1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SplitKit.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/LiveRangeEdit.h"
19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineOperand.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetOpcodes.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/CodeGen/VirtRegMap.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/Support/Allocator.h"
34 #include "llvm/Support/BlockFrequency.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <iterator>
41 #include <limits>
42 #include <tuple>
43
44 using namespace llvm;
45
46 #define DEBUG_TYPE "regalloc"
47
48 STATISTIC(NumFinished, "Number of splits finished");
49 STATISTIC(NumSimple, "Number of splits that were simple");
50 STATISTIC(NumCopies, "Number of copies inserted for splitting");
51 STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
52
53 //===----------------------------------------------------------------------===//
54 // Last Insert Point Analysis
55 //===----------------------------------------------------------------------===//
56
InsertPointAnalysis(const LiveIntervals & lis,unsigned BBNum)57 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
58 unsigned BBNum)
59 : LIS(lis), LastInsertPoint(BBNum) {}
60
61 SlotIndex
computeLastInsertPoint(const LiveInterval & CurLI,const MachineBasicBlock & MBB)62 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
63 const MachineBasicBlock &MBB) {
64 unsigned Num = MBB.getNumber();
65 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
66 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
67
68 SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
69 bool EHPadSuccessor = false;
70 for (const MachineBasicBlock *SMBB : MBB.successors()) {
71 if (SMBB->isEHPad()) {
72 ExceptionalSuccessors.push_back(SMBB);
73 EHPadSuccessor = true;
74 } else if (SMBB->isInlineAsmBrIndirectTarget())
75 ExceptionalSuccessors.push_back(SMBB);
76 }
77
78 // Compute insert points on the first call. The pair is independent of the
79 // current live interval.
80 if (!LIP.first.isValid()) {
81 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
82 if (FirstTerm == MBB.end())
83 LIP.first = MBBEnd;
84 else
85 LIP.first = LIS.getInstructionIndex(*FirstTerm);
86
87 // If there is a landing pad or inlineasm_br successor, also find the
88 // instruction. If there is no such instruction, we don't need to do
89 // anything special. We assume there cannot be multiple instructions that
90 // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
91 // assume that if there are any, they will be after any other call
92 // instructions in the block.
93 if (ExceptionalSuccessors.empty())
94 return LIP.first;
95 for (const MachineInstr &MI : llvm::reverse(MBB)) {
96 if ((EHPadSuccessor && MI.isCall()) ||
97 MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
98 LIP.second = LIS.getInstructionIndex(MI);
99 break;
100 }
101 }
102 }
103
104 // If CurLI is live into a landing pad successor, move the last insert point
105 // back to the call that may throw.
106 if (!LIP.second)
107 return LIP.first;
108
109 if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
110 return LIS.isLiveInToMBB(CurLI, EHPad);
111 }))
112 return LIP.first;
113
114 // Find the value leaving MBB.
115 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
116 if (!VNI)
117 return LIP.first;
118
119 // The def of statepoint instruction is a gc relocation and it should be alive
120 // in landing pad. So we cannot split interval after statepoint instruction.
121 if (SlotIndex::isSameInstr(VNI->def, LIP.second))
122 if (auto *I = LIS.getInstructionFromIndex(LIP.second))
123 if (I->getOpcode() == TargetOpcode::STATEPOINT)
124 return LIP.second;
125
126 // If the value leaving MBB was defined after the call in MBB, it can't
127 // really be live-in to the landing pad. This can happen if the landing pad
128 // has a PHI, and this register is undef on the exceptional edge.
129 // <rdar://problem/10664933>
130 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
131 return LIP.first;
132
133 // Value is properly live-in to the landing pad.
134 // Only allow inserts before the call.
135 return LIP.second;
136 }
137
138 MachineBasicBlock::iterator
getLastInsertPointIter(const LiveInterval & CurLI,MachineBasicBlock & MBB)139 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
140 MachineBasicBlock &MBB) {
141 SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
142 if (LIP == LIS.getMBBEndIdx(&MBB))
143 return MBB.end();
144 return LIS.getInstructionFromIndex(LIP);
145 }
146
147 //===----------------------------------------------------------------------===//
148 // Split Analysis
149 //===----------------------------------------------------------------------===//
150
SplitAnalysis(const VirtRegMap & vrm,const LiveIntervals & lis,const MachineLoopInfo & mli)151 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
152 const MachineLoopInfo &mli)
153 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
154 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
155
clear()156 void SplitAnalysis::clear() {
157 UseSlots.clear();
158 UseBlocks.clear();
159 ThroughBlocks.clear();
160 CurLI = nullptr;
161 }
162
163 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
analyzeUses()164 void SplitAnalysis::analyzeUses() {
165 assert(UseSlots.empty() && "Call clear first");
166
167 // First get all the defs from the interval values. This provides the correct
168 // slots for early clobbers.
169 for (const VNInfo *VNI : CurLI->valnos)
170 if (!VNI->isPHIDef() && !VNI->isUnused())
171 UseSlots.push_back(VNI->def);
172
173 // Get use slots form the use-def chain.
174 const MachineRegisterInfo &MRI = MF.getRegInfo();
175 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg()))
176 if (!MO.isUndef())
177 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
178
179 array_pod_sort(UseSlots.begin(), UseSlots.end());
180
181 // Remove duplicates, keeping the smaller slot for each instruction.
182 // That is what we want for early clobbers.
183 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
184 SlotIndex::isSameInstr),
185 UseSlots.end());
186
187 // Compute per-live block info.
188 calcLiveBlockInfo();
189
190 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
191 << UseBlocks.size() << " blocks, through "
192 << NumThroughBlocks << " blocks.\n");
193 }
194
195 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
196 /// where CurLI is live.
calcLiveBlockInfo()197 void SplitAnalysis::calcLiveBlockInfo() {
198 ThroughBlocks.resize(MF.getNumBlockIDs());
199 NumThroughBlocks = NumGapBlocks = 0;
200 if (CurLI->empty())
201 return;
202
203 LiveInterval::const_iterator LVI = CurLI->begin();
204 LiveInterval::const_iterator LVE = CurLI->end();
205
206 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
207 UseI = UseSlots.begin();
208 UseE = UseSlots.end();
209
210 // Loop over basic blocks where CurLI is live.
211 MachineFunction::iterator MFI =
212 LIS.getMBBFromIndex(LVI->start)->getIterator();
213 while (true) {
214 BlockInfo BI;
215 BI.MBB = &*MFI;
216 SlotIndex Start, Stop;
217 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
218
219 // If the block contains no uses, the range must be live through. At one
220 // point, RegisterCoalescer could create dangling ranges that ended
221 // mid-block.
222 if (UseI == UseE || *UseI >= Stop) {
223 ++NumThroughBlocks;
224 ThroughBlocks.set(BI.MBB->getNumber());
225 // The range shouldn't end mid-block if there are no uses. This shouldn't
226 // happen.
227 assert(LVI->end >= Stop && "range ends mid block with no uses");
228 } else {
229 // This block has uses. Find the first and last uses in the block.
230 BI.FirstInstr = *UseI;
231 assert(BI.FirstInstr >= Start);
232 do ++UseI;
233 while (UseI != UseE && *UseI < Stop);
234 BI.LastInstr = UseI[-1];
235 assert(BI.LastInstr < Stop);
236
237 // LVI is the first live segment overlapping MBB.
238 BI.LiveIn = LVI->start <= Start;
239
240 // When not live in, the first use should be a def.
241 if (!BI.LiveIn) {
242 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
243 assert(LVI->start == BI.FirstInstr && "First instr should be a def");
244 BI.FirstDef = BI.FirstInstr;
245 }
246
247 // Look for gaps in the live range.
248 BI.LiveOut = true;
249 while (LVI->end < Stop) {
250 SlotIndex LastStop = LVI->end;
251 if (++LVI == LVE || LVI->start >= Stop) {
252 BI.LiveOut = false;
253 BI.LastInstr = LastStop;
254 break;
255 }
256
257 if (LastStop < LVI->start) {
258 // There is a gap in the live range. Create duplicate entries for the
259 // live-in snippet and the live-out snippet.
260 ++NumGapBlocks;
261
262 // Push the Live-in part.
263 BI.LiveOut = false;
264 UseBlocks.push_back(BI);
265 UseBlocks.back().LastInstr = LastStop;
266
267 // Set up BI for the live-out part.
268 BI.LiveIn = false;
269 BI.LiveOut = true;
270 BI.FirstInstr = BI.FirstDef = LVI->start;
271 }
272
273 // A Segment that starts in the middle of the block must be a def.
274 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
275 if (!BI.FirstDef)
276 BI.FirstDef = LVI->start;
277 }
278
279 UseBlocks.push_back(BI);
280
281 // LVI is now at LVE or LVI->end >= Stop.
282 if (LVI == LVE)
283 break;
284 }
285
286 // Live segment ends exactly at Stop. Move to the next segment.
287 if (LVI->end == Stop && ++LVI == LVE)
288 break;
289
290 // Pick the next basic block.
291 if (LVI->start < Stop)
292 ++MFI;
293 else
294 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
295 }
296
297 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
298 }
299
countLiveBlocks(const LiveInterval * cli) const300 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
301 if (cli->empty())
302 return 0;
303 LiveInterval *li = const_cast<LiveInterval*>(cli);
304 LiveInterval::iterator LVI = li->begin();
305 LiveInterval::iterator LVE = li->end();
306 unsigned Count = 0;
307
308 // Loop over basic blocks where li is live.
309 MachineFunction::const_iterator MFI =
310 LIS.getMBBFromIndex(LVI->start)->getIterator();
311 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
312 while (true) {
313 ++Count;
314 LVI = li->advanceTo(LVI, Stop);
315 if (LVI == LVE)
316 return Count;
317 do {
318 ++MFI;
319 Stop = LIS.getMBBEndIdx(&*MFI);
320 } while (Stop <= LVI->start);
321 }
322 }
323
isOriginalEndpoint(SlotIndex Idx) const324 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
325 Register OrigReg = VRM.getOriginal(CurLI->reg());
326 const LiveInterval &Orig = LIS.getInterval(OrigReg);
327 assert(!Orig.empty() && "Splitting empty interval?");
328 LiveInterval::const_iterator I = Orig.find(Idx);
329
330 // Range containing Idx should begin at Idx.
331 if (I != Orig.end() && I->start <= Idx)
332 return I->start == Idx;
333
334 // Range does not contain Idx, previous must end at Idx.
335 return I != Orig.begin() && (--I)->end == Idx;
336 }
337
analyze(const LiveInterval * li)338 void SplitAnalysis::analyze(const LiveInterval *li) {
339 clear();
340 CurLI = li;
341 analyzeUses();
342 }
343
344 //===----------------------------------------------------------------------===//
345 // Split Editor
346 //===----------------------------------------------------------------------===//
347
348 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor(SplitAnalysis & SA,LiveIntervals & LIS,VirtRegMap & VRM,MachineDominatorTree & MDT,MachineBlockFrequencyInfo & MBFI,VirtRegAuxInfo & VRAI)349 SplitEditor::SplitEditor(SplitAnalysis &SA, LiveIntervals &LIS, VirtRegMap &VRM,
350 MachineDominatorTree &MDT,
351 MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI)
352 : SA(SA), LIS(LIS), VRM(VRM), MRI(VRM.getMachineFunction().getRegInfo()),
353 MDT(MDT), TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()),
354 TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()),
355 MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {}
356
reset(LiveRangeEdit & LRE,ComplementSpillMode SM)357 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
358 Edit = &LRE;
359 SpillMode = SM;
360 OpenIdx = 0;
361 RegAssign.clear();
362 Values.clear();
363
364 // Reset the LiveIntervalCalc instances needed for this spill mode.
365 LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
366 &LIS.getVNInfoAllocator());
367 if (SpillMode)
368 LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
369 &LIS.getVNInfoAllocator());
370
371 Edit->anyRematerializable();
372 }
373
374 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const375 LLVM_DUMP_METHOD void SplitEditor::dump() const {
376 if (RegAssign.empty()) {
377 dbgs() << " empty\n";
378 return;
379 }
380
381 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
382 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
383 dbgs() << '\n';
384 }
385 #endif
386
387 /// Find a subrange corresponding to the exact lane mask @p LM in the live
388 /// interval @p LI. The interval @p LI is assumed to contain such a subrange.
389 /// This function is used to find corresponding subranges between the
390 /// original interval and the new intervals.
getSubrangeImpl(LaneBitmask LM,T & LI)391 template <typename T> auto &getSubrangeImpl(LaneBitmask LM, T &LI) {
392 for (auto &S : LI.subranges())
393 if (S.LaneMask == LM)
394 return S;
395 llvm_unreachable("SubRange for this mask not found");
396 }
397
getSubRangeForMaskExact(LaneBitmask LM,LiveInterval & LI)398 LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM,
399 LiveInterval &LI) {
400 return getSubrangeImpl(LM, LI);
401 }
402
getSubRangeForMaskExact(LaneBitmask LM,const LiveInterval & LI)403 const LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM,
404 const LiveInterval &LI) {
405 return getSubrangeImpl(LM, LI);
406 }
407
408 /// Find a subrange corresponding to the lane mask @p LM, or a superset of it,
409 /// in the live interval @p LI. The interval @p LI is assumed to contain such
410 /// a subrange. This function is used to find corresponding subranges between
411 /// the original interval and the new intervals.
getSubRangeForMask(LaneBitmask LM,const LiveInterval & LI)412 const LiveInterval::SubRange &getSubRangeForMask(LaneBitmask LM,
413 const LiveInterval &LI) {
414 for (const LiveInterval::SubRange &S : LI.subranges())
415 if ((S.LaneMask & LM) == LM)
416 return S;
417 llvm_unreachable("SubRange for this mask not found");
418 }
419
addDeadDef(LiveInterval & LI,VNInfo * VNI,bool Original)420 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
421 if (!LI.hasSubRanges()) {
422 LI.createDeadDef(VNI);
423 return;
424 }
425
426 SlotIndex Def = VNI->def;
427 if (Original) {
428 // If we are transferring a def from the original interval, make sure
429 // to only update the subranges for which the original subranges had
430 // a def at this location.
431 for (LiveInterval::SubRange &S : LI.subranges()) {
432 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
433 VNInfo *PV = PS.getVNInfoAt(Def);
434 if (PV != nullptr && PV->def == Def)
435 S.createDeadDef(Def, LIS.getVNInfoAllocator());
436 }
437 } else {
438 // This is a new def: either from rematerialization, or from an inserted
439 // copy. Since rematerialization can regenerate a definition of a sub-
440 // register, we need to check which subranges need to be updated.
441 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
442 assert(DefMI != nullptr);
443 LaneBitmask LM;
444 for (const MachineOperand &DefOp : DefMI->defs()) {
445 Register R = DefOp.getReg();
446 if (R != LI.reg())
447 continue;
448 if (unsigned SR = DefOp.getSubReg())
449 LM |= TRI.getSubRegIndexLaneMask(SR);
450 else {
451 LM = MRI.getMaxLaneMaskForVReg(R);
452 break;
453 }
454 }
455 for (LiveInterval::SubRange &S : LI.subranges())
456 if ((S.LaneMask & LM).any())
457 S.createDeadDef(Def, LIS.getVNInfoAllocator());
458 }
459 }
460
defValue(unsigned RegIdx,const VNInfo * ParentVNI,SlotIndex Idx,bool Original)461 VNInfo *SplitEditor::defValue(unsigned RegIdx,
462 const VNInfo *ParentVNI,
463 SlotIndex Idx,
464 bool Original) {
465 assert(ParentVNI && "Mapping NULL value");
466 assert(Idx.isValid() && "Invalid SlotIndex");
467 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
468 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
469
470 // Create a new value.
471 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
472
473 bool Force = LI->hasSubRanges();
474 ValueForcePair FP(Force ? nullptr : VNI, Force);
475 // Use insert for lookup, so we can add missing values with a second lookup.
476 std::pair<ValueMap::iterator, bool> InsP =
477 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
478
479 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
480 // forced. Keep it as a simple def without any liveness.
481 if (!Force && InsP.second)
482 return VNI;
483
484 // If the previous value was a simple mapping, add liveness for it now.
485 if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
486 addDeadDef(*LI, OldVNI, Original);
487
488 // No longer a simple mapping. Switch to a complex mapping. If the
489 // interval has subranges, make it a forced mapping.
490 InsP.first->second = ValueForcePair(nullptr, Force);
491 }
492
493 // This is a complex mapping, add liveness for VNI
494 addDeadDef(*LI, VNI, Original);
495 return VNI;
496 }
497
forceRecompute(unsigned RegIdx,const VNInfo & ParentVNI)498 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
499 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
500 VNInfo *VNI = VFP.getPointer();
501
502 // ParentVNI was either unmapped or already complex mapped. Either way, just
503 // set the force bit.
504 if (!VNI) {
505 VFP.setInt(true);
506 return;
507 }
508
509 // This was previously a single mapping. Make sure the old def is represented
510 // by a trivial live range.
511 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
512
513 // Mark as complex mapped, forced.
514 VFP = ValueForcePair(nullptr, true);
515 }
516
buildSingleSubRegCopy(Register FromReg,Register ToReg,MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,unsigned SubIdx,LiveInterval & DestLI,bool Late,SlotIndex Def)517 SlotIndex SplitEditor::buildSingleSubRegCopy(Register FromReg, Register ToReg,
518 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
519 unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
520 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
521 bool FirstCopy = !Def.isValid();
522 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
523 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
524 | getInternalReadRegState(!FirstCopy), SubIdx)
525 .addReg(FromReg, 0, SubIdx);
526
527 SlotIndexes &Indexes = *LIS.getSlotIndexes();
528 if (FirstCopy) {
529 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
530 } else {
531 CopyMI->bundleWithPred();
532 }
533 return Def;
534 }
535
buildCopy(Register FromReg,Register ToReg,LaneBitmask LaneMask,MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,bool Late,unsigned RegIdx)536 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg,
537 LaneBitmask LaneMask, MachineBasicBlock &MBB,
538 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
539 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
540 SlotIndexes &Indexes = *LIS.getSlotIndexes();
541 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
542 // The full vreg is copied.
543 MachineInstr *CopyMI =
544 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
545 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
546 }
547
548 // Only a subset of lanes needs to be copied. The following is a simple
549 // heuristic to construct a sequence of COPYs. We could add a target
550 // specific callback if this turns out to be suboptimal.
551 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
552
553 // First pass: Try to find a perfectly matching subregister index. If none
554 // exists find the one covering the most lanemask bits.
555 const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
556 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
557
558 SmallVector<unsigned, 8> SubIndexes;
559
560 // Abort if we cannot possibly implement the COPY with the given indexes.
561 if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, SubIndexes))
562 report_fatal_error("Impossible to implement partial COPY");
563
564 SlotIndex Def;
565 for (unsigned BestIdx : SubIndexes) {
566 Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
567 DestLI, Late, Def);
568 }
569
570 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
571 DestLI.refineSubRanges(
572 Allocator, LaneMask,
573 [Def, &Allocator](LiveInterval::SubRange &SR) {
574 SR.createDeadDef(Def, Allocator);
575 },
576 Indexes, TRI);
577
578 return Def;
579 }
580
defFromParent(unsigned RegIdx,const VNInfo * ParentVNI,SlotIndex UseIdx,MachineBasicBlock & MBB,MachineBasicBlock::iterator I)581 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, const VNInfo *ParentVNI,
582 SlotIndex UseIdx, MachineBasicBlock &MBB,
583 MachineBasicBlock::iterator I) {
584 SlotIndex Def;
585 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
586
587 // We may be trying to avoid interference that ends at a deleted instruction,
588 // so always begin RegIdx 0 early and all others late.
589 bool Late = RegIdx != 0;
590
591 // Attempt cheap-as-a-copy rematerialization.
592 Register Original = VRM.getOriginal(Edit->get(RegIdx));
593 LiveInterval &OrigLI = LIS.getInterval(Original);
594 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
595
596 Register Reg = LI->reg();
597 bool DidRemat = false;
598 if (OrigVNI) {
599 LiveRangeEdit::Remat RM(ParentVNI);
600 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
601 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
602 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
603 ++NumRemats;
604 DidRemat = true;
605 }
606 }
607 if (!DidRemat) {
608 LaneBitmask LaneMask;
609 if (OrigLI.hasSubRanges()) {
610 LaneMask = LaneBitmask::getNone();
611 for (LiveInterval::SubRange &S : OrigLI.subranges()) {
612 if (S.liveAt(UseIdx))
613 LaneMask |= S.LaneMask;
614 }
615 } else {
616 LaneMask = LaneBitmask::getAll();
617 }
618
619 if (LaneMask.none()) {
620 const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF);
621 MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg);
622 SlotIndexes &Indexes = *LIS.getSlotIndexes();
623 Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot();
624 } else {
625 ++NumCopies;
626 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
627 }
628 }
629
630 // Define the value in Reg.
631 return defValue(RegIdx, ParentVNI, Def, false);
632 }
633
634 /// Create a new virtual register and live interval.
openIntv()635 unsigned SplitEditor::openIntv() {
636 // Create the complement as index 0.
637 if (Edit->empty())
638 Edit->createEmptyInterval();
639
640 // Create the open interval.
641 OpenIdx = Edit->size();
642 Edit->createEmptyInterval();
643 return OpenIdx;
644 }
645
selectIntv(unsigned Idx)646 void SplitEditor::selectIntv(unsigned Idx) {
647 assert(Idx != 0 && "Cannot select the complement interval");
648 assert(Idx < Edit->size() && "Can only select previously opened interval");
649 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
650 OpenIdx = Idx;
651 }
652
enterIntvBefore(SlotIndex Idx)653 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
654 assert(OpenIdx && "openIntv not called before enterIntvBefore");
655 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx);
656 Idx = Idx.getBaseIndex();
657 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
658 if (!ParentVNI) {
659 LLVM_DEBUG(dbgs() << ": not live\n");
660 return Idx;
661 }
662 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
663 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
664 assert(MI && "enterIntvBefore called with invalid index");
665
666 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
667 return VNI->def;
668 }
669
enterIntvAfter(SlotIndex Idx)670 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
671 assert(OpenIdx && "openIntv not called before enterIntvAfter");
672 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx);
673 Idx = Idx.getBoundaryIndex();
674 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
675 if (!ParentVNI) {
676 LLVM_DEBUG(dbgs() << ": not live\n");
677 return Idx;
678 }
679 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
680 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
681 assert(MI && "enterIntvAfter called with invalid index");
682
683 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
684 std::next(MachineBasicBlock::iterator(MI)));
685 return VNI->def;
686 }
687
enterIntvAtEnd(MachineBasicBlock & MBB)688 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
689 assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
690 SlotIndex End = LIS.getMBBEndIdx(&MBB);
691 SlotIndex Last = End.getPrevSlot();
692 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", "
693 << Last);
694 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
695 if (!ParentVNI) {
696 LLVM_DEBUG(dbgs() << ": not live\n");
697 return End;
698 }
699 SlotIndex LSP = SA.getLastSplitPoint(&MBB);
700 if (LSP < Last) {
701 // It could be that the use after LSP is a def, and thus the ParentVNI
702 // just selected starts at that def. For this case to exist, the def
703 // must be part of a tied def/use pair (as otherwise we'd have split
704 // distinct live ranges into individual live intervals), and thus we
705 // can insert the def into the VNI of the use and the tied def/use
706 // pair can live in the resulting interval.
707 Last = LSP;
708 ParentVNI = Edit->getParent().getVNInfoAt(Last);
709 if (!ParentVNI) {
710 // undef use --> undef tied def
711 LLVM_DEBUG(dbgs() << ": tied use not live\n");
712 return End;
713 }
714 }
715
716 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
717 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
718 SA.getLastSplitPointIter(&MBB));
719 RegAssign.insert(VNI->def, End, OpenIdx);
720 LLVM_DEBUG(dump());
721 return VNI->def;
722 }
723
724 /// useIntv - indicate that all instructions in MBB should use OpenLI.
useIntv(const MachineBasicBlock & MBB)725 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
726 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
727 }
728
useIntv(SlotIndex Start,SlotIndex End)729 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
730 assert(OpenIdx && "openIntv not called before useIntv");
731 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
732 RegAssign.insert(Start, End, OpenIdx);
733 LLVM_DEBUG(dump());
734 }
735
leaveIntvAfter(SlotIndex Idx)736 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
737 assert(OpenIdx && "openIntv not called before leaveIntvAfter");
738 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx);
739
740 // The interval must be live beyond the instruction at Idx.
741 SlotIndex Boundary = Idx.getBoundaryIndex();
742 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
743 if (!ParentVNI) {
744 LLVM_DEBUG(dbgs() << ": not live\n");
745 return Boundary.getNextSlot();
746 }
747 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
748 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
749 assert(MI && "No instruction at index");
750
751 // In spill mode, make live ranges as short as possible by inserting the copy
752 // before MI. This is only possible if that instruction doesn't redefine the
753 // value. The inserted COPY is not a kill, and we don't need to recompute
754 // the source live range. The spiller also won't try to hoist this copy.
755 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
756 MI->readsVirtualRegister(Edit->getReg())) {
757 forceRecompute(0, *ParentVNI);
758 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
759 return Idx;
760 }
761
762 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
763 std::next(MachineBasicBlock::iterator(MI)));
764 return VNI->def;
765 }
766
leaveIntvBefore(SlotIndex Idx)767 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
768 assert(OpenIdx && "openIntv not called before leaveIntvBefore");
769 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx);
770
771 // The interval must be live into the instruction at Idx.
772 Idx = Idx.getBaseIndex();
773 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
774 if (!ParentVNI) {
775 LLVM_DEBUG(dbgs() << ": not live\n");
776 return Idx.getNextSlot();
777 }
778 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
779
780 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
781 assert(MI && "No instruction at index");
782 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
783 return VNI->def;
784 }
785
leaveIntvAtTop(MachineBasicBlock & MBB)786 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
787 assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
788 SlotIndex Start = LIS.getMBBStartIdx(&MBB);
789 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", "
790 << Start);
791
792 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
793 if (!ParentVNI) {
794 LLVM_DEBUG(dbgs() << ": not live\n");
795 return Start;
796 }
797
798 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
799 MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
800 RegAssign.insert(Start, VNI->def, OpenIdx);
801 LLVM_DEBUG(dump());
802 return VNI->def;
803 }
804
hasTiedUseOf(MachineInstr & MI,unsigned Reg)805 static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) {
806 return any_of(MI.defs(), [Reg](const MachineOperand &MO) {
807 return MO.isReg() && MO.isTied() && MO.getReg() == Reg;
808 });
809 }
810
overlapIntv(SlotIndex Start,SlotIndex End)811 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
812 assert(OpenIdx && "openIntv not called before overlapIntv");
813 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
814 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
815 "Parent changes value in extended range");
816 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
817 "Range cannot span basic blocks");
818
819 // The complement interval will be extended as needed by LICalc.extend().
820 if (ParentVNI)
821 forceRecompute(0, *ParentVNI);
822
823 // If the last use is tied to a def, we can't mark it as live for the
824 // interval which includes only the use. That would cause the tied pair
825 // to end up in two different intervals.
826 if (auto *MI = LIS.getInstructionFromIndex(End))
827 if (hasTiedUseOf(*MI, Edit->getReg())) {
828 LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n");
829 return;
830 }
831
832 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
833 RegAssign.insert(Start, End, OpenIdx);
834 LLVM_DEBUG(dump());
835 }
836
837 //===----------------------------------------------------------------------===//
838 // Spill modes
839 //===----------------------------------------------------------------------===//
840
removeBackCopies(SmallVectorImpl<VNInfo * > & Copies)841 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
842 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
843 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
844 RegAssignMap::iterator AssignI;
845 AssignI.setMap(RegAssign);
846
847 for (const VNInfo *C : Copies) {
848 SlotIndex Def = C->def;
849 MachineInstr *MI = LIS.getInstructionFromIndex(Def);
850 assert(MI && "No instruction for back-copy");
851
852 MachineBasicBlock *MBB = MI->getParent();
853 MachineBasicBlock::iterator MBBI(MI);
854 bool AtBegin;
855 do AtBegin = MBBI == MBB->begin();
856 while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr());
857
858 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
859 LIS.removeVRegDefAt(*LI, Def);
860 LIS.RemoveMachineInstrFromMaps(*MI);
861 MI->eraseFromParent();
862
863 // Adjust RegAssign if a register assignment is killed at Def. We want to
864 // avoid calculating the live range of the source register if possible.
865 AssignI.find(Def.getPrevSlot());
866 if (!AssignI.valid() || AssignI.start() >= Def)
867 continue;
868 // If MI doesn't kill the assigned register, just leave it.
869 if (AssignI.stop() != Def)
870 continue;
871 unsigned RegIdx = AssignI.value();
872 // We could hoist back-copy right after another back-copy. As a result
873 // MMBI points to copy instruction which is actually dead now.
874 // We cannot set its stop to MBBI which will be the same as start and
875 // interval does not support that.
876 SlotIndex Kill =
877 AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot();
878 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) ||
879 Kill <= AssignI.start()) {
880 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx
881 << '\n');
882 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
883 } else {
884 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI);
885 AssignI.setStop(Kill);
886 }
887 }
888 }
889
890 MachineBasicBlock*
findShallowDominator(MachineBasicBlock * MBB,MachineBasicBlock * DefMBB)891 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
892 MachineBasicBlock *DefMBB) {
893 if (MBB == DefMBB)
894 return MBB;
895 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
896
897 const MachineLoopInfo &Loops = SA.Loops;
898 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
899 MachineDomTreeNode *DefDomNode = MDT[DefMBB];
900
901 // Best candidate so far.
902 MachineBasicBlock *BestMBB = MBB;
903 unsigned BestDepth = std::numeric_limits<unsigned>::max();
904
905 while (true) {
906 const MachineLoop *Loop = Loops.getLoopFor(MBB);
907
908 // MBB isn't in a loop, it doesn't get any better. All dominators have a
909 // higher frequency by definition.
910 if (!Loop) {
911 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
912 << " dominates " << printMBBReference(*MBB)
913 << " at depth 0\n");
914 return MBB;
915 }
916
917 // We'll never be able to exit the DefLoop.
918 if (Loop == DefLoop) {
919 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
920 << " dominates " << printMBBReference(*MBB)
921 << " in the same loop\n");
922 return MBB;
923 }
924
925 // Least busy dominator seen so far.
926 unsigned Depth = Loop->getLoopDepth();
927 if (Depth < BestDepth) {
928 BestMBB = MBB;
929 BestDepth = Depth;
930 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
931 << " dominates " << printMBBReference(*MBB)
932 << " at depth " << Depth << '\n');
933 }
934
935 // Leave loop by going to the immediate dominator of the loop header.
936 // This is a bigger stride than simply walking up the dominator tree.
937 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
938
939 // Too far up the dominator tree?
940 if (!IDom || !MDT.dominates(DefDomNode, IDom))
941 return BestMBB;
942
943 MBB = IDom->getBlock();
944 }
945 }
946
computeRedundantBackCopies(DenseSet<unsigned> & NotToHoistSet,SmallVectorImpl<VNInfo * > & BackCopies)947 void SplitEditor::computeRedundantBackCopies(
948 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
949 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
950 const LiveInterval *Parent = &Edit->getParent();
951 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
952 SmallPtrSet<VNInfo *, 8> DominatedVNIs;
953
954 // Aggregate VNIs having the same value as ParentVNI.
955 for (VNInfo *VNI : LI->valnos) {
956 if (VNI->isUnused())
957 continue;
958 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
959 EqualVNs[ParentVNI->id].insert(VNI);
960 }
961
962 // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
963 // redundant VNIs to BackCopies.
964 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
965 const VNInfo *ParentVNI = Parent->getValNumInfo(i);
966 if (!NotToHoistSet.count(ParentVNI->id))
967 continue;
968 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
969 SmallPtrSetIterator<VNInfo *> It2 = It1;
970 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
971 It2 = It1;
972 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
973 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
974 continue;
975
976 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
977 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
978 if (MBB1 == MBB2) {
979 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
980 } else if (MDT.dominates(MBB1, MBB2)) {
981 DominatedVNIs.insert(*It2);
982 } else if (MDT.dominates(MBB2, MBB1)) {
983 DominatedVNIs.insert(*It1);
984 }
985 }
986 }
987 if (!DominatedVNIs.empty()) {
988 forceRecompute(0, *ParentVNI);
989 append_range(BackCopies, DominatedVNIs);
990 DominatedVNIs.clear();
991 }
992 }
993 }
994
995 /// For SM_Size mode, find a common dominator for all the back-copies for
996 /// the same ParentVNI and hoist the backcopies to the dominator BB.
997 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
998 /// to do the hoisting, simply remove the dominated backcopies for the same
999 /// ParentVNI.
hoistCopies()1000 void SplitEditor::hoistCopies() {
1001 // Get the complement interval, always RegIdx 0.
1002 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
1003 const LiveInterval *Parent = &Edit->getParent();
1004
1005 // Track the nearest common dominator for all back-copies for each ParentVNI,
1006 // indexed by ParentVNI->id.
1007 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1008 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1009 // The total cost of all the back-copies for each ParentVNI.
1010 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1011 // The ParentVNI->id set for which hoisting back-copies are not beneficial
1012 // for Speed.
1013 DenseSet<unsigned> NotToHoistSet;
1014
1015 // Find the nearest common dominator for parent values with multiple
1016 // back-copies. If a single back-copy dominates, put it in DomPair.second.
1017 for (VNInfo *VNI : LI->valnos) {
1018 if (VNI->isUnused())
1019 continue;
1020 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1021 assert(ParentVNI && "Parent not live at complement def");
1022
1023 // Don't hoist remats. The complement is probably going to disappear
1024 // completely anyway.
1025 if (Edit->didRematerialize(ParentVNI))
1026 continue;
1027
1028 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1029
1030 DomPair &Dom = NearestDom[ParentVNI->id];
1031
1032 // Keep directly defined parent values. This is either a PHI or an
1033 // instruction in the complement range. All other copies of ParentVNI
1034 // should be eliminated.
1035 if (VNI->def == ParentVNI->def) {
1036 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1037 Dom = DomPair(ValMBB, VNI->def);
1038 continue;
1039 }
1040 // Skip the singly mapped values. There is nothing to gain from hoisting a
1041 // single back-copy.
1042 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1043 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1044 continue;
1045 }
1046
1047 if (!Dom.first) {
1048 // First time we see ParentVNI. VNI dominates itself.
1049 Dom = DomPair(ValMBB, VNI->def);
1050 } else if (Dom.first == ValMBB) {
1051 // Two defs in the same block. Pick the earlier def.
1052 if (!Dom.second.isValid() || VNI->def < Dom.second)
1053 Dom.second = VNI->def;
1054 } else {
1055 // Different basic blocks. Check if one dominates.
1056 MachineBasicBlock *Near =
1057 MDT.findNearestCommonDominator(Dom.first, ValMBB);
1058 if (Near == ValMBB)
1059 // Def ValMBB dominates.
1060 Dom = DomPair(ValMBB, VNI->def);
1061 else if (Near != Dom.first)
1062 // None dominate. Hoist to common dominator, need new def.
1063 Dom = DomPair(Near, SlotIndex());
1064 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1065 }
1066
1067 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1068 << VNI->def << " for parent " << ParentVNI->id << '@'
1069 << ParentVNI->def << " hoist to "
1070 << printMBBReference(*Dom.first) << ' ' << Dom.second
1071 << '\n');
1072 }
1073
1074 // Insert the hoisted copies.
1075 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1076 DomPair &Dom = NearestDom[i];
1077 if (!Dom.first || Dom.second.isValid())
1078 continue;
1079 // This value needs a hoisted copy inserted at the end of Dom.first.
1080 const VNInfo *ParentVNI = Parent->getValNumInfo(i);
1081 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1082 // Get a less loopy dominator than Dom.first.
1083 Dom.first = findShallowDominator(Dom.first, DefMBB);
1084 if (SpillMode == SM_Speed &&
1085 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1086 NotToHoistSet.insert(ParentVNI->id);
1087 continue;
1088 }
1089 SlotIndex LSP = SA.getLastSplitPoint(Dom.first);
1090 if (LSP <= ParentVNI->def) {
1091 NotToHoistSet.insert(ParentVNI->id);
1092 continue;
1093 }
1094 Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first,
1095 SA.getLastSplitPointIter(Dom.first))->def;
1096 }
1097
1098 // Remove redundant back-copies that are now known to be dominated by another
1099 // def with the same value.
1100 SmallVector<VNInfo*, 8> BackCopies;
1101 for (VNInfo *VNI : LI->valnos) {
1102 if (VNI->isUnused())
1103 continue;
1104 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1105 const DomPair &Dom = NearestDom[ParentVNI->id];
1106 if (!Dom.first || Dom.second == VNI->def ||
1107 NotToHoistSet.count(ParentVNI->id))
1108 continue;
1109 BackCopies.push_back(VNI);
1110 forceRecompute(0, *ParentVNI);
1111 }
1112
1113 // If it is not beneficial to hoist all the BackCopies, simply remove
1114 // redundant BackCopies in speed mode.
1115 if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1116 computeRedundantBackCopies(NotToHoistSet, BackCopies);
1117
1118 removeBackCopies(BackCopies);
1119 }
1120
1121 /// transferValues - Transfer all possible values to the new live ranges.
1122 /// Values that were rematerialized are left alone, they need LICalc.extend().
transferValues()1123 bool SplitEditor::transferValues() {
1124 bool Skipped = false;
1125 RegAssignMap::const_iterator AssignI = RegAssign.begin();
1126 for (const LiveRange::Segment &S : Edit->getParent()) {
1127 LLVM_DEBUG(dbgs() << " blit " << S << ':');
1128 VNInfo *ParentVNI = S.valno;
1129 // RegAssign has holes where RegIdx 0 should be used.
1130 SlotIndex Start = S.start;
1131 AssignI.advanceTo(Start);
1132 do {
1133 unsigned RegIdx;
1134 SlotIndex End = S.end;
1135 if (!AssignI.valid()) {
1136 RegIdx = 0;
1137 } else if (AssignI.start() <= Start) {
1138 RegIdx = AssignI.value();
1139 if (AssignI.stop() < End) {
1140 End = AssignI.stop();
1141 ++AssignI;
1142 }
1143 } else {
1144 RegIdx = 0;
1145 End = std::min(End, AssignI.start());
1146 }
1147
1148 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1149 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1150 << printReg(Edit->get(RegIdx)) << ')');
1151 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1152
1153 // Check for a simply defined value that can be blitted directly.
1154 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1155 if (VNInfo *VNI = VFP.getPointer()) {
1156 LLVM_DEBUG(dbgs() << ':' << VNI->id);
1157 LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1158 Start = End;
1159 continue;
1160 }
1161
1162 // Skip values with forced recomputation.
1163 if (VFP.getInt()) {
1164 LLVM_DEBUG(dbgs() << "(recalc)");
1165 Skipped = true;
1166 Start = End;
1167 continue;
1168 }
1169
1170 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1171
1172 // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1173 // so the live range is accurate. Add live-in blocks in [Start;End) to the
1174 // LiveInBlocks.
1175 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1176 SlotIndex BlockStart, BlockEnd;
1177 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1178
1179 // The first block may be live-in, or it may have its own def.
1180 if (Start != BlockStart) {
1181 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1182 assert(VNI && "Missing def for complex mapped value");
1183 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1184 // MBB has its own def. Is it also live-out?
1185 if (BlockEnd <= End)
1186 LIC.setLiveOutValue(&*MBB, VNI);
1187
1188 // Skip to the next block for live-in.
1189 ++MBB;
1190 BlockStart = BlockEnd;
1191 }
1192
1193 // Handle the live-in blocks covered by [Start;End).
1194 assert(Start <= BlockStart && "Expected live-in block");
1195 while (BlockStart < End) {
1196 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1197 BlockEnd = LIS.getMBBEndIdx(&*MBB);
1198 if (BlockStart == ParentVNI->def) {
1199 // This block has the def of a parent PHI, so it isn't live-in.
1200 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1201 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1202 assert(VNI && "Missing def for complex mapped parent PHI");
1203 if (End >= BlockEnd)
1204 LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1205 } else {
1206 // This block needs a live-in value. The last block covered may not
1207 // be live-out.
1208 if (End < BlockEnd)
1209 LIC.addLiveInBlock(LI, MDT[&*MBB], End);
1210 else {
1211 // Live-through, and we don't know the value.
1212 LIC.addLiveInBlock(LI, MDT[&*MBB]);
1213 LIC.setLiveOutValue(&*MBB, nullptr);
1214 }
1215 }
1216 BlockStart = BlockEnd;
1217 ++MBB;
1218 }
1219 Start = End;
1220 } while (Start != S.end);
1221 LLVM_DEBUG(dbgs() << '\n');
1222 }
1223
1224 LICalc[0].calculateValues();
1225 if (SpillMode)
1226 LICalc[1].calculateValues();
1227
1228 return Skipped;
1229 }
1230
removeDeadSegment(SlotIndex Def,LiveRange & LR)1231 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1232 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1233 if (Seg == nullptr)
1234 return true;
1235 if (Seg->end != Def.getDeadSlot())
1236 return false;
1237 // This is a dead PHI. Remove it.
1238 LR.removeSegment(*Seg, true);
1239 return true;
1240 }
1241
extendPHIRange(MachineBasicBlock & B,LiveIntervalCalc & LIC,LiveRange & LR,LaneBitmask LM,ArrayRef<SlotIndex> Undefs)1242 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
1243 LiveRange &LR, LaneBitmask LM,
1244 ArrayRef<SlotIndex> Undefs) {
1245 for (MachineBasicBlock *P : B.predecessors()) {
1246 SlotIndex End = LIS.getMBBEndIdx(P);
1247 SlotIndex LastUse = End.getPrevSlot();
1248 // The predecessor may not have a live-out value. That is OK, like an
1249 // undef PHI operand.
1250 const LiveInterval &PLI = Edit->getParent();
1251 // Need the cast because the inputs to ?: would otherwise be deemed
1252 // "incompatible": SubRange vs LiveInterval.
1253 const LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI)
1254 : static_cast<const LiveRange &>(PLI);
1255 if (PSR.liveAt(LastUse))
1256 LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
1257 }
1258 }
1259
extendPHIKillRanges()1260 void SplitEditor::extendPHIKillRanges() {
1261 // Extend live ranges to be live-out for successor PHI values.
1262
1263 // Visit each PHI def slot in the parent live interval. If the def is dead,
1264 // remove it. Otherwise, extend the live interval to reach the end indexes
1265 // of all predecessor blocks.
1266
1267 const LiveInterval &ParentLI = Edit->getParent();
1268 for (const VNInfo *V : ParentLI.valnos) {
1269 if (V->isUnused() || !V->isPHIDef())
1270 continue;
1271
1272 unsigned RegIdx = RegAssign.lookup(V->def);
1273 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1274 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1275 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1276 if (!removeDeadSegment(V->def, LI))
1277 extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1278 }
1279
1280 SmallVector<SlotIndex, 4> Undefs;
1281 LiveIntervalCalc SubLIC;
1282
1283 for (const LiveInterval::SubRange &PS : ParentLI.subranges()) {
1284 for (const VNInfo *V : PS.valnos) {
1285 if (V->isUnused() || !V->isPHIDef())
1286 continue;
1287 unsigned RegIdx = RegAssign.lookup(V->def);
1288 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1289 LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI);
1290 if (removeDeadSegment(V->def, S))
1291 continue;
1292
1293 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1294 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1295 &LIS.getVNInfoAllocator());
1296 Undefs.clear();
1297 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1298 extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
1299 }
1300 }
1301 }
1302
1303 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
rewriteAssigned(bool ExtendRanges)1304 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1305 struct ExtPoint {
1306 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1307 : MO(O), RegIdx(R), Next(N) {}
1308
1309 MachineOperand MO;
1310 unsigned RegIdx;
1311 SlotIndex Next;
1312 };
1313
1314 SmallVector<ExtPoint,4> ExtPoints;
1315
1316 for (MachineOperand &MO :
1317 llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) {
1318 MachineInstr *MI = MO.getParent();
1319 // LiveDebugVariables should have handled all DBG_VALUE instructions.
1320 if (MI->isDebugValue()) {
1321 LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1322 MO.setReg(0);
1323 continue;
1324 }
1325
1326 // <undef> operands don't really read the register, so it doesn't matter
1327 // which register we choose. When the use operand is tied to a def, we must
1328 // use the same register as the def, so just do that always.
1329 SlotIndex Idx = LIS.getInstructionIndex(*MI);
1330 if (MO.isDef() || MO.isUndef())
1331 Idx = Idx.getRegSlot(MO.isEarlyClobber());
1332
1333 // Rewrite to the mapped register at Idx.
1334 unsigned RegIdx = RegAssign.lookup(Idx);
1335 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1336 MO.setReg(LI.reg());
1337 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent())
1338 << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1339
1340 // Extend liveness to Idx if the instruction reads reg.
1341 if (!ExtendRanges || MO.isUndef())
1342 continue;
1343
1344 // Skip instructions that don't read Reg.
1345 if (MO.isDef()) {
1346 if (!MO.getSubReg() && !MO.isEarlyClobber())
1347 continue;
1348 // We may want to extend a live range for a partial redef, or for a use
1349 // tied to an early clobber.
1350 if (!Edit->getParent().liveAt(Idx.getPrevSlot()))
1351 continue;
1352 } else {
1353 assert(MO.isUse());
1354 bool IsEarlyClobber = false;
1355 if (MO.isTied()) {
1356 // We want to extend a live range into `e` slot rather than `r` slot if
1357 // tied-def is early clobber, because the `e` slot already contained
1358 // in the live range of early-clobber tied-def operand, give an example
1359 // here:
1360 // 0 %0 = ...
1361 // 16 early-clobber %0 = Op %0 (tied-def 0), ...
1362 // 32 ... = Op %0
1363 // Before extend:
1364 // %0 = [0r, 0d) [16e, 32d)
1365 // The point we want to extend is 0d to 16e not 16r in this case, but if
1366 // we use 16r here we will extend nothing because that already contained
1367 // in [16e, 32d).
1368 unsigned OpIdx = MI->getOperandNo(&MO);
1369 unsigned DefOpIdx = MI->findTiedOperandIdx(OpIdx);
1370 const MachineOperand &DefOp = MI->getOperand(DefOpIdx);
1371 IsEarlyClobber = DefOp.isEarlyClobber();
1372 }
1373
1374 Idx = Idx.getRegSlot(IsEarlyClobber);
1375 }
1376
1377 SlotIndex Next = Idx;
1378 if (LI.hasSubRanges()) {
1379 // We have to delay extending subranges until we have seen all operands
1380 // defining the register. This is because a <def,read-undef> operand
1381 // will create an "undef" point, and we cannot extend any subranges
1382 // until all of them have been accounted for.
1383 if (MO.isUse())
1384 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1385 } else {
1386 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1387 LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1388 }
1389 }
1390
1391 for (ExtPoint &EP : ExtPoints) {
1392 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1393 assert(LI.hasSubRanges());
1394
1395 LiveIntervalCalc SubLIC;
1396 Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1397 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1398 : MRI.getMaxLaneMaskForVReg(Reg);
1399 for (LiveInterval::SubRange &S : LI.subranges()) {
1400 if ((S.LaneMask & LM).none())
1401 continue;
1402 // The problem here can be that the new register may have been created
1403 // for a partially defined original register. For example:
1404 // %0:subreg_hireg<def,read-undef> = ...
1405 // ...
1406 // %1 = COPY %0
1407 if (S.empty())
1408 continue;
1409 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1410 &LIS.getVNInfoAllocator());
1411 SmallVector<SlotIndex, 4> Undefs;
1412 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1413 SubLIC.extend(S, EP.Next, 0, Undefs);
1414 }
1415 }
1416
1417 for (Register R : *Edit) {
1418 LiveInterval &LI = LIS.getInterval(R);
1419 if (!LI.hasSubRanges())
1420 continue;
1421 LI.clear();
1422 LI.removeEmptySubRanges();
1423 LIS.constructMainRangeFromSubranges(LI);
1424 }
1425 }
1426
deleteRematVictims()1427 void SplitEditor::deleteRematVictims() {
1428 SmallVector<MachineInstr*, 8> Dead;
1429 for (const Register &R : *Edit) {
1430 LiveInterval *LI = &LIS.getInterval(R);
1431 for (const LiveRange::Segment &S : LI->segments) {
1432 // Dead defs end at the dead slot.
1433 if (S.end != S.valno->def.getDeadSlot())
1434 continue;
1435 if (S.valno->isPHIDef())
1436 continue;
1437 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1438 assert(MI && "Missing instruction for dead def");
1439 MI->addRegisterDead(LI->reg(), &TRI);
1440
1441 if (!MI->allDefsAreDead())
1442 continue;
1443
1444 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1445 Dead.push_back(MI);
1446 }
1447 }
1448
1449 if (Dead.empty())
1450 return;
1451
1452 Edit->eliminateDeadDefs(Dead, std::nullopt);
1453 }
1454
forceRecomputeVNI(const VNInfo & ParentVNI)1455 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1456 // Fast-path for common case.
1457 if (!ParentVNI.isPHIDef()) {
1458 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1459 forceRecompute(I, ParentVNI);
1460 return;
1461 }
1462
1463 // Trace value through phis.
1464 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1465 SmallVector<const VNInfo *, 4> WorkList;
1466 Visited.insert(&ParentVNI);
1467 WorkList.push_back(&ParentVNI);
1468
1469 const LiveInterval &ParentLI = Edit->getParent();
1470 const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1471 do {
1472 const VNInfo &VNI = *WorkList.back();
1473 WorkList.pop_back();
1474 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1475 forceRecompute(I, VNI);
1476 if (!VNI.isPHIDef())
1477 continue;
1478
1479 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1480 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1481 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1482 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1483 assert(PredVNI && "Value available in PhiVNI predecessor");
1484 if (Visited.insert(PredVNI).second)
1485 WorkList.push_back(PredVNI);
1486 }
1487 } while(!WorkList.empty());
1488 }
1489
finish(SmallVectorImpl<unsigned> * LRMap)1490 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1491 ++NumFinished;
1492
1493 // At this point, the live intervals in Edit contain VNInfos corresponding to
1494 // the inserted copies.
1495
1496 // Add the original defs from the parent interval.
1497 for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1498 if (ParentVNI->isUnused())
1499 continue;
1500 unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1501 defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1502
1503 // Force rematted values to be recomputed everywhere.
1504 // The new live ranges may be truncated.
1505 if (Edit->didRematerialize(ParentVNI))
1506 forceRecomputeVNI(*ParentVNI);
1507 }
1508
1509 // Hoist back-copies to the complement interval when in spill mode.
1510 switch (SpillMode) {
1511 case SM_Partition:
1512 // Leave all back-copies as is.
1513 break;
1514 case SM_Size:
1515 case SM_Speed:
1516 // hoistCopies will behave differently between size and speed.
1517 hoistCopies();
1518 }
1519
1520 // Transfer the simply mapped values, check if any are skipped.
1521 bool Skipped = transferValues();
1522
1523 // Rewrite virtual registers, possibly extending ranges.
1524 rewriteAssigned(Skipped);
1525
1526 if (Skipped)
1527 extendPHIKillRanges();
1528 else
1529 ++NumSimple;
1530
1531 // Delete defs that were rematted everywhere.
1532 if (Skipped)
1533 deleteRematVictims();
1534
1535 // Get rid of unused values and set phi-kill flags.
1536 for (Register Reg : *Edit) {
1537 LiveInterval &LI = LIS.getInterval(Reg);
1538 LI.removeEmptySubRanges();
1539 LI.RenumberValues();
1540 }
1541
1542 // Provide a reverse mapping from original indices to Edit ranges.
1543 if (LRMap) {
1544 auto Seq = llvm::seq<unsigned>(0, Edit->size());
1545 LRMap->assign(Seq.begin(), Seq.end());
1546 }
1547
1548 // Now check if any registers were separated into multiple components.
1549 ConnectedVNInfoEqClasses ConEQ(LIS);
1550 for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1551 // Don't use iterators, they are invalidated by create() below.
1552 Register VReg = Edit->get(i);
1553 LiveInterval &LI = LIS.getInterval(VReg);
1554 SmallVector<LiveInterval*, 8> SplitLIs;
1555 LIS.splitSeparateComponents(LI, SplitLIs);
1556 Register Original = VRM.getOriginal(VReg);
1557 for (LiveInterval *SplitLI : SplitLIs)
1558 VRM.setIsSplitFromReg(SplitLI->reg(), Original);
1559
1560 // The new intervals all map back to i.
1561 if (LRMap)
1562 LRMap->resize(Edit->size(), i);
1563 }
1564
1565 // Calculate spill weight and allocation hints for new intervals.
1566 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI);
1567
1568 assert(!LRMap || LRMap->size() == Edit->size());
1569 }
1570
1571 //===----------------------------------------------------------------------===//
1572 // Single Block Splitting
1573 //===----------------------------------------------------------------------===//
1574
shouldSplitSingleBlock(const BlockInfo & BI,bool SingleInstrs) const1575 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1576 bool SingleInstrs) const {
1577 // Always split for multiple instructions.
1578 if (!BI.isOneInstr())
1579 return true;
1580 // Don't split for single instructions unless explicitly requested.
1581 if (!SingleInstrs)
1582 return false;
1583 // Splitting a live-through range always makes progress.
1584 if (BI.LiveIn && BI.LiveOut)
1585 return true;
1586 // No point in isolating a copy. It has no register class constraints.
1587 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1588 return false;
1589 // Finally, don't isolate an end point that was created by earlier splits.
1590 return isOriginalEndpoint(BI.FirstInstr);
1591 }
1592
splitSingleBlock(const SplitAnalysis::BlockInfo & BI)1593 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1594 openIntv();
1595 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB);
1596 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1597 LastSplitPoint));
1598 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1599 useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1600 } else {
1601 // The last use is after the last valid split point.
1602 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1603 useIntv(SegStart, SegStop);
1604 overlapIntv(SegStop, BI.LastInstr);
1605 }
1606 }
1607
1608 //===----------------------------------------------------------------------===//
1609 // Global Live Range Splitting Support
1610 //===----------------------------------------------------------------------===//
1611
1612 // These methods support a method of global live range splitting that uses a
1613 // global algorithm to decide intervals for CFG edges. They will insert split
1614 // points and color intervals in basic blocks while avoiding interference.
1615 //
1616 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1617 // are on the stack.
1618
splitLiveThroughBlock(unsigned MBBNum,unsigned IntvIn,SlotIndex LeaveBefore,unsigned IntvOut,SlotIndex EnterAfter)1619 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1620 unsigned IntvIn, SlotIndex LeaveBefore,
1621 unsigned IntvOut, SlotIndex EnterAfter){
1622 SlotIndex Start, Stop;
1623 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1624
1625 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1626 << ") intf " << LeaveBefore << '-' << EnterAfter
1627 << ", live-through " << IntvIn << " -> " << IntvOut);
1628
1629 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1630
1631 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1632 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1633 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1634
1635 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1636
1637 if (!IntvOut) {
1638 LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1639 //
1640 // <<<<<<<<< Possible LeaveBefore interference.
1641 // |-----------| Live through.
1642 // -____________ Spill on entry.
1643 //
1644 selectIntv(IntvIn);
1645 SlotIndex Idx = leaveIntvAtTop(*MBB);
1646 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1647 (void)Idx;
1648 return;
1649 }
1650
1651 if (!IntvIn) {
1652 LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1653 //
1654 // >>>>>>> Possible EnterAfter interference.
1655 // |-----------| Live through.
1656 // ___________-- Reload on exit.
1657 //
1658 selectIntv(IntvOut);
1659 SlotIndex Idx = enterIntvAtEnd(*MBB);
1660 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1661 (void)Idx;
1662 return;
1663 }
1664
1665 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1666 LLVM_DEBUG(dbgs() << ", straight through.\n");
1667 //
1668 // |-----------| Live through.
1669 // ------------- Straight through, same intv, no interference.
1670 //
1671 selectIntv(IntvOut);
1672 useIntv(Start, Stop);
1673 return;
1674 }
1675
1676 // We cannot legally insert splits after LSP.
1677 SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1678 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1679
1680 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1681 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1682 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1683 //
1684 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
1685 // |-----------| Live through.
1686 // ------======= Switch intervals between interference.
1687 //
1688 selectIntv(IntvOut);
1689 SlotIndex Idx;
1690 if (LeaveBefore && LeaveBefore < LSP) {
1691 Idx = enterIntvBefore(LeaveBefore);
1692 useIntv(Idx, Stop);
1693 } else {
1694 Idx = enterIntvAtEnd(*MBB);
1695 }
1696 selectIntv(IntvIn);
1697 useIntv(Start, Idx);
1698 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1699 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1700 return;
1701 }
1702
1703 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1704 //
1705 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
1706 // |-----------| Live through.
1707 // ==---------== Switch intervals before/after interference.
1708 //
1709 assert(LeaveBefore <= EnterAfter && "Missed case");
1710
1711 selectIntv(IntvOut);
1712 SlotIndex Idx = enterIntvAfter(EnterAfter);
1713 useIntv(Idx, Stop);
1714 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1715
1716 selectIntv(IntvIn);
1717 Idx = leaveIntvBefore(LeaveBefore);
1718 useIntv(Start, Idx);
1719 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1720 }
1721
splitRegInBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvIn,SlotIndex LeaveBefore)1722 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1723 unsigned IntvIn, SlotIndex LeaveBefore) {
1724 SlotIndex Start, Stop;
1725 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1726
1727 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1728 << Stop << "), uses " << BI.FirstInstr << '-'
1729 << BI.LastInstr << ", reg-in " << IntvIn
1730 << ", leave before " << LeaveBefore
1731 << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1732
1733 assert(IntvIn && "Must have register in");
1734 assert(BI.LiveIn && "Must be live-in");
1735 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1736
1737 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1738 LLVM_DEBUG(dbgs() << " before interference.\n");
1739 //
1740 // <<< Interference after kill.
1741 // |---o---x | Killed in block.
1742 // ========= Use IntvIn everywhere.
1743 //
1744 selectIntv(IntvIn);
1745 useIntv(Start, BI.LastInstr);
1746 return;
1747 }
1748
1749 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1750
1751 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1752 //
1753 // <<< Possible interference after last use.
1754 // |---o---o---| Live-out on stack.
1755 // =========____ Leave IntvIn after last use.
1756 //
1757 // < Interference after last use.
1758 // |---o---o--o| Live-out on stack, late last use.
1759 // ============ Copy to stack after LSP, overlap IntvIn.
1760 // \_____ Stack interval is live-out.
1761 //
1762 if (BI.LastInstr < LSP) {
1763 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1764 selectIntv(IntvIn);
1765 SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1766 useIntv(Start, Idx);
1767 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1768 } else {
1769 LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1770 selectIntv(IntvIn);
1771 SlotIndex Idx = leaveIntvBefore(LSP);
1772 overlapIntv(Idx, BI.LastInstr);
1773 useIntv(Start, Idx);
1774 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1775 }
1776 return;
1777 }
1778
1779 // The interference is overlapping somewhere we wanted to use IntvIn. That
1780 // means we need to create a local interval that can be allocated a
1781 // different register.
1782 unsigned LocalIntv = openIntv();
1783 (void)LocalIntv;
1784 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1785
1786 if (!BI.LiveOut || BI.LastInstr < LSP) {
1787 //
1788 // <<<<<<< Interference overlapping uses.
1789 // |---o---o---| Live-out on stack.
1790 // =====----____ Leave IntvIn before interference, then spill.
1791 //
1792 SlotIndex To = leaveIntvAfter(BI.LastInstr);
1793 SlotIndex From = enterIntvBefore(LeaveBefore);
1794 useIntv(From, To);
1795 selectIntv(IntvIn);
1796 useIntv(Start, From);
1797 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1798 return;
1799 }
1800
1801 // <<<<<<< Interference overlapping uses.
1802 // |---o---o--o| Live-out on stack, late last use.
1803 // =====------- Copy to stack before LSP, overlap LocalIntv.
1804 // \_____ Stack interval is live-out.
1805 //
1806 SlotIndex To = leaveIntvBefore(LSP);
1807 overlapIntv(To, BI.LastInstr);
1808 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1809 useIntv(From, To);
1810 selectIntv(IntvIn);
1811 useIntv(Start, From);
1812 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1813 }
1814
splitRegOutBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvOut,SlotIndex EnterAfter)1815 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1816 unsigned IntvOut, SlotIndex EnterAfter) {
1817 SlotIndex Start, Stop;
1818 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1819
1820 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1821 << Stop << "), uses " << BI.FirstInstr << '-'
1822 << BI.LastInstr << ", reg-out " << IntvOut
1823 << ", enter after " << EnterAfter
1824 << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1825
1826 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1827
1828 assert(IntvOut && "Must have register out");
1829 assert(BI.LiveOut && "Must be live-out");
1830 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1831
1832 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1833 LLVM_DEBUG(dbgs() << " after interference.\n");
1834 //
1835 // >>>> Interference before def.
1836 // | o---o---| Defined in block.
1837 // ========= Use IntvOut everywhere.
1838 //
1839 selectIntv(IntvOut);
1840 useIntv(BI.FirstInstr, Stop);
1841 return;
1842 }
1843
1844 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1845 LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1846 //
1847 // >>>> Interference before def.
1848 // |---o---o---| Live-through, stack-in.
1849 // ____========= Enter IntvOut before first use.
1850 //
1851 selectIntv(IntvOut);
1852 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1853 useIntv(Idx, Stop);
1854 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1855 return;
1856 }
1857
1858 // The interference is overlapping somewhere we wanted to use IntvOut. That
1859 // means we need to create a local interval that can be allocated a
1860 // different register.
1861 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1862 //
1863 // >>>>>>> Interference overlapping uses.
1864 // |---o---o---| Live-through, stack-in.
1865 // ____---====== Create local interval for interference range.
1866 //
1867 selectIntv(IntvOut);
1868 SlotIndex Idx = enterIntvAfter(EnterAfter);
1869 useIntv(Idx, Stop);
1870 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1871
1872 openIntv();
1873 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1874 useIntv(From, Idx);
1875 }
1876
print(raw_ostream & OS) const1877 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const {
1878 OS << "{" << printMBBReference(*MBB) << ", "
1879 << "uses " << FirstInstr << " to " << LastInstr << ", "
1880 << "1st def " << FirstDef << ", "
1881 << (LiveIn ? "live in" : "dead in") << ", "
1882 << (LiveOut ? "live out" : "dead out") << "}";
1883 }
1884
dump() const1885 void SplitAnalysis::BlockInfo::dump() const {
1886 print(dbgs());
1887 dbgs() << "\n";
1888 }
1889