xref: /aosp_15_r20/external/zucchini/binary_data_histogram_unittest.cc (revision a03ca8b91e029cd15055c20c78c2e087c84792e4)
1 // Copyright 2017 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "components/zucchini/binary_data_histogram.h"
6 
7 #include <stddef.h>
8 
9 #include <memory>
10 #include <vector>
11 
12 #include "components/zucchini/buffer_view.h"
13 #include "testing/gtest/include/gtest/gtest.h"
14 
15 namespace zucchini {
16 
TEST(OutlierDetectorTest,Basic)17 TEST(OutlierDetectorTest, Basic) {
18   auto make_detector = [](const std::vector<double>& values) {
19     auto detector = std::make_unique<OutlierDetector>();
20     for (double v : values)
21       detector->Add(v);
22     detector->Prepare();
23     return detector;
24   };
25 
26   std::unique_ptr<OutlierDetector> detector;
27   // No data: Should at least not cause error.
28   detector = make_detector({});
29   EXPECT_EQ(0, detector->DecideOutlier(0.0));
30   // Single point: Trivially inert.
31   detector = make_detector({0.5});
32   EXPECT_EQ(0, detector->DecideOutlier(0.1));
33   EXPECT_EQ(0, detector->DecideOutlier(0.5));
34   EXPECT_EQ(0, detector->DecideOutlier(0.9));
35   // Two identical points: StdDev is 0, so falls back to built-in tolerance.
36   detector = make_detector({0.5, 0.5});
37   EXPECT_EQ(-1, detector->DecideOutlier(0.3));
38   EXPECT_EQ(0, detector->DecideOutlier(0.499));
39   EXPECT_EQ(0, detector->DecideOutlier(0.5));
40   EXPECT_EQ(0, detector->DecideOutlier(0.501));
41   EXPECT_EQ(1, detector->DecideOutlier(0.7));
42   // Two separate points: Outliner test is pretty lax.
43   detector = make_detector({0.4, 0.6});
44   EXPECT_EQ(-1, detector->DecideOutlier(0.2));
45   EXPECT_EQ(0, detector->DecideOutlier(0.3));
46   EXPECT_EQ(0, detector->DecideOutlier(0.5));
47   EXPECT_EQ(0, detector->DecideOutlier(0.7));
48   EXPECT_EQ(1, detector->DecideOutlier(0.8));
49   // Sharpen distribution by clustering toward norm: Now test is stricter.
50   detector = make_detector({0.4, 0.47, 0.48, 0.49, 0.50, 0.51, 0.52, 0.6});
51   EXPECT_EQ(-1, detector->DecideOutlier(0.3));
52   EXPECT_EQ(0, detector->DecideOutlier(0.4));
53   EXPECT_EQ(0, detector->DecideOutlier(0.5));
54   EXPECT_EQ(0, detector->DecideOutlier(0.6));
55   EXPECT_EQ(1, detector->DecideOutlier(0.7));
56   // Shift numbers around: Mean is 0.3, and data order scrambled.
57   detector = make_detector({0.28, 0.2, 0.31, 0.4, 0.29, 0.32, 0.27, 0.30});
58   EXPECT_EQ(-1, detector->DecideOutlier(0.0));
59   EXPECT_EQ(-1, detector->DecideOutlier(0.1));
60   EXPECT_EQ(0, detector->DecideOutlier(0.2));
61   EXPECT_EQ(0, detector->DecideOutlier(0.3));
62   EXPECT_EQ(0, detector->DecideOutlier(0.4));
63   EXPECT_EQ(1, detector->DecideOutlier(0.5));
64   EXPECT_EQ(1, detector->DecideOutlier(1.0));
65   // Typical usage: Potential outlier would be part of original input data!
66   detector = make_detector({0.3, 0.29, 0.31, 0.0, 0.3, 0.32, 0.3, 0.29, 0.6});
67   EXPECT_EQ(-1, detector->DecideOutlier(0.0));
68   EXPECT_EQ(0, detector->DecideOutlier(0.28));
69   EXPECT_EQ(0, detector->DecideOutlier(0.29));
70   EXPECT_EQ(0, detector->DecideOutlier(0.3));
71   EXPECT_EQ(0, detector->DecideOutlier(0.31));
72   EXPECT_EQ(0, detector->DecideOutlier(0.32));
73   EXPECT_EQ(1, detector->DecideOutlier(0.6));
74 }
75 
TEST(BinaryDataHistogramTest,Basic)76 TEST(BinaryDataHistogramTest, Basic) {
77   constexpr double kUninitScore = -1;
78 
79   constexpr uint8_t kTestData[] = {2, 137, 42, 0, 0, 0, 7, 11, 1, 11, 255};
80   const size_t n = sizeof(kTestData);
81   ConstBufferView region(kTestData, n);
82 
83   std::vector<BinaryDataHistogram> prefix_histograms(n + 1);  // Short to long.
84   std::vector<BinaryDataHistogram> suffix_histograms(n + 1);  // Long to short.
85 
86   for (size_t i = 0; i <= n; ++i) {
87     ConstBufferView prefix(region.begin(), i);
88     ConstBufferView suffix(region.begin() + i, n - i);
89     // If regions are smaller than 2 bytes then it is invalid. Else valid.
90     EXPECT_EQ(prefix.size() >= 2, prefix_histograms[i].Compute(prefix));
91     EXPECT_EQ(suffix.size() >= 2, suffix_histograms[i].Compute(suffix));
92     // IsValid() returns the same results.
93     EXPECT_EQ(prefix.size() >= 2, prefix_histograms[i].IsValid());
94     EXPECT_EQ(suffix.size() >= 2, suffix_histograms[i].IsValid());
95   }
96 
97   // Full-prefix = full-suffix = full data.
98   EXPECT_EQ(0.0, prefix_histograms[n].Distance(suffix_histograms[0]));
99   EXPECT_EQ(0.0, suffix_histograms[0].Distance(prefix_histograms[n]));
100 
101   // Testing heuristics without overreliance on implementation details.
102 
103   // Strict prefixes, in increasing size. Compare against full data.
104   double prev_prefix_score = kUninitScore;
105   for (size_t i = 2; i < n; ++i) {
106     double score = prefix_histograms[i].Distance(prefix_histograms[n]);
107     // Positivity.
108     EXPECT_GT(score, 0.0);
109     // Symmetry.
110     EXPECT_EQ(score, prefix_histograms[n].Distance(prefix_histograms[i]));
111     // Distance should decrease as prefix gets nearer to full data.
112     if (prev_prefix_score != kUninitScore)
113       EXPECT_LT(score, prev_prefix_score);
114     prev_prefix_score = score;
115   }
116 
117   // Strict suffixes, in decreasing size. Compare against full data.
118   double prev_suffix_score = -1;
119   for (size_t i = 1; i <= n - 2; ++i) {
120     double score = suffix_histograms[i].Distance(suffix_histograms[0]);
121     // Positivity.
122     EXPECT_GT(score, 0.0);
123     // Symmetry.
124     EXPECT_EQ(score, suffix_histograms[0].Distance(suffix_histograms[i]));
125     // Distance should increase as suffix gets farther from full data.
126     if (prev_suffix_score != kUninitScore)
127       EXPECT_GT(score, prev_suffix_score);
128     prev_suffix_score = score;
129   }
130 }
131 
132 }  // namespace zucchini
133