1 //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Shared implementation of BlockFrequency for IR and Machine Instructions.
10 // See the documentation below for BlockFrequencyInfoImpl for details.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
15 #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
16 
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/GraphTraits.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/SparseBitVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/ValueHandle.h"
30 #include "llvm/Support/BlockFrequency.h"
31 #include "llvm/Support/BranchProbability.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/DOTGraphTraits.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/Format.h"
36 #include "llvm/Support/ScaledNumber.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <cstddef>
41 #include <cstdint>
42 #include <deque>
43 #include <iterator>
44 #include <limits>
45 #include <list>
46 #include <optional>
47 #include <queue>
48 #include <string>
49 #include <utility>
50 #include <vector>
51 
52 #define DEBUG_TYPE "block-freq"
53 
54 namespace llvm {
55 extern llvm::cl::opt<bool> CheckBFIUnknownBlockQueries;
56 
57 extern llvm::cl::opt<bool> UseIterativeBFIInference;
58 extern llvm::cl::opt<unsigned> IterativeBFIMaxIterationsPerBlock;
59 extern llvm::cl::opt<double> IterativeBFIPrecision;
60 
61 class BranchProbabilityInfo;
62 class Function;
63 class Loop;
64 class LoopInfo;
65 class MachineBasicBlock;
66 class MachineBranchProbabilityInfo;
67 class MachineFunction;
68 class MachineLoop;
69 class MachineLoopInfo;
70 
71 namespace bfi_detail {
72 
73 struct IrreducibleGraph;
74 
75 // This is part of a workaround for a GCC 4.7 crash on lambdas.
76 template <class BT> struct BlockEdgesAdder;
77 
78 /// Mass of a block.
79 ///
80 /// This class implements a sort of fixed-point fraction always between 0.0 and
81 /// 1.0.  getMass() == std::numeric_limits<uint64_t>::max() indicates a value of
82 /// 1.0.
83 ///
84 /// Masses can be added and subtracted.  Simple saturation arithmetic is used,
85 /// so arithmetic operations never overflow or underflow.
86 ///
87 /// Masses can be multiplied.  Multiplication treats full mass as 1.0 and uses
88 /// an inexpensive floating-point algorithm that's off-by-one (almost, but not
89 /// quite, maximum precision).
90 ///
91 /// Masses can be scaled by \a BranchProbability at maximum precision.
92 class BlockMass {
93   uint64_t Mass = 0;
94 
95 public:
96   BlockMass() = default;
BlockMass(uint64_t Mass)97   explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
98 
getEmpty()99   static BlockMass getEmpty() { return BlockMass(); }
100 
getFull()101   static BlockMass getFull() {
102     return BlockMass(std::numeric_limits<uint64_t>::max());
103   }
104 
getMass()105   uint64_t getMass() const { return Mass; }
106 
isFull()107   bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); }
isEmpty()108   bool isEmpty() const { return !Mass; }
109 
110   bool operator!() const { return isEmpty(); }
111 
112   /// Add another mass.
113   ///
114   /// Adds another mass, saturating at \a isFull() rather than overflowing.
115   BlockMass &operator+=(BlockMass X) {
116     uint64_t Sum = Mass + X.Mass;
117     Mass = Sum < Mass ? std::numeric_limits<uint64_t>::max() : Sum;
118     return *this;
119   }
120 
121   /// Subtract another mass.
122   ///
123   /// Subtracts another mass, saturating at \a isEmpty() rather than
124   /// undeflowing.
125   BlockMass &operator-=(BlockMass X) {
126     uint64_t Diff = Mass - X.Mass;
127     Mass = Diff > Mass ? 0 : Diff;
128     return *this;
129   }
130 
131   BlockMass &operator*=(BranchProbability P) {
132     Mass = P.scale(Mass);
133     return *this;
134   }
135 
136   bool operator==(BlockMass X) const { return Mass == X.Mass; }
137   bool operator!=(BlockMass X) const { return Mass != X.Mass; }
138   bool operator<=(BlockMass X) const { return Mass <= X.Mass; }
139   bool operator>=(BlockMass X) const { return Mass >= X.Mass; }
140   bool operator<(BlockMass X) const { return Mass < X.Mass; }
141   bool operator>(BlockMass X) const { return Mass > X.Mass; }
142 
143   /// Convert to scaled number.
144   ///
145   /// Convert to \a ScaledNumber.  \a isFull() gives 1.0, while \a isEmpty()
146   /// gives slightly above 0.0.
147   ScaledNumber<uint64_t> toScaled() const;
148 
149   void dump() const;
150   raw_ostream &print(raw_ostream &OS) const;
151 };
152 
153 inline BlockMass operator+(BlockMass L, BlockMass R) {
154   return BlockMass(L) += R;
155 }
156 inline BlockMass operator-(BlockMass L, BlockMass R) {
157   return BlockMass(L) -= R;
158 }
159 inline BlockMass operator*(BlockMass L, BranchProbability R) {
160   return BlockMass(L) *= R;
161 }
162 inline BlockMass operator*(BranchProbability L, BlockMass R) {
163   return BlockMass(R) *= L;
164 }
165 
166 inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) {
167   return X.print(OS);
168 }
169 
170 } // end namespace bfi_detail
171 
172 /// Base class for BlockFrequencyInfoImpl
173 ///
174 /// BlockFrequencyInfoImplBase has supporting data structures and some
175 /// algorithms for BlockFrequencyInfoImplBase.  Only algorithms that depend on
176 /// the block type (or that call such algorithms) are skipped here.
177 ///
178 /// Nevertheless, the majority of the overall algorithm documentation lives with
179 /// BlockFrequencyInfoImpl.  See there for details.
180 class BlockFrequencyInfoImplBase {
181 public:
182   using Scaled64 = ScaledNumber<uint64_t>;
183   using BlockMass = bfi_detail::BlockMass;
184 
185   /// Representative of a block.
186   ///
187   /// This is a simple wrapper around an index into the reverse-post-order
188   /// traversal of the blocks.
189   ///
190   /// Unlike a block pointer, its order has meaning (location in the
191   /// topological sort) and it's class is the same regardless of block type.
192   struct BlockNode {
193     using IndexType = uint32_t;
194 
195     IndexType Index;
196 
BlockNodeBlockNode197     BlockNode() : Index(std::numeric_limits<uint32_t>::max()) {}
BlockNodeBlockNode198     BlockNode(IndexType Index) : Index(Index) {}
199 
200     bool operator==(const BlockNode &X) const { return Index == X.Index; }
201     bool operator!=(const BlockNode &X) const { return Index != X.Index; }
202     bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
203     bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
204     bool operator<(const BlockNode &X) const { return Index < X.Index; }
205     bool operator>(const BlockNode &X) const { return Index > X.Index; }
206 
isValidBlockNode207     bool isValid() const { return Index <= getMaxIndex(); }
208 
getMaxIndexBlockNode209     static size_t getMaxIndex() {
210        return std::numeric_limits<uint32_t>::max() - 1;
211     }
212   };
213 
214   /// Stats about a block itself.
215   struct FrequencyData {
216     Scaled64 Scaled;
217     uint64_t Integer;
218   };
219 
220   /// Data about a loop.
221   ///
222   /// Contains the data necessary to represent a loop as a pseudo-node once it's
223   /// packaged.
224   struct LoopData {
225     using ExitMap = SmallVector<std::pair<BlockNode, BlockMass>, 4>;
226     using NodeList = SmallVector<BlockNode, 4>;
227     using HeaderMassList = SmallVector<BlockMass, 1>;
228 
229     LoopData *Parent;            ///< The parent loop.
230     bool IsPackaged = false;     ///< Whether this has been packaged.
231     uint32_t NumHeaders = 1;     ///< Number of headers.
232     ExitMap Exits;               ///< Successor edges (and weights).
233     NodeList Nodes;              ///< Header and the members of the loop.
234     HeaderMassList BackedgeMass; ///< Mass returned to each loop header.
235     BlockMass Mass;
236     Scaled64 Scale;
237 
LoopDataLoopData238     LoopData(LoopData *Parent, const BlockNode &Header)
239       : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {}
240 
241     template <class It1, class It2>
LoopDataLoopData242     LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
243              It2 LastOther)
244         : Parent(Parent), Nodes(FirstHeader, LastHeader) {
245       NumHeaders = Nodes.size();
246       Nodes.insert(Nodes.end(), FirstOther, LastOther);
247       BackedgeMass.resize(NumHeaders);
248     }
249 
isHeaderLoopData250     bool isHeader(const BlockNode &Node) const {
251       if (isIrreducible())
252         return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
253                                   Node);
254       return Node == Nodes[0];
255     }
256 
getHeaderLoopData257     BlockNode getHeader() const { return Nodes[0]; }
isIrreducibleLoopData258     bool isIrreducible() const { return NumHeaders > 1; }
259 
getHeaderIndexLoopData260     HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) {
261       assert(isHeader(B) && "this is only valid on loop header blocks");
262       if (isIrreducible())
263         return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) -
264                Nodes.begin();
265       return 0;
266     }
267 
members_beginLoopData268     NodeList::const_iterator members_begin() const {
269       return Nodes.begin() + NumHeaders;
270     }
271 
members_endLoopData272     NodeList::const_iterator members_end() const { return Nodes.end(); }
membersLoopData273     iterator_range<NodeList::const_iterator> members() const {
274       return make_range(members_begin(), members_end());
275     }
276   };
277 
278   /// Index of loop information.
279   struct WorkingData {
280     BlockNode Node;           ///< This node.
281     LoopData *Loop = nullptr; ///< The loop this block is inside.
282     BlockMass Mass;           ///< Mass distribution from the entry block.
283 
WorkingDataWorkingData284     WorkingData(const BlockNode &Node) : Node(Node) {}
285 
isLoopHeaderWorkingData286     bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
287 
isDoubleLoopHeaderWorkingData288     bool isDoubleLoopHeader() const {
289       return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
290              Loop->Parent->isHeader(Node);
291     }
292 
getContainingLoopWorkingData293     LoopData *getContainingLoop() const {
294       if (!isLoopHeader())
295         return Loop;
296       if (!isDoubleLoopHeader())
297         return Loop->Parent;
298       return Loop->Parent->Parent;
299     }
300 
301     /// Resolve a node to its representative.
302     ///
303     /// Get the node currently representing Node, which could be a containing
304     /// loop.
305     ///
306     /// This function should only be called when distributing mass.  As long as
307     /// there are no irreducible edges to Node, then it will have complexity
308     /// O(1) in this context.
309     ///
310     /// In general, the complexity is O(L), where L is the number of loop
311     /// headers Node has been packaged into.  Since this method is called in
312     /// the context of distributing mass, L will be the number of loop headers
313     /// an early exit edge jumps out of.
getResolvedNodeWorkingData314     BlockNode getResolvedNode() const {
315       auto *L = getPackagedLoop();
316       return L ? L->getHeader() : Node;
317     }
318 
getPackagedLoopWorkingData319     LoopData *getPackagedLoop() const {
320       if (!Loop || !Loop->IsPackaged)
321         return nullptr;
322       auto *L = Loop;
323       while (L->Parent && L->Parent->IsPackaged)
324         L = L->Parent;
325       return L;
326     }
327 
328     /// Get the appropriate mass for a node.
329     ///
330     /// Get appropriate mass for Node.  If Node is a loop-header (whose loop
331     /// has been packaged), returns the mass of its pseudo-node.  If it's a
332     /// node inside a packaged loop, it returns the loop's mass.
getMassWorkingData333     BlockMass &getMass() {
334       if (!isAPackage())
335         return Mass;
336       if (!isADoublePackage())
337         return Loop->Mass;
338       return Loop->Parent->Mass;
339     }
340 
341     /// Has ContainingLoop been packaged up?
isPackagedWorkingData342     bool isPackaged() const { return getResolvedNode() != Node; }
343 
344     /// Has Loop been packaged up?
isAPackageWorkingData345     bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
346 
347     /// Has Loop been packaged up twice?
isADoublePackageWorkingData348     bool isADoublePackage() const {
349       return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
350     }
351   };
352 
353   /// Unscaled probability weight.
354   ///
355   /// Probability weight for an edge in the graph (including the
356   /// successor/target node).
357   ///
358   /// All edges in the original function are 32-bit.  However, exit edges from
359   /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
360   /// space in general.
361   ///
362   /// In addition to the raw weight amount, Weight stores the type of the edge
363   /// in the current context (i.e., the context of the loop being processed).
364   /// Is this a local edge within the loop, an exit from the loop, or a
365   /// backedge to the loop header?
366   struct Weight {
367     enum DistType { Local, Exit, Backedge };
368     DistType Type = Local;
369     BlockNode TargetNode;
370     uint64_t Amount = 0;
371 
372     Weight() = default;
WeightWeight373     Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
374         : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
375   };
376 
377   /// Distribution of unscaled probability weight.
378   ///
379   /// Distribution of unscaled probability weight to a set of successors.
380   ///
381   /// This class collates the successor edge weights for later processing.
382   ///
383   /// \a DidOverflow indicates whether \a Total did overflow while adding to
384   /// the distribution.  It should never overflow twice.
385   struct Distribution {
386     using WeightList = SmallVector<Weight, 4>;
387 
388     WeightList Weights;       ///< Individual successor weights.
389     uint64_t Total = 0;       ///< Sum of all weights.
390     bool DidOverflow = false; ///< Whether \a Total did overflow.
391 
392     Distribution() = default;
393 
addLocalDistribution394     void addLocal(const BlockNode &Node, uint64_t Amount) {
395       add(Node, Amount, Weight::Local);
396     }
397 
addExitDistribution398     void addExit(const BlockNode &Node, uint64_t Amount) {
399       add(Node, Amount, Weight::Exit);
400     }
401 
addBackedgeDistribution402     void addBackedge(const BlockNode &Node, uint64_t Amount) {
403       add(Node, Amount, Weight::Backedge);
404     }
405 
406     /// Normalize the distribution.
407     ///
408     /// Combines multiple edges to the same \a Weight::TargetNode and scales
409     /// down so that \a Total fits into 32-bits.
410     ///
411     /// This is linear in the size of \a Weights.  For the vast majority of
412     /// cases, adjacent edge weights are combined by sorting WeightList and
413     /// combining adjacent weights.  However, for very large edge lists an
414     /// auxiliary hash table is used.
415     void normalize();
416 
417   private:
418     void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
419   };
420 
421   /// Data about each block.  This is used downstream.
422   std::vector<FrequencyData> Freqs;
423 
424   /// Whether each block is an irreducible loop header.
425   /// This is used downstream.
426   SparseBitVector<> IsIrrLoopHeader;
427 
428   /// Loop data: see initializeLoops().
429   std::vector<WorkingData> Working;
430 
431   /// Indexed information about loops.
432   std::list<LoopData> Loops;
433 
434   /// Virtual destructor.
435   ///
436   /// Need a virtual destructor to mask the compiler warning about
437   /// getBlockName().
438   virtual ~BlockFrequencyInfoImplBase() = default;
439 
440   /// Add all edges out of a packaged loop to the distribution.
441   ///
442   /// Adds all edges from LocalLoopHead to Dist.  Calls addToDist() to add each
443   /// successor edge.
444   ///
445   /// \return \c true unless there's an irreducible backedge.
446   bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
447                                Distribution &Dist);
448 
449   /// Add an edge to the distribution.
450   ///
451   /// Adds an edge to Succ to Dist.  If \c LoopHead.isValid(), then whether the
452   /// edge is local/exit/backedge is in the context of LoopHead.  Otherwise,
453   /// every edge should be a local edge (since all the loops are packaged up).
454   ///
455   /// \return \c true unless aborted due to an irreducible backedge.
456   bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
457                  const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
458 
459   /// Analyze irreducible SCCs.
460   ///
461   /// Separate irreducible SCCs from \c G, which is an explicit graph of \c
462   /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
463   /// Insert them into \a Loops before \c Insert.
464   ///
465   /// \return the \c LoopData nodes representing the irreducible SCCs.
466   iterator_range<std::list<LoopData>::iterator>
467   analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
468                      std::list<LoopData>::iterator Insert);
469 
470   /// Update a loop after packaging irreducible SCCs inside of it.
471   ///
472   /// Update \c OuterLoop.  Before finding irreducible control flow, it was
473   /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
474   /// LoopData::BackedgeMass need to be reset.  Also, nodes that were packaged
475   /// up need to be removed from \a OuterLoop::Nodes.
476   void updateLoopWithIrreducible(LoopData &OuterLoop);
477 
478   /// Distribute mass according to a distribution.
479   ///
480   /// Distributes the mass in Source according to Dist.  If LoopHead.isValid(),
481   /// backedges and exits are stored in its entry in Loops.
482   ///
483   /// Mass is distributed in parallel from two copies of the source mass.
484   void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
485                       Distribution &Dist);
486 
487   /// Compute the loop scale for a loop.
488   void computeLoopScale(LoopData &Loop);
489 
490   /// Adjust the mass of all headers in an irreducible loop.
491   ///
492   /// Initially, irreducible loops are assumed to distribute their mass
493   /// equally among its headers. This can lead to wrong frequency estimates
494   /// since some headers may be executed more frequently than others.
495   ///
496   /// This adjusts header mass distribution so it matches the weights of
497   /// the backedges going into each of the loop headers.
498   void adjustLoopHeaderMass(LoopData &Loop);
499 
500   void distributeIrrLoopHeaderMass(Distribution &Dist);
501 
502   /// Package up a loop.
503   void packageLoop(LoopData &Loop);
504 
505   /// Unwrap loops.
506   void unwrapLoops();
507 
508   /// Finalize frequency metrics.
509   ///
510   /// Calculates final frequencies and cleans up no-longer-needed data
511   /// structures.
512   void finalizeMetrics();
513 
514   /// Clear all memory.
515   void clear();
516 
517   virtual std::string getBlockName(const BlockNode &Node) const;
518   std::string getLoopName(const LoopData &Loop) const;
519 
print(raw_ostream & OS)520   virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
dump()521   void dump() const { print(dbgs()); }
522 
523   Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
524 
525   BlockFrequency getBlockFreq(const BlockNode &Node) const;
526   std::optional<uint64_t>
527   getBlockProfileCount(const Function &F, const BlockNode &Node,
528                        bool AllowSynthetic = false) const;
529   std::optional<uint64_t>
530   getProfileCountFromFreq(const Function &F, BlockFrequency Freq,
531                           bool AllowSynthetic = false) const;
532   bool isIrrLoopHeader(const BlockNode &Node);
533 
534   void setBlockFreq(const BlockNode &Node, BlockFrequency Freq);
535 
getEntryFreq()536   BlockFrequency getEntryFreq() const {
537     assert(!Freqs.empty());
538     return BlockFrequency(Freqs[0].Integer);
539   }
540 };
541 
542 void printBlockFreqImpl(raw_ostream &OS, BlockFrequency EntryFreq,
543                         BlockFrequency Freq);
544 
545 namespace bfi_detail {
546 
547 template <class BlockT> struct TypeMap {};
548 template <> struct TypeMap<BasicBlock> {
549   using BlockT = BasicBlock;
550   using BlockKeyT = AssertingVH<const BasicBlock>;
551   using FunctionT = Function;
552   using BranchProbabilityInfoT = BranchProbabilityInfo;
553   using LoopT = Loop;
554   using LoopInfoT = LoopInfo;
555 };
556 template <> struct TypeMap<MachineBasicBlock> {
557   using BlockT = MachineBasicBlock;
558   using BlockKeyT = const MachineBasicBlock *;
559   using FunctionT = MachineFunction;
560   using BranchProbabilityInfoT = MachineBranchProbabilityInfo;
561   using LoopT = MachineLoop;
562   using LoopInfoT = MachineLoopInfo;
563 };
564 
565 template <class BlockT, class BFIImplT>
566 class BFICallbackVH;
567 
568 /// Get the name of a MachineBasicBlock.
569 ///
570 /// Get the name of a MachineBasicBlock.  It's templated so that including from
571 /// CodeGen is unnecessary (that would be a layering issue).
572 ///
573 /// This is used mainly for debug output.  The name is similar to
574 /// MachineBasicBlock::getFullName(), but skips the name of the function.
575 template <class BlockT> std::string getBlockName(const BlockT *BB) {
576   assert(BB && "Unexpected nullptr");
577   auto MachineName = "BB" + Twine(BB->getNumber());
578   if (BB->getBasicBlock())
579     return (MachineName + "[" + BB->getName() + "]").str();
580   return MachineName.str();
581 }
582 /// Get the name of a BasicBlock.
583 template <> inline std::string getBlockName(const BasicBlock *BB) {
584   assert(BB && "Unexpected nullptr");
585   return BB->getName().str();
586 }
587 
588 /// Graph of irreducible control flow.
589 ///
590 /// This graph is used for determining the SCCs in a loop (or top-level
591 /// function) that has irreducible control flow.
592 ///
593 /// During the block frequency algorithm, the local graphs are defined in a
594 /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
595 /// graphs for most edges, but getting others from \a LoopData::ExitMap.  The
596 /// latter only has successor information.
597 ///
598 /// \a IrreducibleGraph makes this graph explicit.  It's in a form that can use
599 /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
600 /// and it explicitly lists predecessors and successors.  The initialization
601 /// that relies on \c MachineBasicBlock is defined in the header.
602 struct IrreducibleGraph {
603   using BFIBase = BlockFrequencyInfoImplBase;
604 
605   BFIBase &BFI;
606 
607   using BlockNode = BFIBase::BlockNode;
608   struct IrrNode {
609     BlockNode Node;
610     unsigned NumIn = 0;
611     std::deque<const IrrNode *> Edges;
612 
613     IrrNode(const BlockNode &Node) : Node(Node) {}
614 
615     using iterator = std::deque<const IrrNode *>::const_iterator;
616 
617     iterator pred_begin() const { return Edges.begin(); }
618     iterator succ_begin() const { return Edges.begin() + NumIn; }
619     iterator pred_end() const { return succ_begin(); }
620     iterator succ_end() const { return Edges.end(); }
621   };
622   BlockNode Start;
623   const IrrNode *StartIrr = nullptr;
624   std::vector<IrrNode> Nodes;
625   SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
626 
627   /// Construct an explicit graph containing irreducible control flow.
628   ///
629   /// Construct an explicit graph of the control flow in \c OuterLoop (or the
630   /// top-level function, if \c OuterLoop is \c nullptr).  Uses \c
631   /// addBlockEdges to add block successors that have not been packaged into
632   /// loops.
633   ///
634   /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
635   /// user of this.
636   template <class BlockEdgesAdder>
637   IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
638                    BlockEdgesAdder addBlockEdges) : BFI(BFI) {
639     initialize(OuterLoop, addBlockEdges);
640   }
641 
642   template <class BlockEdgesAdder>
643   void initialize(const BFIBase::LoopData *OuterLoop,
644                   BlockEdgesAdder addBlockEdges);
645   void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
646   void addNodesInFunction();
647 
648   void addNode(const BlockNode &Node) {
649     Nodes.emplace_back(Node);
650     BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
651   }
652 
653   void indexNodes();
654   template <class BlockEdgesAdder>
655   void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
656                 BlockEdgesAdder addBlockEdges);
657   void addEdge(IrrNode &Irr, const BlockNode &Succ,
658                const BFIBase::LoopData *OuterLoop);
659 };
660 
661 template <class BlockEdgesAdder>
662 void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
663                                   BlockEdgesAdder addBlockEdges) {
664   if (OuterLoop) {
665     addNodesInLoop(*OuterLoop);
666     for (auto N : OuterLoop->Nodes)
667       addEdges(N, OuterLoop, addBlockEdges);
668   } else {
669     addNodesInFunction();
670     for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
671       addEdges(Index, OuterLoop, addBlockEdges);
672   }
673   StartIrr = Lookup[Start.Index];
674 }
675 
676 template <class BlockEdgesAdder>
677 void IrreducibleGraph::addEdges(const BlockNode &Node,
678                                 const BFIBase::LoopData *OuterLoop,
679                                 BlockEdgesAdder addBlockEdges) {
680   auto L = Lookup.find(Node.Index);
681   if (L == Lookup.end())
682     return;
683   IrrNode &Irr = *L->second;
684   const auto &Working = BFI.Working[Node.Index];
685 
686   if (Working.isAPackage())
687     for (const auto &I : Working.Loop->Exits)
688       addEdge(Irr, I.first, OuterLoop);
689   else
690     addBlockEdges(*this, Irr, OuterLoop);
691 }
692 
693 } // end namespace bfi_detail
694 
695 /// Shared implementation for block frequency analysis.
696 ///
697 /// This is a shared implementation of BlockFrequencyInfo and
698 /// MachineBlockFrequencyInfo, and calculates the relative frequencies of
699 /// blocks.
700 ///
701 /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
702 /// which is called the header.  A given loop, L, can have sub-loops, which are
703 /// loops within the subgraph of L that exclude its header.  (A "trivial" SCC
704 /// consists of a single block that does not have a self-edge.)
705 ///
706 /// In addition to loops, this algorithm has limited support for irreducible
707 /// SCCs, which are SCCs with multiple entry blocks.  Irreducible SCCs are
708 /// discovered on the fly, and modelled as loops with multiple headers.
709 ///
710 /// The headers of irreducible sub-SCCs consist of its entry blocks and all
711 /// nodes that are targets of a backedge within it (excluding backedges within
712 /// true sub-loops).  Block frequency calculations act as if a block is
713 /// inserted that intercepts all the edges to the headers.  All backedges and
714 /// entries point to this block.  Its successors are the headers, which split
715 /// the frequency evenly.
716 ///
717 /// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
718 /// separates mass distribution from loop scaling, and dithers to eliminate
719 /// probability mass loss.
720 ///
721 /// The implementation is split between BlockFrequencyInfoImpl, which knows the
722 /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
723 /// BlockFrequencyInfoImplBase, which doesn't.  The base class uses \a
724 /// BlockNode, a wrapper around a uint32_t.  BlockNode is numbered from 0 in
725 /// reverse-post order.  This gives two advantages:  it's easy to compare the
726 /// relative ordering of two nodes, and maps keyed on BlockT can be represented
727 /// by vectors.
728 ///
729 /// This algorithm is O(V+E), unless there is irreducible control flow, in
730 /// which case it's O(V*E) in the worst case.
731 ///
732 /// These are the main stages:
733 ///
734 ///  0. Reverse post-order traversal (\a initializeRPOT()).
735 ///
736 ///     Run a single post-order traversal and save it (in reverse) in RPOT.
737 ///     All other stages make use of this ordering.  Save a lookup from BlockT
738 ///     to BlockNode (the index into RPOT) in Nodes.
739 ///
740 ///  1. Loop initialization (\a initializeLoops()).
741 ///
742 ///     Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
743 ///     the algorithm.  In particular, store the immediate members of each loop
744 ///     in reverse post-order.
745 ///
746 ///  2. Calculate mass and scale in loops (\a computeMassInLoops()).
747 ///
748 ///     For each loop (bottom-up), distribute mass through the DAG resulting
749 ///     from ignoring backedges and treating sub-loops as a single pseudo-node.
750 ///     Track the backedge mass distributed to the loop header, and use it to
751 ///     calculate the loop scale (number of loop iterations).  Immediate
752 ///     members that represent sub-loops will already have been visited and
753 ///     packaged into a pseudo-node.
754 ///
755 ///     Distributing mass in a loop is a reverse-post-order traversal through
756 ///     the loop.  Start by assigning full mass to the Loop header.  For each
757 ///     node in the loop:
758 ///
759 ///         - Fetch and categorize the weight distribution for its successors.
760 ///           If this is a packaged-subloop, the weight distribution is stored
761 ///           in \a LoopData::Exits.  Otherwise, fetch it from
762 ///           BranchProbabilityInfo.
763 ///
764 ///         - Each successor is categorized as \a Weight::Local, a local edge
765 ///           within the current loop, \a Weight::Backedge, a backedge to the
766 ///           loop header, or \a Weight::Exit, any successor outside the loop.
767 ///           The weight, the successor, and its category are stored in \a
768 ///           Distribution.  There can be multiple edges to each successor.
769 ///
770 ///         - If there's a backedge to a non-header, there's an irreducible SCC.
771 ///           The usual flow is temporarily aborted.  \a
772 ///           computeIrreducibleMass() finds the irreducible SCCs within the
773 ///           loop, packages them up, and restarts the flow.
774 ///
775 ///         - Normalize the distribution:  scale weights down so that their sum
776 ///           is 32-bits, and coalesce multiple edges to the same node.
777 ///
778 ///         - Distribute the mass accordingly, dithering to minimize mass loss,
779 ///           as described in \a distributeMass().
780 ///
781 ///     In the case of irreducible loops, instead of a single loop header,
782 ///     there will be several. The computation of backedge masses is similar
783 ///     but instead of having a single backedge mass, there will be one
784 ///     backedge per loop header. In these cases, each backedge will carry
785 ///     a mass proportional to the edge weights along the corresponding
786 ///     path.
787 ///
788 ///     At the end of propagation, the full mass assigned to the loop will be
789 ///     distributed among the loop headers proportionally according to the
790 ///     mass flowing through their backedges.
791 ///
792 ///     Finally, calculate the loop scale from the accumulated backedge mass.
793 ///
794 ///  3. Distribute mass in the function (\a computeMassInFunction()).
795 ///
796 ///     Finally, distribute mass through the DAG resulting from packaging all
797 ///     loops in the function.  This uses the same algorithm as distributing
798 ///     mass in a loop, except that there are no exit or backedge edges.
799 ///
800 ///  4. Unpackage loops (\a unwrapLoops()).
801 ///
802 ///     Initialize each block's frequency to a floating point representation of
803 ///     its mass.
804 ///
805 ///     Visit loops top-down, scaling the frequencies of its immediate members
806 ///     by the loop's pseudo-node's frequency.
807 ///
808 ///  5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
809 ///
810 ///     Using the min and max frequencies as a guide, translate floating point
811 ///     frequencies to an appropriate range in uint64_t.
812 ///
813 /// It has some known flaws.
814 ///
815 ///   - The model of irreducible control flow is a rough approximation.
816 ///
817 ///     Modelling irreducible control flow exactly involves setting up and
818 ///     solving a group of infinite geometric series.  Such precision is
819 ///     unlikely to be worthwhile, since most of our algorithms give up on
820 ///     irreducible control flow anyway.
821 ///
822 ///     Nevertheless, we might find that we need to get closer.  Here's a sort
823 ///     of TODO list for the model with diminishing returns, to be completed as
824 ///     necessary.
825 ///
826 ///       - The headers for the \a LoopData representing an irreducible SCC
827 ///         include non-entry blocks.  When these extra blocks exist, they
828 ///         indicate a self-contained irreducible sub-SCC.  We could treat them
829 ///         as sub-loops, rather than arbitrarily shoving the problematic
830 ///         blocks into the headers of the main irreducible SCC.
831 ///
832 ///       - Entry frequencies are assumed to be evenly split between the
833 ///         headers of a given irreducible SCC, which is the only option if we
834 ///         need to compute mass in the SCC before its parent loop.  Instead,
835 ///         we could partially compute mass in the parent loop, and stop when
836 ///         we get to the SCC.  Here, we have the correct ratio of entry
837 ///         masses, which we can use to adjust their relative frequencies.
838 ///         Compute mass in the SCC, and then continue propagation in the
839 ///         parent.
840 ///
841 ///       - We can propagate mass iteratively through the SCC, for some fixed
842 ///         number of iterations.  Each iteration starts by assigning the entry
843 ///         blocks their backedge mass from the prior iteration.  The final
844 ///         mass for each block (and each exit, and the total backedge mass
845 ///         used for computing loop scale) is the sum of all iterations.
846 ///         (Running this until fixed point would "solve" the geometric
847 ///         series by simulation.)
848 template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
849   // This is part of a workaround for a GCC 4.7 crash on lambdas.
850   friend struct bfi_detail::BlockEdgesAdder<BT>;
851 
852   using BlockT = typename bfi_detail::TypeMap<BT>::BlockT;
853   using BlockKeyT = typename bfi_detail::TypeMap<BT>::BlockKeyT;
854   using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT;
855   using BranchProbabilityInfoT =
856       typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT;
857   using LoopT = typename bfi_detail::TypeMap<BT>::LoopT;
858   using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT;
859   using Successor = GraphTraits<const BlockT *>;
860   using Predecessor = GraphTraits<Inverse<const BlockT *>>;
861   using BFICallbackVH =
862       bfi_detail::BFICallbackVH<BlockT, BlockFrequencyInfoImpl>;
863 
864   const BranchProbabilityInfoT *BPI = nullptr;
865   const LoopInfoT *LI = nullptr;
866   const FunctionT *F = nullptr;
867 
868   // All blocks in reverse postorder.
869   std::vector<const BlockT *> RPOT;
870   DenseMap<BlockKeyT, std::pair<BlockNode, BFICallbackVH>> Nodes;
871 
872   using rpot_iterator = typename std::vector<const BlockT *>::const_iterator;
873 
874   rpot_iterator rpot_begin() const { return RPOT.begin(); }
875   rpot_iterator rpot_end() const { return RPOT.end(); }
876 
877   size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
878 
879   BlockNode getNode(const rpot_iterator &I) const {
880     return BlockNode(getIndex(I));
881   }
882 
883   BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB).first; }
884 
885   const BlockT *getBlock(const BlockNode &Node) const {
886     assert(Node.Index < RPOT.size());
887     return RPOT[Node.Index];
888   }
889 
890   /// Run (and save) a post-order traversal.
891   ///
892   /// Saves a reverse post-order traversal of all the nodes in \a F.
893   void initializeRPOT();
894 
895   /// Initialize loop data.
896   ///
897   /// Build up \a Loops using \a LoopInfo.  \a LoopInfo gives us a mapping from
898   /// each block to the deepest loop it's in, but we need the inverse.  For each
899   /// loop, we store in reverse post-order its "immediate" members, defined as
900   /// the header, the headers of immediate sub-loops, and all other blocks in
901   /// the loop that are not in sub-loops.
902   void initializeLoops();
903 
904   /// Propagate to a block's successors.
905   ///
906   /// In the context of distributing mass through \c OuterLoop, divide the mass
907   /// currently assigned to \c Node between its successors.
908   ///
909   /// \return \c true unless there's an irreducible backedge.
910   bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
911 
912   /// Compute mass in a particular loop.
913   ///
914   /// Assign mass to \c Loop's header, and then for each block in \c Loop in
915   /// reverse post-order, distribute mass to its successors.  Only visits nodes
916   /// that have not been packaged into sub-loops.
917   ///
918   /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
919   /// \return \c true unless there's an irreducible backedge.
920   bool computeMassInLoop(LoopData &Loop);
921 
922   /// Try to compute mass in the top-level function.
923   ///
924   /// Assign mass to the entry block, and then for each block in reverse
925   /// post-order, distribute mass to its successors.  Skips nodes that have
926   /// been packaged into loops.
927   ///
928   /// \pre \a computeMassInLoops() has been called.
929   /// \return \c true unless there's an irreducible backedge.
930   bool tryToComputeMassInFunction();
931 
932   /// Compute mass in (and package up) irreducible SCCs.
933   ///
934   /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
935   /// of \c Insert), and call \a computeMassInLoop() on each of them.
936   ///
937   /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
938   ///
939   /// \pre \a computeMassInLoop() has been called for each subloop of \c
940   /// OuterLoop.
941   /// \pre \c Insert points at the last loop successfully processed by \a
942   /// computeMassInLoop().
943   /// \pre \c OuterLoop has irreducible SCCs.
944   void computeIrreducibleMass(LoopData *OuterLoop,
945                               std::list<LoopData>::iterator Insert);
946 
947   /// Compute mass in all loops.
948   ///
949   /// For each loop bottom-up, call \a computeMassInLoop().
950   ///
951   /// \a computeMassInLoop() aborts (and returns \c false) on loops that
952   /// contain a irreducible sub-SCCs.  Use \a computeIrreducibleMass() and then
953   /// re-enter \a computeMassInLoop().
954   ///
955   /// \post \a computeMassInLoop() has returned \c true for every loop.
956   void computeMassInLoops();
957 
958   /// Compute mass in the top-level function.
959   ///
960   /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
961   /// compute mass in the top-level function.
962   ///
963   /// \post \a tryToComputeMassInFunction() has returned \c true.
964   void computeMassInFunction();
965 
966   std::string getBlockName(const BlockNode &Node) const override {
967     return bfi_detail::getBlockName(getBlock(Node));
968   }
969 
970   /// The current implementation for computing relative block frequencies does
971   /// not handle correctly control-flow graphs containing irreducible loops. To
972   /// resolve the problem, we apply a post-processing step, which iteratively
973   /// updates block frequencies based on the frequencies of their predesessors.
974   /// This corresponds to finding the stationary point of the Markov chain by
975   /// an iterative method aka "PageRank computation".
976   /// The algorithm takes at most O(|E| * IterativeBFIMaxIterations) steps but
977   /// typically converges faster.
978   ///
979   /// Decide whether we want to apply iterative inference for a given function.
980   bool needIterativeInference() const;
981 
982   /// Apply an iterative post-processing to infer correct counts for irr loops.
983   void applyIterativeInference();
984 
985   using ProbMatrixType = std::vector<std::vector<std::pair<size_t, Scaled64>>>;
986 
987   /// Run iterative inference for a probability matrix and initial frequencies.
988   void iterativeInference(const ProbMatrixType &ProbMatrix,
989                           std::vector<Scaled64> &Freq) const;
990 
991   /// Find all blocks to apply inference on, that is, reachable from the entry
992   /// and backward reachable from exists along edges with positive probability.
993   void findReachableBlocks(std::vector<const BlockT *> &Blocks) const;
994 
995   /// Build a matrix of probabilities with transitions (edges) between the
996   /// blocks: ProbMatrix[I] holds pairs (J, P), where Pr[J -> I | J] = P
997   void initTransitionProbabilities(
998       const std::vector<const BlockT *> &Blocks,
999       const DenseMap<const BlockT *, size_t> &BlockIndex,
1000       ProbMatrixType &ProbMatrix) const;
1001 
1002 #ifndef NDEBUG
1003   /// Compute the discrepancy between current block frequencies and the
1004   /// probability matrix.
1005   Scaled64 discrepancy(const ProbMatrixType &ProbMatrix,
1006                        const std::vector<Scaled64> &Freq) const;
1007 #endif
1008 
1009 public:
1010   BlockFrequencyInfoImpl() = default;
1011 
1012   const FunctionT *getFunction() const { return F; }
1013 
1014   void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI,
1015                  const LoopInfoT &LI);
1016 
1017   using BlockFrequencyInfoImplBase::getEntryFreq;
1018 
1019   BlockFrequency getBlockFreq(const BlockT *BB) const {
1020     return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
1021   }
1022 
1023   std::optional<uint64_t>
1024   getBlockProfileCount(const Function &F, const BlockT *BB,
1025                        bool AllowSynthetic = false) const {
1026     return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB),
1027                                                             AllowSynthetic);
1028   }
1029 
1030   std::optional<uint64_t>
1031   getProfileCountFromFreq(const Function &F, BlockFrequency Freq,
1032                           bool AllowSynthetic = false) const {
1033     return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq,
1034                                                                AllowSynthetic);
1035   }
1036 
1037   bool isIrrLoopHeader(const BlockT *BB) {
1038     return BlockFrequencyInfoImplBase::isIrrLoopHeader(getNode(BB));
1039   }
1040 
1041   void setBlockFreq(const BlockT *BB, BlockFrequency Freq);
1042 
1043   void forgetBlock(const BlockT *BB) {
1044     // We don't erase corresponding items from `Freqs`, `RPOT` and other to
1045     // avoid invalidating indices. Doing so would have saved some memory, but
1046     // it's not worth it.
1047     Nodes.erase(BB);
1048   }
1049 
1050   Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
1051     return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
1052   }
1053 
1054   const BranchProbabilityInfoT &getBPI() const { return *BPI; }
1055 
1056   /// Print the frequencies for the current function.
1057   ///
1058   /// Prints the frequencies for the blocks in the current function.
1059   ///
1060   /// Blocks are printed in the natural iteration order of the function, rather
1061   /// than reverse post-order.  This provides two advantages:  writing -analyze
1062   /// tests is easier (since blocks come out in source order), and even
1063   /// unreachable blocks are printed.
1064   ///
1065   /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
1066   /// we need to override it here.
1067   raw_ostream &print(raw_ostream &OS) const override;
1068 
1069   using BlockFrequencyInfoImplBase::dump;
1070 
1071   void verifyMatch(BlockFrequencyInfoImpl<BT> &Other) const;
1072 };
1073 
1074 namespace bfi_detail {
1075 
1076 template <class BFIImplT>
1077 class BFICallbackVH<BasicBlock, BFIImplT> : public CallbackVH {
1078   BFIImplT *BFIImpl;
1079 
1080 public:
1081   BFICallbackVH() = default;
1082 
1083   BFICallbackVH(const BasicBlock *BB, BFIImplT *BFIImpl)
1084       : CallbackVH(BB), BFIImpl(BFIImpl) {}
1085 
1086   virtual ~BFICallbackVH() = default;
1087 
1088   void deleted() override {
1089     BFIImpl->forgetBlock(cast<BasicBlock>(getValPtr()));
1090   }
1091 };
1092 
1093 /// Dummy implementation since MachineBasicBlocks aren't Values, so ValueHandles
1094 /// don't apply to them.
1095 template <class BFIImplT>
1096 class BFICallbackVH<MachineBasicBlock, BFIImplT> {
1097 public:
1098   BFICallbackVH() = default;
1099   BFICallbackVH(const MachineBasicBlock *, BFIImplT *) {}
1100 };
1101 
1102 } // end namespace bfi_detail
1103 
1104 template <class BT>
1105 void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F,
1106                                            const BranchProbabilityInfoT &BPI,
1107                                            const LoopInfoT &LI) {
1108   // Save the parameters.
1109   this->BPI = &BPI;
1110   this->LI = &LI;
1111   this->F = &F;
1112 
1113   // Clean up left-over data structures.
1114   BlockFrequencyInfoImplBase::clear();
1115   RPOT.clear();
1116   Nodes.clear();
1117 
1118   // Initialize.
1119   LLVM_DEBUG(dbgs() << "\nblock-frequency: " << F.getName()
1120                     << "\n================="
1121                     << std::string(F.getName().size(), '=') << "\n");
1122   initializeRPOT();
1123   initializeLoops();
1124 
1125   // Visit loops in post-order to find the local mass distribution, and then do
1126   // the full function.
1127   computeMassInLoops();
1128   computeMassInFunction();
1129   unwrapLoops();
1130   // Apply a post-processing step improving computed frequencies for functions
1131   // with irreducible loops.
1132   if (needIterativeInference())
1133     applyIterativeInference();
1134   finalizeMetrics();
1135 
1136   if (CheckBFIUnknownBlockQueries) {
1137     // To detect BFI queries for unknown blocks, add entries for unreachable
1138     // blocks, if any. This is to distinguish between known/existing unreachable
1139     // blocks and unknown blocks.
1140     for (const BlockT &BB : F)
1141       if (!Nodes.count(&BB))
1142         setBlockFreq(&BB, BlockFrequency());
1143   }
1144 }
1145 
1146 template <class BT>
1147 void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB,
1148                                               BlockFrequency Freq) {
1149   if (Nodes.count(BB))
1150     BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq);
1151   else {
1152     // If BB is a newly added block after BFI is done, we need to create a new
1153     // BlockNode for it assigned with a new index. The index can be determined
1154     // by the size of Freqs.
1155     BlockNode NewNode(Freqs.size());
1156     Nodes[BB] = {NewNode, BFICallbackVH(BB, this)};
1157     Freqs.emplace_back();
1158     BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq);
1159   }
1160 }
1161 
1162 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
1163   const BlockT *Entry = &F->front();
1164   RPOT.reserve(F->size());
1165   std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
1166   std::reverse(RPOT.begin(), RPOT.end());
1167 
1168   assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
1169          "More nodes in function than Block Frequency Info supports");
1170 
1171   LLVM_DEBUG(dbgs() << "reverse-post-order-traversal\n");
1172   for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
1173     BlockNode Node = getNode(I);
1174     LLVM_DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node)
1175                       << "\n");
1176     Nodes[*I] = {Node, BFICallbackVH(*I, this)};
1177   }
1178 
1179   Working.reserve(RPOT.size());
1180   for (size_t Index = 0; Index < RPOT.size(); ++Index)
1181     Working.emplace_back(Index);
1182   Freqs.resize(RPOT.size());
1183 }
1184 
1185 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
1186   LLVM_DEBUG(dbgs() << "loop-detection\n");
1187   if (LI->empty())
1188     return;
1189 
1190   // Visit loops top down and assign them an index.
1191   std::deque<std::pair<const LoopT *, LoopData *>> Q;
1192   for (const LoopT *L : *LI)
1193     Q.emplace_back(L, nullptr);
1194   while (!Q.empty()) {
1195     const LoopT *Loop = Q.front().first;
1196     LoopData *Parent = Q.front().second;
1197     Q.pop_front();
1198 
1199     BlockNode Header = getNode(Loop->getHeader());
1200     assert(Header.isValid());
1201 
1202     Loops.emplace_back(Parent, Header);
1203     Working[Header.Index].Loop = &Loops.back();
1204     LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
1205 
1206     for (const LoopT *L : *Loop)
1207       Q.emplace_back(L, &Loops.back());
1208   }
1209 
1210   // Visit nodes in reverse post-order and add them to their deepest containing
1211   // loop.
1212   for (size_t Index = 0; Index < RPOT.size(); ++Index) {
1213     // Loop headers have already been mostly mapped.
1214     if (Working[Index].isLoopHeader()) {
1215       LoopData *ContainingLoop = Working[Index].getContainingLoop();
1216       if (ContainingLoop)
1217         ContainingLoop->Nodes.push_back(Index);
1218       continue;
1219     }
1220 
1221     const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
1222     if (!Loop)
1223       continue;
1224 
1225     // Add this node to its containing loop's member list.
1226     BlockNode Header = getNode(Loop->getHeader());
1227     assert(Header.isValid());
1228     const auto &HeaderData = Working[Header.Index];
1229     assert(HeaderData.isLoopHeader());
1230 
1231     Working[Index].Loop = HeaderData.Loop;
1232     HeaderData.Loop->Nodes.push_back(Index);
1233     LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header)
1234                       << ": member = " << getBlockName(Index) << "\n");
1235   }
1236 }
1237 
1238 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
1239   // Visit loops with the deepest first, and the top-level loops last.
1240   for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1241     if (computeMassInLoop(*L))
1242       continue;
1243     auto Next = std::next(L);
1244     computeIrreducibleMass(&*L, L.base());
1245     L = std::prev(Next);
1246     if (computeMassInLoop(*L))
1247       continue;
1248     llvm_unreachable("unhandled irreducible control flow");
1249   }
1250 }
1251 
1252 template <class BT>
1253 bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
1254   // Compute mass in loop.
1255   LLVM_DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
1256 
1257   if (Loop.isIrreducible()) {
1258     LLVM_DEBUG(dbgs() << "isIrreducible = true\n");
1259     Distribution Dist;
1260     unsigned NumHeadersWithWeight = 0;
1261     std::optional<uint64_t> MinHeaderWeight;
1262     DenseSet<uint32_t> HeadersWithoutWeight;
1263     HeadersWithoutWeight.reserve(Loop.NumHeaders);
1264     for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
1265       auto &HeaderNode = Loop.Nodes[H];
1266       const BlockT *Block = getBlock(HeaderNode);
1267       IsIrrLoopHeader.set(Loop.Nodes[H].Index);
1268       std::optional<uint64_t> HeaderWeight = Block->getIrrLoopHeaderWeight();
1269       if (!HeaderWeight) {
1270         LLVM_DEBUG(dbgs() << "Missing irr loop header metadata on "
1271                           << getBlockName(HeaderNode) << "\n");
1272         HeadersWithoutWeight.insert(H);
1273         continue;
1274       }
1275       LLVM_DEBUG(dbgs() << getBlockName(HeaderNode)
1276                         << " has irr loop header weight " << *HeaderWeight
1277                         << "\n");
1278       NumHeadersWithWeight++;
1279       uint64_t HeaderWeightValue = *HeaderWeight;
1280       if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight)
1281         MinHeaderWeight = HeaderWeightValue;
1282       if (HeaderWeightValue) {
1283         Dist.addLocal(HeaderNode, HeaderWeightValue);
1284       }
1285     }
1286     // As a heuristic, if some headers don't have a weight, give them the
1287     // minimum weight seen (not to disrupt the existing trends too much by
1288     // using a weight that's in the general range of the other headers' weights,
1289     // and the minimum seems to perform better than the average.)
1290     // FIXME: better update in the passes that drop the header weight.
1291     // If no headers have a weight, give them even weight (use weight 1).
1292     if (!MinHeaderWeight)
1293       MinHeaderWeight = 1;
1294     for (uint32_t H : HeadersWithoutWeight) {
1295       auto &HeaderNode = Loop.Nodes[H];
1296       assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() &&
1297              "Shouldn't have a weight metadata");
1298       uint64_t MinWeight = *MinHeaderWeight;
1299       LLVM_DEBUG(dbgs() << "Giving weight " << MinWeight << " to "
1300                         << getBlockName(HeaderNode) << "\n");
1301       if (MinWeight)
1302         Dist.addLocal(HeaderNode, MinWeight);
1303     }
1304     distributeIrrLoopHeaderMass(Dist);
1305     for (const BlockNode &M : Loop.Nodes)
1306       if (!propagateMassToSuccessors(&Loop, M))
1307         llvm_unreachable("unhandled irreducible control flow");
1308     if (NumHeadersWithWeight == 0)
1309       // No headers have a metadata. Adjust header mass.
1310       adjustLoopHeaderMass(Loop);
1311   } else {
1312     Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
1313     if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
1314       llvm_unreachable("irreducible control flow to loop header!?");
1315     for (const BlockNode &M : Loop.members())
1316       if (!propagateMassToSuccessors(&Loop, M))
1317         // Irreducible backedge.
1318         return false;
1319   }
1320 
1321   computeLoopScale(Loop);
1322   packageLoop(Loop);
1323   return true;
1324 }
1325 
1326 template <class BT>
1327 bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
1328   // Compute mass in function.
1329   LLVM_DEBUG(dbgs() << "compute-mass-in-function\n");
1330   assert(!Working.empty() && "no blocks in function");
1331   assert(!Working[0].isLoopHeader() && "entry block is a loop header");
1332 
1333   Working[0].getMass() = BlockMass::getFull();
1334   for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
1335     // Check for nodes that have been packaged.
1336     BlockNode Node = getNode(I);
1337     if (Working[Node.Index].isPackaged())
1338       continue;
1339 
1340     if (!propagateMassToSuccessors(nullptr, Node))
1341       return false;
1342   }
1343   return true;
1344 }
1345 
1346 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
1347   if (tryToComputeMassInFunction())
1348     return;
1349   computeIrreducibleMass(nullptr, Loops.begin());
1350   if (tryToComputeMassInFunction())
1351     return;
1352   llvm_unreachable("unhandled irreducible control flow");
1353 }
1354 
1355 template <class BT>
1356 bool BlockFrequencyInfoImpl<BT>::needIterativeInference() const {
1357   if (!UseIterativeBFIInference)
1358     return false;
1359   if (!F->getFunction().hasProfileData())
1360     return false;
1361   // Apply iterative inference only if the function contains irreducible loops;
1362   // otherwise, computed block frequencies are reasonably correct.
1363   for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1364     if (L->isIrreducible())
1365       return true;
1366   }
1367   return false;
1368 }
1369 
1370 template <class BT> void BlockFrequencyInfoImpl<BT>::applyIterativeInference() {
1371   // Extract blocks for processing: a block is considered for inference iff it
1372   // can be reached from the entry by edges with a positive probability.
1373   // Non-processed blocks are assigned with the zero frequency and are ignored
1374   // in the computation
1375   std::vector<const BlockT *> ReachableBlocks;
1376   findReachableBlocks(ReachableBlocks);
1377   if (ReachableBlocks.empty())
1378     return;
1379 
1380   // The map is used to index successors/predecessors of reachable blocks in
1381   // the ReachableBlocks vector
1382   DenseMap<const BlockT *, size_t> BlockIndex;
1383   // Extract initial frequencies for the reachable blocks
1384   auto Freq = std::vector<Scaled64>(ReachableBlocks.size());
1385   Scaled64 SumFreq;
1386   for (size_t I = 0; I < ReachableBlocks.size(); I++) {
1387     const BlockT *BB = ReachableBlocks[I];
1388     BlockIndex[BB] = I;
1389     Freq[I] = getFloatingBlockFreq(BB);
1390     SumFreq += Freq[I];
1391   }
1392   assert(!SumFreq.isZero() && "empty initial block frequencies");
1393 
1394   LLVM_DEBUG(dbgs() << "Applying iterative inference for " << F->getName()
1395                     << " with " << ReachableBlocks.size() << " blocks\n");
1396 
1397   // Normalizing frequencies so they sum up to 1.0
1398   for (auto &Value : Freq) {
1399     Value /= SumFreq;
1400   }
1401 
1402   // Setting up edge probabilities using sparse matrix representation:
1403   // ProbMatrix[I] holds a vector of pairs (J, P) where Pr[J -> I | J] = P
1404   ProbMatrixType ProbMatrix;
1405   initTransitionProbabilities(ReachableBlocks, BlockIndex, ProbMatrix);
1406 
1407   // Run the propagation
1408   iterativeInference(ProbMatrix, Freq);
1409 
1410   // Assign computed frequency values
1411   for (const BlockT &BB : *F) {
1412     auto Node = getNode(&BB);
1413     if (!Node.isValid())
1414       continue;
1415     if (BlockIndex.count(&BB)) {
1416       Freqs[Node.Index].Scaled = Freq[BlockIndex[&BB]];
1417     } else {
1418       Freqs[Node.Index].Scaled = Scaled64::getZero();
1419     }
1420   }
1421 }
1422 
1423 template <class BT>
1424 void BlockFrequencyInfoImpl<BT>::iterativeInference(
1425     const ProbMatrixType &ProbMatrix, std::vector<Scaled64> &Freq) const {
1426   assert(0.0 < IterativeBFIPrecision && IterativeBFIPrecision < 1.0 &&
1427          "incorrectly specified precision");
1428   // Convert double precision to Scaled64
1429   const auto Precision =
1430       Scaled64::getInverse(static_cast<uint64_t>(1.0 / IterativeBFIPrecision));
1431   const size_t MaxIterations = IterativeBFIMaxIterationsPerBlock * Freq.size();
1432 
1433 #ifndef NDEBUG
1434   LLVM_DEBUG(dbgs() << "  Initial discrepancy = "
1435                     << discrepancy(ProbMatrix, Freq).toString() << "\n");
1436 #endif
1437 
1438   // Successors[I] holds unique sucessors of the I-th block
1439   auto Successors = std::vector<std::vector<size_t>>(Freq.size());
1440   for (size_t I = 0; I < Freq.size(); I++) {
1441     for (const auto &Jump : ProbMatrix[I]) {
1442       Successors[Jump.first].push_back(I);
1443     }
1444   }
1445 
1446   // To speedup computation, we maintain a set of "active" blocks whose
1447   // frequencies need to be updated based on the incoming edges.
1448   // The set is dynamic and changes after every update. Initially all blocks
1449   // with a positive frequency are active
1450   auto IsActive = BitVector(Freq.size(), false);
1451   std::queue<size_t> ActiveSet;
1452   for (size_t I = 0; I < Freq.size(); I++) {
1453     if (Freq[I] > 0) {
1454       ActiveSet.push(I);
1455       IsActive[I] = true;
1456     }
1457   }
1458 
1459   // Iterate over the blocks propagating frequencies
1460   size_t It = 0;
1461   while (It++ < MaxIterations && !ActiveSet.empty()) {
1462     size_t I = ActiveSet.front();
1463     ActiveSet.pop();
1464     IsActive[I] = false;
1465 
1466     // Compute a new frequency for the block: NewFreq := Freq \times ProbMatrix.
1467     // A special care is taken for self-edges that needs to be scaled by
1468     // (1.0 - SelfProb), where SelfProb is the sum of probabilities on the edges
1469     Scaled64 NewFreq;
1470     Scaled64 OneMinusSelfProb = Scaled64::getOne();
1471     for (const auto &Jump : ProbMatrix[I]) {
1472       if (Jump.first == I) {
1473         OneMinusSelfProb -= Jump.second;
1474       } else {
1475         NewFreq += Freq[Jump.first] * Jump.second;
1476       }
1477     }
1478     if (OneMinusSelfProb != Scaled64::getOne())
1479       NewFreq /= OneMinusSelfProb;
1480 
1481     // If the block's frequency has changed enough, then
1482     // make sure the block and its successors are in the active set
1483     auto Change = Freq[I] >= NewFreq ? Freq[I] - NewFreq : NewFreq - Freq[I];
1484     if (Change > Precision) {
1485       ActiveSet.push(I);
1486       IsActive[I] = true;
1487       for (size_t Succ : Successors[I]) {
1488         if (!IsActive[Succ]) {
1489           ActiveSet.push(Succ);
1490           IsActive[Succ] = true;
1491         }
1492       }
1493     }
1494 
1495     // Update the frequency for the block
1496     Freq[I] = NewFreq;
1497   }
1498 
1499   LLVM_DEBUG(dbgs() << "  Completed " << It << " inference iterations"
1500                     << format(" (%0.0f per block)", double(It) / Freq.size())
1501                     << "\n");
1502 #ifndef NDEBUG
1503   LLVM_DEBUG(dbgs() << "  Final   discrepancy = "
1504                     << discrepancy(ProbMatrix, Freq).toString() << "\n");
1505 #endif
1506 }
1507 
1508 template <class BT>
1509 void BlockFrequencyInfoImpl<BT>::findReachableBlocks(
1510     std::vector<const BlockT *> &Blocks) const {
1511   // Find all blocks to apply inference on, that is, reachable from the entry
1512   // along edges with non-zero probablities
1513   std::queue<const BlockT *> Queue;
1514   SmallPtrSet<const BlockT *, 8> Reachable;
1515   const BlockT *Entry = &F->front();
1516   Queue.push(Entry);
1517   Reachable.insert(Entry);
1518   while (!Queue.empty()) {
1519     const BlockT *SrcBB = Queue.front();
1520     Queue.pop();
1521     for (const BlockT *DstBB : children<const BlockT *>(SrcBB)) {
1522       auto EP = BPI->getEdgeProbability(SrcBB, DstBB);
1523       if (EP.isZero())
1524         continue;
1525       if (Reachable.insert(DstBB).second)
1526         Queue.push(DstBB);
1527     }
1528   }
1529 
1530   // Find all blocks to apply inference on, that is, backward reachable from
1531   // the entry along (backward) edges with non-zero probablities
1532   SmallPtrSet<const BlockT *, 8> InverseReachable;
1533   for (const BlockT &BB : *F) {
1534     // An exit block is a block without any successors
1535     bool HasSucc = GraphTraits<const BlockT *>::child_begin(&BB) !=
1536                    GraphTraits<const BlockT *>::child_end(&BB);
1537     if (!HasSucc && Reachable.count(&BB)) {
1538       Queue.push(&BB);
1539       InverseReachable.insert(&BB);
1540     }
1541   }
1542   while (!Queue.empty()) {
1543     const BlockT *SrcBB = Queue.front();
1544     Queue.pop();
1545     for (const BlockT *DstBB : children<Inverse<const BlockT *>>(SrcBB)) {
1546       auto EP = BPI->getEdgeProbability(DstBB, SrcBB);
1547       if (EP.isZero())
1548         continue;
1549       if (InverseReachable.insert(DstBB).second)
1550         Queue.push(DstBB);
1551     }
1552   }
1553 
1554   // Collect the result
1555   Blocks.reserve(F->size());
1556   for (const BlockT &BB : *F) {
1557     if (Reachable.count(&BB) && InverseReachable.count(&BB)) {
1558       Blocks.push_back(&BB);
1559     }
1560   }
1561 }
1562 
1563 template <class BT>
1564 void BlockFrequencyInfoImpl<BT>::initTransitionProbabilities(
1565     const std::vector<const BlockT *> &Blocks,
1566     const DenseMap<const BlockT *, size_t> &BlockIndex,
1567     ProbMatrixType &ProbMatrix) const {
1568   const size_t NumBlocks = Blocks.size();
1569   auto Succs = std::vector<std::vector<std::pair<size_t, Scaled64>>>(NumBlocks);
1570   auto SumProb = std::vector<Scaled64>(NumBlocks);
1571 
1572   // Find unique successors and corresponding probabilities for every block
1573   for (size_t Src = 0; Src < NumBlocks; Src++) {
1574     const BlockT *BB = Blocks[Src];
1575     SmallPtrSet<const BlockT *, 2> UniqueSuccs;
1576     for (const auto SI : children<const BlockT *>(BB)) {
1577       // Ignore cold blocks
1578       if (!BlockIndex.contains(SI))
1579         continue;
1580       // Ignore parallel edges between BB and SI blocks
1581       if (!UniqueSuccs.insert(SI).second)
1582         continue;
1583       // Ignore jumps with zero probability
1584       auto EP = BPI->getEdgeProbability(BB, SI);
1585       if (EP.isZero())
1586         continue;
1587 
1588       auto EdgeProb =
1589           Scaled64::getFraction(EP.getNumerator(), EP.getDenominator());
1590       size_t Dst = BlockIndex.find(SI)->second;
1591       Succs[Src].push_back(std::make_pair(Dst, EdgeProb));
1592       SumProb[Src] += EdgeProb;
1593     }
1594   }
1595 
1596   // Add transitions for every jump with positive branch probability
1597   ProbMatrix = ProbMatrixType(NumBlocks);
1598   for (size_t Src = 0; Src < NumBlocks; Src++) {
1599     // Ignore blocks w/o successors
1600     if (Succs[Src].empty())
1601       continue;
1602 
1603     assert(!SumProb[Src].isZero() && "Zero sum probability of non-exit block");
1604     for (auto &Jump : Succs[Src]) {
1605       size_t Dst = Jump.first;
1606       Scaled64 Prob = Jump.second;
1607       ProbMatrix[Dst].push_back(std::make_pair(Src, Prob / SumProb[Src]));
1608     }
1609   }
1610 
1611   // Add transitions from sinks to the source
1612   size_t EntryIdx = BlockIndex.find(&F->front())->second;
1613   for (size_t Src = 0; Src < NumBlocks; Src++) {
1614     if (Succs[Src].empty()) {
1615       ProbMatrix[EntryIdx].push_back(std::make_pair(Src, Scaled64::getOne()));
1616     }
1617   }
1618 }
1619 
1620 #ifndef NDEBUG
1621 template <class BT>
1622 BlockFrequencyInfoImplBase::Scaled64 BlockFrequencyInfoImpl<BT>::discrepancy(
1623     const ProbMatrixType &ProbMatrix, const std::vector<Scaled64> &Freq) const {
1624   assert(Freq[0] > 0 && "Incorrectly computed frequency of the entry block");
1625   Scaled64 Discrepancy;
1626   for (size_t I = 0; I < ProbMatrix.size(); I++) {
1627     Scaled64 Sum;
1628     for (const auto &Jump : ProbMatrix[I]) {
1629       Sum += Freq[Jump.first] * Jump.second;
1630     }
1631     Discrepancy += Freq[I] >= Sum ? Freq[I] - Sum : Sum - Freq[I];
1632   }
1633   // Normalizing by the frequency of the entry block
1634   return Discrepancy / Freq[0];
1635 }
1636 #endif
1637 
1638 /// \note This should be a lambda, but that crashes GCC 4.7.
1639 namespace bfi_detail {
1640 
1641 template <class BT> struct BlockEdgesAdder {
1642   using BlockT = BT;
1643   using LoopData = BlockFrequencyInfoImplBase::LoopData;
1644   using Successor = GraphTraits<const BlockT *>;
1645 
1646   const BlockFrequencyInfoImpl<BT> &BFI;
1647 
1648   explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
1649       : BFI(BFI) {}
1650 
1651   void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
1652                   const LoopData *OuterLoop) {
1653     const BlockT *BB = BFI.RPOT[Irr.Node.Index];
1654     for (const auto *Succ : children<const BlockT *>(BB))
1655       G.addEdge(Irr, BFI.getNode(Succ), OuterLoop);
1656   }
1657 };
1658 
1659 } // end namespace bfi_detail
1660 
1661 template <class BT>
1662 void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
1663     LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
1664   LLVM_DEBUG(dbgs() << "analyze-irreducible-in-";
1665              if (OuterLoop) dbgs()
1666              << "loop: " << getLoopName(*OuterLoop) << "\n";
1667              else dbgs() << "function\n");
1668 
1669   using namespace bfi_detail;
1670 
1671   // Ideally, addBlockEdges() would be declared here as a lambda, but that
1672   // crashes GCC 4.7.
1673   BlockEdgesAdder<BT> addBlockEdges(*this);
1674   IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
1675 
1676   for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
1677     computeMassInLoop(L);
1678 
1679   if (!OuterLoop)
1680     return;
1681   updateLoopWithIrreducible(*OuterLoop);
1682 }
1683 
1684 // A helper function that converts a branch probability into weight.
1685 inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) {
1686   return Prob.getNumerator();
1687 }
1688 
1689 template <class BT>
1690 bool
1691 BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
1692                                                       const BlockNode &Node) {
1693   LLVM_DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
1694   // Calculate probability for successors.
1695   Distribution Dist;
1696   if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
1697     assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
1698     if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
1699       // Irreducible backedge.
1700       return false;
1701   } else {
1702     const BlockT *BB = getBlock(Node);
1703     for (auto SI = GraphTraits<const BlockT *>::child_begin(BB),
1704               SE = GraphTraits<const BlockT *>::child_end(BB);
1705          SI != SE; ++SI)
1706       if (!addToDist(
1707               Dist, OuterLoop, Node, getNode(*SI),
1708               getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI))))
1709         // Irreducible backedge.
1710         return false;
1711   }
1712 
1713   // Distribute mass to successors, saving exit and backedge data in the
1714   // loop header.
1715   distributeMass(Node, OuterLoop, Dist);
1716   return true;
1717 }
1718 
1719 template <class BT>
1720 raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
1721   if (!F)
1722     return OS;
1723   OS << "block-frequency-info: " << F->getName() << "\n";
1724   for (const BlockT &BB : *F) {
1725     OS << " - " << bfi_detail::getBlockName(&BB) << ": float = ";
1726     getFloatingBlockFreq(&BB).print(OS, 5)
1727         << ", int = " << getBlockFreq(&BB).getFrequency();
1728     if (std::optional<uint64_t> ProfileCount =
1729         BlockFrequencyInfoImplBase::getBlockProfileCount(
1730             F->getFunction(), getNode(&BB)))
1731       OS << ", count = " << *ProfileCount;
1732     if (std::optional<uint64_t> IrrLoopHeaderWeight =
1733             BB.getIrrLoopHeaderWeight())
1734       OS << ", irr_loop_header_weight = " << *IrrLoopHeaderWeight;
1735     OS << "\n";
1736   }
1737 
1738   // Add an extra newline for readability.
1739   OS << "\n";
1740   return OS;
1741 }
1742 
1743 template <class BT>
1744 void BlockFrequencyInfoImpl<BT>::verifyMatch(
1745     BlockFrequencyInfoImpl<BT> &Other) const {
1746   bool Match = true;
1747   DenseMap<const BlockT *, BlockNode> ValidNodes;
1748   DenseMap<const BlockT *, BlockNode> OtherValidNodes;
1749   for (auto &Entry : Nodes) {
1750     const BlockT *BB = Entry.first;
1751     if (BB) {
1752       ValidNodes[BB] = Entry.second.first;
1753     }
1754   }
1755   for (auto &Entry : Other.Nodes) {
1756     const BlockT *BB = Entry.first;
1757     if (BB) {
1758       OtherValidNodes[BB] = Entry.second.first;
1759     }
1760   }
1761   unsigned NumValidNodes = ValidNodes.size();
1762   unsigned NumOtherValidNodes = OtherValidNodes.size();
1763   if (NumValidNodes != NumOtherValidNodes) {
1764     Match = false;
1765     dbgs() << "Number of blocks mismatch: " << NumValidNodes << " vs "
1766            << NumOtherValidNodes << "\n";
1767   } else {
1768     for (auto &Entry : ValidNodes) {
1769       const BlockT *BB = Entry.first;
1770       BlockNode Node = Entry.second;
1771       if (OtherValidNodes.count(BB)) {
1772         BlockNode OtherNode = OtherValidNodes[BB];
1773         const auto &Freq = Freqs[Node.Index];
1774         const auto &OtherFreq = Other.Freqs[OtherNode.Index];
1775         if (Freq.Integer != OtherFreq.Integer) {
1776           Match = false;
1777           dbgs() << "Freq mismatch: " << bfi_detail::getBlockName(BB) << " "
1778                  << Freq.Integer << " vs " << OtherFreq.Integer << "\n";
1779         }
1780       } else {
1781         Match = false;
1782         dbgs() << "Block " << bfi_detail::getBlockName(BB) << " index "
1783                << Node.Index << " does not exist in Other.\n";
1784       }
1785     }
1786     // If there's a valid node in OtherValidNodes that's not in ValidNodes,
1787     // either the above num check or the check on OtherValidNodes will fail.
1788   }
1789   if (!Match) {
1790     dbgs() << "This\n";
1791     print(dbgs());
1792     dbgs() << "Other\n";
1793     Other.print(dbgs());
1794   }
1795   assert(Match && "BFI mismatch");
1796 }
1797 
1798 // Graph trait base class for block frequency information graph
1799 // viewer.
1800 
1801 enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count };
1802 
1803 template <class BlockFrequencyInfoT, class BranchProbabilityInfoT>
1804 struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits {
1805   using GTraits = GraphTraits<BlockFrequencyInfoT *>;
1806   using NodeRef = typename GTraits::NodeRef;
1807   using EdgeIter = typename GTraits::ChildIteratorType;
1808   using NodeIter = typename GTraits::nodes_iterator;
1809 
1810   uint64_t MaxFrequency = 0;
1811 
1812   explicit BFIDOTGraphTraitsBase(bool isSimple = false)
1813       : DefaultDOTGraphTraits(isSimple) {}
1814 
1815   static StringRef getGraphName(const BlockFrequencyInfoT *G) {
1816     return G->getFunction()->getName();
1817   }
1818 
1819   std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph,
1820                                 unsigned HotPercentThreshold = 0) {
1821     std::string Result;
1822     if (!HotPercentThreshold)
1823       return Result;
1824 
1825     // Compute MaxFrequency on the fly:
1826     if (!MaxFrequency) {
1827       for (NodeIter I = GTraits::nodes_begin(Graph),
1828                     E = GTraits::nodes_end(Graph);
1829            I != E; ++I) {
1830         NodeRef N = *I;
1831         MaxFrequency =
1832             std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency());
1833       }
1834     }
1835     BlockFrequency Freq = Graph->getBlockFreq(Node);
1836     BlockFrequency HotFreq =
1837         (BlockFrequency(MaxFrequency) *
1838          BranchProbability::getBranchProbability(HotPercentThreshold, 100));
1839 
1840     if (Freq < HotFreq)
1841       return Result;
1842 
1843     raw_string_ostream OS(Result);
1844     OS << "color=\"red\"";
1845     OS.flush();
1846     return Result;
1847   }
1848 
1849   std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph,
1850                            GVDAGType GType, int layout_order = -1) {
1851     std::string Result;
1852     raw_string_ostream OS(Result);
1853 
1854     if (layout_order != -1)
1855       OS << Node->getName() << "[" << layout_order << "] : ";
1856     else
1857       OS << Node->getName() << " : ";
1858     switch (GType) {
1859     case GVDT_Fraction:
1860       OS << printBlockFreq(*Graph, *Node);
1861       break;
1862     case GVDT_Integer:
1863       OS << Graph->getBlockFreq(Node).getFrequency();
1864       break;
1865     case GVDT_Count: {
1866       auto Count = Graph->getBlockProfileCount(Node);
1867       if (Count)
1868         OS << *Count;
1869       else
1870         OS << "Unknown";
1871       break;
1872     }
1873     case GVDT_None:
1874       llvm_unreachable("If we are not supposed to render a graph we should "
1875                        "never reach this point.");
1876     }
1877     return Result;
1878   }
1879 
1880   std::string getEdgeAttributes(NodeRef Node, EdgeIter EI,
1881                                 const BlockFrequencyInfoT *BFI,
1882                                 const BranchProbabilityInfoT *BPI,
1883                                 unsigned HotPercentThreshold = 0) {
1884     std::string Str;
1885     if (!BPI)
1886       return Str;
1887 
1888     BranchProbability BP = BPI->getEdgeProbability(Node, EI);
1889     uint32_t N = BP.getNumerator();
1890     uint32_t D = BP.getDenominator();
1891     double Percent = 100.0 * N / D;
1892     raw_string_ostream OS(Str);
1893     OS << format("label=\"%.1f%%\"", Percent);
1894 
1895     if (HotPercentThreshold) {
1896       BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP;
1897       BlockFrequency HotFreq = BlockFrequency(MaxFrequency) *
1898                                BranchProbability(HotPercentThreshold, 100);
1899 
1900       if (EFreq >= HotFreq) {
1901         OS << ",color=\"red\"";
1902       }
1903     }
1904 
1905     OS.flush();
1906     return Str;
1907   }
1908 };
1909 
1910 } // end namespace llvm
1911 
1912 #undef DEBUG_TYPE
1913 
1914 #endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
1915