also considers partial defines. 1482 /// If Ops is not null, all operand indices for Reg are added. 1483 std::pair<bool,bool> readsWritesVirtualRegister(Register Reg, 1484 SmallVectorImpl<unsigned> *Ops = nullptr) const; 1485 1486 /// Return true if the MachineInstr kills the specified register. 1487 /// If TargetRegisterInfo is non-null, then it also checks if there is 1488 /// a kill of a super-register. 1489 bool killsRegister(Register Reg, const TargetRegisterInfo *TRI) const { 1490 return findRegisterUseOperandIdx(Reg, TRI, true) != -1; 1491 } 1492 1493 /// Return true if the MachineInstr fully defines the specified register. 1494 /// If TargetRegisterInfo is non-null, then it also checks 1495 /// if there is a def of a super-register. 1496 /// NOTE: It's ignoring subreg indices on virtual registers. 1497 bool definesRegister(Register Reg, const TargetRegisterInfo *TRI) const { 1498 return findRegisterDefOperandIdx(Reg, TRI, false, false) != -1; 1499 } 1500 1501 /// Return true if the MachineInstr modifies (fully define or partially 1502 /// define) the specified register. 1503 /// NOTE: It's ignoring subreg indices on virtual registers. 1504 bool modifiesRegister(Register Reg, const TargetRegisterInfo *TRI) const { 1505 return findRegisterDefOperandIdx(Reg, TRI, false, true) != -1; 1506 } 1507 1508 /// Returns true if the register is dead in this machine instruction. 1509 /// If TargetRegisterInfo is non-null, then it also checks 1510 /// if there is a dead def of a super-register. 1511 bool registerDefIsDead(Register Reg, const TargetRegisterInfo *TRI) const { 1512 return findRegisterDefOperandIdx(Reg, TRI, true, false) != -1; 1513 } 1514 1515 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1516 /// the given register (not considering sub/super-registers). 1517 bool hasRegisterImplicitUseOperand(Register Reg) const; 1518 1519 /// Returns the operand index that is a use of the specific register or -1 1520 /// if it is not found. It further tightens the search criteria to a use 1521 /// that kills the register if isKill is true. 1522 int findRegisterUseOperandIdx(Register Reg, const TargetRegisterInfo *TRI, 1523 bool isKill = false) const; 1524 1525 /// Wrapper for findRegisterUseOperandIdx, it returns 1526 /// a pointer to the MachineOperand rather than an index. 1527 MachineOperand *findRegisterUseOperand(Register Reg, 1528 const TargetRegisterInfo *TRI, 1529 bool isKill = false) { 1530 int Idx = findRegisterUseOperandIdx(Reg, TRI, isKill); 1531 return (Idx == -1) ? nullptr : &getOperand(Idx); 1532 } 1533 1534 const MachineOperand *findRegisterUseOperand(Register Reg, 1535 const TargetRegisterInfo *TRI, 1536 bool isKill = false) const { 1537 return const_cast<MachineInstr *>(this)->findRegisterUseOperand(Reg, TRI, 1538 isKill); 1539 } 1540 1541 /// Returns the operand index that is a def of the specified register or 1542 /// -1 if it is not found. If isDead is true, defs that are not dead are 1543 /// skipped. If Overlap is true, then it also looks for defs that merely 1544 /// overlap the specified register. If TargetRegisterInfo is non-null, 1545 /// then it also checks if there is a def of a super-register. 1546 /// This may also return a register mask operand when Overlap is true. 1547 int findRegisterDefOperandIdx(Register Reg, const TargetRegisterInfo *TRI, 1548 bool isDead = false, 1549 bool Overlap = false) const; 1550 1551 /// Wrapper for findRegisterDefOperandIdx, it returns 1552 /// a pointer to the MachineOperand rather than an index. 1553 MachineOperand *findRegisterDefOperand(Register Reg, 1554 const TargetRegisterInfo *TRI, 1555 bool isDead = false, 1556 bool Overlap = false) { 1557 int Idx = findRegisterDefOperandIdx(Reg, TRI, isDead, Overlap); 1558 return (Idx == -1) ? nullptr : &getOperand(Idx); 1559 } 1560 1561 const MachineOperand *findRegisterDefOperand(Register Reg, 1562 const TargetRegisterInfo *TRI, 1563 bool isDead = false, 1564 bool Overlap = false) const { 1565 return const_cast<MachineInstr *>(this)->findRegisterDefOperand( 1566 Reg, TRI, isDead, Overlap); 1567 } 1568 1569 /// Find the index of the first operand in the 1570 /// operand list that is used to represent the predicate. It returns -1 if 1571 /// none is found. 1572 int findFirstPredOperandIdx() const; 1573 1574 /// Find the index of the flag word operand that 1575 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if 1576 /// getOperand(OpIdx) does not belong to an inline asm operand group. 1577 /// 1578 /// If GroupNo is not NULL, it will receive the number of the operand group 1579 /// containing OpIdx. 1580 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const; 1581 1582 /// Compute the static register class constraint for operand OpIdx. 1583 /// For normal instructions, this is derived from the MCInstrDesc. 1584 /// For inline assembly it is derived from the flag words. 1585 /// 1586 /// Returns NULL if the static register class constraint cannot be 1587 /// determined. 1588 const TargetRegisterClass* 1589 getRegClassConstraint(unsigned OpIdx, 1590 const TargetInstrInfo *TII, 1591 const TargetRegisterInfo *TRI) const; 1592 1593 /// Applies the constraints (def/use) implied by this MI on \p Reg to 1594 /// the given \p CurRC. 1595 /// If \p ExploreBundle is set and MI is part of a bundle, all the 1596 /// instructions inside the bundle will be taken into account. In other words, 1597 /// this method accumulates all the constraints of the operand of this MI and 1598 /// the related bundle if MI is a bundle or inside a bundle. 1599 /// 1600 /// Returns the register class that satisfies both \p CurRC and the 1601 /// constraints set by MI. Returns NULL if such a register class does not 1602 /// exist. 1603 /// 1604 /// \pre CurRC must not be NULL. 1605 const TargetRegisterClass *getRegClassConstraintEffectForVReg( 1606 Register Reg, const TargetRegisterClass *CurRC, 1607 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1608 bool ExploreBundle = false) const; 1609 1610 /// Applies the constraints (def/use) implied by the \p OpIdx operand 1611 /// to the given \p CurRC. 1612 /// 1613 /// Returns the register class that satisfies both \p CurRC and the 1614 /// constraints set by \p OpIdx MI. Returns NULL if such a register class 1615 /// does not exist. 1616 /// 1617 /// \pre CurRC must not be NULL. 1618 /// \pre The operand at \p OpIdx must be a register. 1619 const TargetRegisterClass * 1620 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, 1621 const TargetInstrInfo *TII, 1622 const TargetRegisterInfo *TRI) const; 1623 1624 /// Add a tie between the register operands at DefIdx and UseIdx. 1625 /// The tie will cause the register allocator to ensure that the two 1626 /// operands are assigned the same physical register. 1627 /// 1628 /// Tied operands are managed automatically for explicit operands in the 1629 /// MCInstrDesc. This method is for exceptional cases like inline asm. 1630 void tieOperands(unsigned DefIdx, unsigned UseIdx); 1631 1632 /// Given the index of a tied register operand, find the 1633 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the 1634 /// index of the tied operand which must exist. 1635 unsigned findTiedOperandIdx(unsigned OpIdx) const; 1636 1637 /// Given the index of a register def operand, 1638 /// check if the register def is tied to a source operand, due to either 1639 /// two-address elimination or inline assembly constraints. Returns the 1640 /// first tied use operand index by reference if UseOpIdx is not null. 1641 bool isRegTiedToUseOperand(unsigned DefOpIdx, 1642 unsigned *UseOpIdx = nullptr) const { 1643 const MachineOperand &MO = getOperand(DefOpIdx); 1644 if (!MO.isReg() || !MO.isDef() || !MO.isTied()) 1645 return false; 1646 if (UseOpIdx) 1647 *UseOpIdx = findTiedOperandIdx(DefOpIdx); 1648 return true; 1649 } 1650 1651 /// Return true if the use operand of the specified index is tied to a def 1652 /// operand. It also returns the def operand index by reference if DefOpIdx 1653 /// is not null. 1654 bool isRegTiedToDefOperand(unsigned UseOpIdx, 1655 unsigned *DefOpIdx = nullptr) const { 1656 const MachineOperand &MO = getOperand(UseOpIdx); 1657 if (!MO.isReg() || !MO.isUse() || !MO.isTied()) 1658 return false; 1659 if (DefOpIdx) 1660 *DefOpIdx = findTiedOperandIdx(UseOpIdx); 1661 return true; 1662 } 1663 1664 /// Clears kill flags on all operands. 1665 void clearKillInfo(); 1666 1667 /// Replace all occurrences of FromReg with ToReg:SubIdx, 1668 /// properly composing subreg indices where necessary. 1669 void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx, 1670 const TargetRegisterInfo &RegInfo); 1671 1672 /// We have determined MI kills a register. Look for the 1673 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, 1674 /// add a implicit operand if it's not found. Returns true if the operand 1675 /// exists / is added. 1676 bool addRegisterKilled(Register IncomingReg, 1677 const TargetRegisterInfo *RegInfo, 1678 bool AddIfNotFound = false); 1679 1680 /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes 1681 /// all aliasing registers. 1682 void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo); 1683 1684 /// We have determined MI defined a register without a use. 1685 /// Look for the operand that defines it and mark it as IsDead. If 1686 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns 1687 /// true if the operand exists / is added. 1688 bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo, 1689 bool AddIfNotFound = false); 1690 1691 /// Clear all dead flags on operands defining register @p Reg. 1692 void clearRegisterDeads(Register Reg); 1693 1694 /// Mark all subregister defs of register @p Reg with the undef flag. 1695 /// This function is used when we determined to have a subregister def in an 1696 /// otherwise undefined super register. 1697 void setRegisterDefReadUndef(Register Reg, bool IsUndef = true); 1698 1699 /// We have determined MI defines a register. Make sure there is an operand 1700 /// defining Reg. 1701 void addRegisterDefined(Register Reg, 1702 const TargetRegisterInfo *RegInfo = nullptr); 1703 1704 /// Mark every physreg used by this instruction as 1705 /// dead except those in the UsedRegs list. 1706 /// 1707 /// On instructions with register mask operands, also add implicit-def 1708 /// operands for all registers in UsedRegs. 1709 void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 1710 const TargetRegisterInfo &TRI); 1711 1712 /// Return true if it is safe to move this instruction. If 1713 /// SawStore is set to true, it means that there is a store (or call) between 1714 /// the instruction's location and its intended destination. 1715 bool isSafeToMove(AAResults *AA, bool &SawStore) const; 1716 1717 /// Returns true if this instruction's memory access aliases the memory 1718 /// access of Other. 1719 // 1720 /// Assumes any physical registers used to compute addresses 1721 /// have the same value for both instructions. Returns false if neither 1722 /// instruction writes to memory. 1723 /// 1724 /// @param AA Optional alias analysis, used to compare memory operands. 1725 /// @param Other MachineInstr to check aliasing against. 1726 /// @param UseTBAA Whether to pass TBAA information to alias analysis. 1727 bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const; 1728 1729 /// Return true if this instruction may have an ordered 1730 /// or volatile memory reference, or if the information describing the memory 1731 /// reference is not available. Return false if it is known to have no 1732 /// ordered or volatile memory references. 1733 bool hasOrderedMemoryRef() const; 1734 1735 /// Return true if this load instruction never traps and points to a memory 1736 /// location whose value doesn't change during the execution of this function. 1737 /// 1738 /// Examples include loading a value from the constant pool or from the 1739 /// argument area of a function (if it does not change). If the instruction 1740 /// does multiple loads, this returns true only if all of the loads are 1741 /// dereferenceable and invariant. 1742 bool isDereferenceableInvariantLoad() const; 1743 1744 /// If the specified instruction is a PHI that always merges together the 1745 /// same virtual register, return the register, otherwise return 0. 1746 unsigned isConstantValuePHI() const; 1747 1748 /// Return true if this instruction has side effects that are not modeled 1749 /// by mayLoad / mayStore, etc. 1750 /// For all instructions, the property is encoded in MCInstrDesc::Flags 1751 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is 1752 /// INLINEASM instruction, in which case the side effect property is encoded 1753 /// in one of its operands (see InlineAsm::Extra_HasSideEffect). 1754 /// 1755 bool hasUnmodeledSideEffects() const; 1756 1757 /// Returns true if it is illegal to fold a load across this instruction. 1758 bool isLoadFoldBarrier() const; 1759 1760 /// Return true if all the defs of this instruction are dead. 1761 bool allDefsAreDead() const; 1762 1763 /// Return true if all the implicit defs of this instruction are dead. 1764 bool allImplicitDefsAreDead() const; 1765 1766 /// Return a valid size if the instruction is a spill instruction. 1767 std::optional<LocationSize> getSpillSize(const TargetInstrInfo *TII) const; 1768 1769 /// Return a valid size if the instruction is a folded spill instruction. 1770 std::optional<LocationSize> 1771 getFoldedSpillSize(const TargetInstrInfo *TII) const; 1772 1773 /// Return a valid size if the instruction is a restore instruction. 1774 std::optional<LocationSize> getRestoreSize(const TargetInstrInfo *TII) const; 1775 1776 /// Return a valid size if the instruction is a folded restore instruction. 1777 std::optional<LocationSize> 1778 getFoldedRestoreSize(const TargetInstrInfo *TII) const; 1779 1780 /// Copy implicit register operands from specified 1781 /// instruction to this instruction. 1782 void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI); 1783 1784 /// Debugging support 1785 /// @{ 1786 /// Determine the generic type to be printed (if needed) on uses and defs. 1787 LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1788 const MachineRegisterInfo &MRI) const; 1789 1790 /// Return true when an instruction has tied register that can't be determined 1791 /// by the instruction's descriptor. This is useful for MIR printing, to 1792 /// determine whether we need to print the ties or not. 1793 bool hasComplexRegisterTies() const; 1794 1795 /// Print this MI to \p OS. 1796 /// Don't print information that can be inferred from other instructions if 1797 /// \p IsStandalone is false. It is usually true when only a fragment of the 1798 /// function is printed. 1799 /// Only print the defs and the opcode if \p SkipOpers is true. 1800 /// Otherwise, also print operands if \p SkipDebugLoc is true. 1801 /// Otherwise, also print the debug loc, with a terminating newline. 1802 /// \p TII is used to print the opcode name. If it's not present, but the 1803 /// MI is in a function, the opcode will be printed using the function's TII. 1804 void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false, 1805 bool SkipDebugLoc = false, bool AddNewLine = true, 1806 const TargetInstrInfo *TII = nullptr) const; 1807 void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true, 1808 bool SkipOpers = false, bool SkipDebugLoc = false, 1809 bool AddNewLine = true, 1810 const TargetInstrInfo *TII = nullptr) const; 1811 void dump() const; 1812 /// Print on dbgs() the current instruction and the instructions defining its 1813 /// operands and so on until we reach \p MaxDepth. 1814 void dumpr(const MachineRegisterInfo &MRI, 1815 unsigned MaxDepth = UINT_MAX) const; 1816 /// @} 1817 1818 //===--------------------------------------------------------------------===// 1819 // Accessors used to build up machine instructions. 1820 1821 /// Add the specified operand to the instruction. If it is an implicit 1822 /// operand, it is added to the end of the operand list. If it is an 1823 /// explicit operand it is added at the end of the explicit operand list 1824 /// (before the first implicit operand). 1825 /// 1826 /// MF must be the machine function that was used to allocate this 1827 /// instruction. 1828 /// 1829 /// MachineInstrBuilder provides a more convenient interface for creating 1830 /// instructions and adding operands. 1831 void addOperand(MachineFunction &MF, const MachineOperand &Op); 1832 1833 /// Add an operand without providing an MF reference. This only works for 1834 /// instructions that are inserted in a basic block. 1835 /// 1836 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be 1837 /// preferred. 1838 void addOperand(const MachineOperand &Op); 1839 1840 /// Inserts Ops BEFORE It. Can untie/retie tied operands. 1841 void insert(mop_iterator InsertBefore, ArrayRef<MachineOperand> Ops); 1842 1843 /// Replace the instruction descriptor (thus opcode) of 1844 /// the current instruction with a new one. 1845 void setDesc(const MCInstrDesc &TID); 1846 1847 /// Replace current source information with new such. 1848 /// Avoid using this, the constructor argument is preferable. 1849 void setDebugLoc(DebugLoc DL) { 1850 DbgLoc = std::move(DL); 1851 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 1852 } 1853 1854 /// Erase an operand from an instruction, leaving it with one 1855 /// fewer operand than it started with. 1856 void removeOperand(unsigned OpNo); 1857 1858 /// Clear this MachineInstr's memory reference descriptor list. This resets 1859 /// the memrefs to their most conservative state. This should be used only 1860 /// as a last resort since it greatly pessimizes our knowledge of the memory 1861 /// access performed by the instruction. 1862 void dropMemRefs(MachineFunction &MF); 1863 1864 /// Assign this MachineInstr's memory reference descriptor list. 1865 /// 1866 /// Unlike other methods, this *will* allocate them into a new array 1867 /// associated with the provided `MachineFunction`. 1868 void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs); 1869 1870 /// Add a MachineMemOperand to the machine instruction. 1871 /// This function should be used only occasionally. The setMemRefs function 1872 /// is the primary method for setting up a MachineInstr's MemRefs list. 1873 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); 1874 1875 /// Clone another MachineInstr's memory reference descriptor list and replace 1876 /// ours with it. 1877 /// 1878 /// Note that `*this` may be the incoming MI! 1879 /// 1880 /// Prefer this API whenever possible as it can avoid allocations in common 1881 /// cases. 1882 void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI); 1883 1884 /// Clone the merge of multiple MachineInstrs' memory reference descriptors 1885 /// list and replace ours with it. 1886 /// 1887 /// Note that `*this` may be one of the incoming MIs! 1888 /// 1889 /// Prefer this API whenever possible as it can avoid allocations in common 1890 /// cases. 1891 void cloneMergedMemRefs(MachineFunction &MF, 1892 ArrayRef<const MachineInstr *> MIs); 1893 1894 /// Set a symbol that will be emitted just prior to the instruction itself. 1895 /// 1896 /// Setting this to a null pointer will remove any such symbol. 1897 /// 1898 /// FIXME: This is not fully implemented yet. 1899 void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); 1900 1901 /// Set a symbol that will be emitted just after the instruction itself. 1902 /// 1903 /// Setting this to a null pointer will remove any such symbol. 1904 /// 1905 /// FIXME: This is not fully implemented yet. 1906 void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); 1907 1908 /// Clone another MachineInstr's pre- and post- instruction symbols and 1909 /// replace ours with it. 1910 void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI); 1911 1912 /// Set a marker on instructions that denotes where we should create and emit 1913 /// heap alloc site labels. This waits until after instruction selection and 1914 /// optimizations to create the label, so it should still work if the 1915 /// instruction is removed or duplicated. 1916 void setHeapAllocMarker(MachineFunction &MF, MDNode *MD); 1917 1918 // Set metadata on instructions that say which sections to emit instruction 1919 // addresses into. 1920 void setPCSections(MachineFunction &MF, MDNode *MD); 1921 1922 void setMMRAMetadata(MachineFunction &MF, MDNode *MMRAs); 1923 1924 /// Set the CFI type for the instruction. 1925 void setCFIType(MachineFunction &MF, uint32_t Type); 1926 1927 /// Return the MIFlags which represent both MachineInstrs. This 1928 /// should be used when merging two MachineInstrs into one. This routine does 1929 /// not modify the MIFlags of this MachineInstr. 1930 uint32_t mergeFlagsWith(const MachineInstr& Other) const; 1931 1932 static uint32_t copyFlagsFromInstruction(const Instruction &I); 1933 1934 /// Copy all flags to MachineInst MIFlags 1935 void copyIRFlags(const Instruction &I); 1936 1937 /// Break any tie involving OpIdx. 1938 void untieRegOperand(unsigned OpIdx) { 1939 MachineOperand &MO = getOperand(OpIdx); 1940 if (MO.isReg() && MO.isTied()) { 1941 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; 1942 MO.TiedTo = 0; 1943 } 1944 } 1945 1946 /// Add all implicit def and use operands to this instruction. 1947 void addImplicitDefUseOperands(MachineFunction &MF); 1948 1949 /// Scan instructions immediately following MI and collect any matching 1950 /// DBG_VALUEs. 1951 void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues); 1952 1953 /// Find all DBG_VALUEs that point to the register def in this instruction 1954 /// and point them to \p Reg instead. 1955 void changeDebugValuesDefReg(Register Reg); 1956 1957 /// Sets all register debug operands in this debug value instruction to be 1958 /// undef. 1959 void setDebugValueUndef() { 1960 assert(isDebugValue() && "Must be a debug value instruction."); 1961 for (MachineOperand &MO : debug_operands()) { 1962 if (MO.isReg()) { 1963 MO.setReg(0); 1964 MO.setSubReg(0); 1965 } 1966 } 1967 } 1968 1969 std::tuple<Register, Register> getFirst2Regs() const { 1970 return std::tuple(getOperand(0).getReg(), getOperand(1).getReg()); 1971 } 1972 1973 std::tuple<Register, Register, Register> getFirst3Regs() const { 1974 return std::tuple(getOperand(0).getReg(), getOperand(1).getReg(), 1975 getOperand(2).getReg()); 1976 } 1977 1978 std::tuple<Register, Register, Register, Register> getFirst4Regs() const { 1979 return std::tuple(getOperand(0).getReg(), getOperand(1).getReg(), 1980 getOperand(2).getReg(), getOperand(3).getReg()); 1981 } 1982 1983 std::tuple<Register, Register, Register, Register, Register> 1984 getFirst5Regs() const { 1985 return std::tuple(getOperand(0).getReg(), getOperand(1).getReg(), 1986 getOperand(2).getReg(), getOperand(3).getReg(), 1987 getOperand(4).getReg()); 1988 } 1989 1990 std::tuple<LLT, LLT> getFirst2LLTs() const; 1991 std::tuple<LLT, LLT, LLT> getFirst3LLTs() const; 1992 std::tuple<LLT, LLT, LLT, LLT> getFirst4LLTs() const; 1993 std::tuple<LLT, LLT, LLT, LLT, LLT> getFirst5LLTs() const; 1994 1995 std::tuple<Register, LLT, Register, LLT> getFirst2RegLLTs() const; 1996 std::tuple<Register, LLT, Register, LLT, Register, LLT> 1997 getFirst3RegLLTs() const; 1998 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT> 1999 getFirst4RegLLTs() const; 2000 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, 2001 Register, LLT> 2002 getFirst5RegLLTs() const; 2003 2004 private: 2005 /// If this instruction is embedded into a MachineFunction, return the 2006 /// MachineRegisterInfo object for the current function, otherwise 2007 /// return null. 2008 MachineRegisterInfo *getRegInfo(); 2009 const MachineRegisterInfo *getRegInfo() const; 2010 2011 /// Unlink all of the register operands in this instruction from their 2012 /// respective use lists. This requires that the operands already be on their 2013 /// use lists. 2014 void removeRegOperandsFromUseLists(MachineRegisterInfo&); 2015 2016 /// Add all of the register operands in this instruction from their 2017 /// respective use lists. This requires that the operands not be on their 2018 /// use lists yet. 2019 void addRegOperandsToUseLists(MachineRegisterInfo&); 2020 2021 /// Slow path for hasProperty when we're dealing with a bundle. 2022 bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const; 2023 2024 /// Implements the logic of getRegClassConstraintEffectForVReg for the 2025 /// this MI and the given operand index \p OpIdx. 2026 /// If the related operand does not constrained Reg, this returns CurRC. 2027 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl( 2028 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 2029 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; 2030 2031 /// Stores extra instruction information inline or allocates as ExtraInfo 2032 /// based on the number of pointers. 2033 void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs, 2034 MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol, 2035 MDNode *HeapAllocMarker, MDNode *PCSections, 2036 uint32_t CFIType, MDNode *MMRAs); 2037 }; 2038 2039 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the 2040 /// instruction rather than by pointer value. 2041 /// The hashing and equality testing functions ignore definitions so this is 2042 /// useful for CSE, etc. 2043 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> { 2044 static inline MachineInstr *getEmptyKey() { 2045 return nullptr; 2046 } 2047 2048 static inline MachineInstr *getTombstoneKey() { 2049 return reinterpret_cast<MachineInstr*>(-1); 2050 } 2051 2052 static unsigned getHashValue(const MachineInstr* const &MI); 2053 2054 static bool isEqual(const MachineInstr* const &LHS, 2055 const MachineInstr* const &RHS) { 2056 if (RHS == getEmptyKey() || RHS == getTombstoneKey() || 2057 LHS == getEmptyKey() || LHS == getTombstoneKey()) 2058 return LHS == RHS; 2059 return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs); 2060 } 2061 }; 2062 2063 //===----------------------------------------------------------------------===// 2064 // Debugging Support 2065 2066 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { 2067 MI.print(OS); 2068 return OS; 2069 } 2070 2071 } // end namespace llvm 2072 2073 #endif // LLVM_CODEGEN_MACHINEINSTR_H 2074