xref: /aosp_15_r20/external/swiftshader/third_party/llvm-16.0/llvm/lib/CodeGen/MachineFunction.cpp (revision 03ce13f70fcc45d86ee91b7ee4cab1936a95046e)
1  //===- MachineFunction.cpp ------------------------------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // Collect native machine code information for a function.  This allows
10  // target-specific information about the generated code to be stored with each
11  // function.
12  //
13  //===----------------------------------------------------------------------===//
14  
15  #include "llvm/CodeGen/MachineFunction.h"
16  #include "llvm/ADT/BitVector.h"
17  #include "llvm/ADT/DenseMap.h"
18  #include "llvm/ADT/DenseSet.h"
19  #include "llvm/ADT/STLExtras.h"
20  #include "llvm/ADT/SmallString.h"
21  #include "llvm/ADT/SmallVector.h"
22  #include "llvm/ADT/StringRef.h"
23  #include "llvm/ADT/Twine.h"
24  #include "llvm/Analysis/ConstantFolding.h"
25  #include "llvm/Analysis/EHPersonalities.h"
26  #include "llvm/CodeGen/MachineBasicBlock.h"
27  #include "llvm/CodeGen/MachineConstantPool.h"
28  #include "llvm/CodeGen/MachineFrameInfo.h"
29  #include "llvm/CodeGen/MachineInstr.h"
30  #include "llvm/CodeGen/MachineJumpTableInfo.h"
31  #include "llvm/CodeGen/MachineMemOperand.h"
32  #include "llvm/CodeGen/MachineModuleInfo.h"
33  #include "llvm/CodeGen/MachineRegisterInfo.h"
34  #include "llvm/CodeGen/PseudoSourceValue.h"
35  #include "llvm/CodeGen/TargetFrameLowering.h"
36  #include "llvm/CodeGen/TargetInstrInfo.h"
37  #include "llvm/CodeGen/TargetLowering.h"
38  #include "llvm/CodeGen/TargetRegisterInfo.h"
39  #include "llvm/CodeGen/TargetSubtargetInfo.h"
40  #include "llvm/CodeGen/WasmEHFuncInfo.h"
41  #include "llvm/CodeGen/WinEHFuncInfo.h"
42  #include "llvm/Config/llvm-config.h"
43  #include "llvm/IR/Attributes.h"
44  #include "llvm/IR/BasicBlock.h"
45  #include "llvm/IR/Constant.h"
46  #include "llvm/IR/DataLayout.h"
47  #include "llvm/IR/DerivedTypes.h"
48  #include "llvm/IR/Function.h"
49  #include "llvm/IR/GlobalValue.h"
50  #include "llvm/IR/Instruction.h"
51  #include "llvm/IR/Instructions.h"
52  #include "llvm/IR/Metadata.h"
53  #include "llvm/IR/Module.h"
54  #include "llvm/IR/ModuleSlotTracker.h"
55  #include "llvm/IR/Value.h"
56  #include "llvm/MC/MCContext.h"
57  #include "llvm/MC/MCSymbol.h"
58  #include "llvm/MC/SectionKind.h"
59  #include "llvm/Support/Casting.h"
60  #include "llvm/Support/CommandLine.h"
61  #include "llvm/Support/Compiler.h"
62  #include "llvm/Support/DOTGraphTraits.h"
63  #include "llvm/Support/ErrorHandling.h"
64  #include "llvm/Support/GraphWriter.h"
65  #include "llvm/Support/raw_ostream.h"
66  #include "llvm/Target/TargetMachine.h"
67  #include <algorithm>
68  #include <cassert>
69  #include <cstddef>
70  #include <cstdint>
71  #include <iterator>
72  #include <string>
73  #include <type_traits>
74  #include <utility>
75  #include <vector>
76  
77  #include "LiveDebugValues/LiveDebugValues.h"
78  
79  using namespace llvm;
80  
81  #define DEBUG_TYPE "codegen"
82  
83  static cl::opt<unsigned> AlignAllFunctions(
84      "align-all-functions",
85      cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
86               "means align on 16B boundaries)."),
87      cl::init(0), cl::Hidden);
88  
getPropertyName(MachineFunctionProperties::Property Prop)89  static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
90    using P = MachineFunctionProperties::Property;
91  
92    // clang-format off
93    switch(Prop) {
94    case P::FailedISel: return "FailedISel";
95    case P::IsSSA: return "IsSSA";
96    case P::Legalized: return "Legalized";
97    case P::NoPHIs: return "NoPHIs";
98    case P::NoVRegs: return "NoVRegs";
99    case P::RegBankSelected: return "RegBankSelected";
100    case P::Selected: return "Selected";
101    case P::TracksLiveness: return "TracksLiveness";
102    case P::TiedOpsRewritten: return "TiedOpsRewritten";
103    case P::FailsVerification: return "FailsVerification";
104    case P::TracksDebugUserValues: return "TracksDebugUserValues";
105    }
106    // clang-format on
107    llvm_unreachable("Invalid machine function property");
108  }
109  
setUnsafeStackSize(const Function & F,MachineFrameInfo & FrameInfo)110  void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) {
111    if (!F.hasFnAttribute(Attribute::SafeStack))
112      return;
113  
114    auto *Existing =
115        dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation));
116  
117    if (!Existing || Existing->getNumOperands() != 2)
118      return;
119  
120    auto *MetadataName = "unsafe-stack-size";
121    if (auto &N = Existing->getOperand(0)) {
122      if (cast<MDString>(N.get())->getString() == MetadataName) {
123        if (auto &Op = Existing->getOperand(1)) {
124          auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue();
125          FrameInfo.setUnsafeStackSize(Val);
126        }
127      }
128    }
129  }
130  
131  // Pin the vtable to this file.
anchor()132  void MachineFunction::Delegate::anchor() {}
133  
print(raw_ostream & OS) const134  void MachineFunctionProperties::print(raw_ostream &OS) const {
135    const char *Separator = "";
136    for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
137      if (!Properties[I])
138        continue;
139      OS << Separator << getPropertyName(static_cast<Property>(I));
140      Separator = ", ";
141    }
142  }
143  
144  //===----------------------------------------------------------------------===//
145  // MachineFunction implementation
146  //===----------------------------------------------------------------------===//
147  
148  // Out-of-line virtual method.
149  MachineFunctionInfo::~MachineFunctionInfo() = default;
150  
deleteNode(MachineBasicBlock * MBB)151  void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
152    MBB->getParent()->deleteMachineBasicBlock(MBB);
153  }
154  
getFnStackAlignment(const TargetSubtargetInfo * STI,const Function & F)155  static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI,
156                                             const Function &F) {
157    if (auto MA = F.getFnStackAlign())
158      return *MA;
159    return STI->getFrameLowering()->getStackAlign();
160  }
161  
MachineFunction(Function & F,const LLVMTargetMachine & Target,const TargetSubtargetInfo & STI,unsigned FunctionNum,MachineModuleInfo & mmi)162  MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
163                                   const TargetSubtargetInfo &STI,
164                                   unsigned FunctionNum, MachineModuleInfo &mmi)
165      : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
166    FunctionNumber = FunctionNum;
167    init();
168  }
169  
handleInsertion(MachineInstr & MI)170  void MachineFunction::handleInsertion(MachineInstr &MI) {
171    if (TheDelegate)
172      TheDelegate->MF_HandleInsertion(MI);
173  }
174  
handleRemoval(MachineInstr & MI)175  void MachineFunction::handleRemoval(MachineInstr &MI) {
176    if (TheDelegate)
177      TheDelegate->MF_HandleRemoval(MI);
178  }
179  
init()180  void MachineFunction::init() {
181    // Assume the function starts in SSA form with correct liveness.
182    Properties.set(MachineFunctionProperties::Property::IsSSA);
183    Properties.set(MachineFunctionProperties::Property::TracksLiveness);
184    if (STI->getRegisterInfo())
185      RegInfo = new (Allocator) MachineRegisterInfo(this);
186    else
187      RegInfo = nullptr;
188  
189    MFInfo = nullptr;
190  
191    // We can realign the stack if the target supports it and the user hasn't
192    // explicitly asked us not to.
193    bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
194                        !F.hasFnAttribute("no-realign-stack");
195    FrameInfo = new (Allocator) MachineFrameInfo(
196        getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
197        /*ForcedRealign=*/CanRealignSP &&
198            F.hasFnAttribute(Attribute::StackAlignment));
199  
200    setUnsafeStackSize(F, *FrameInfo);
201  
202    if (F.hasFnAttribute(Attribute::StackAlignment))
203      FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
204  
205    ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
206    Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
207  
208    // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
209    // FIXME: Use Function::hasOptSize().
210    if (!F.hasFnAttribute(Attribute::OptimizeForSize))
211      Alignment = std::max(Alignment,
212                           STI->getTargetLowering()->getPrefFunctionAlignment());
213  
214    if (AlignAllFunctions)
215      Alignment = Align(1ULL << AlignAllFunctions);
216  
217    JumpTableInfo = nullptr;
218  
219    if (isFuncletEHPersonality(classifyEHPersonality(
220            F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
221      WinEHInfo = new (Allocator) WinEHFuncInfo();
222    }
223  
224    if (isScopedEHPersonality(classifyEHPersonality(
225            F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
226      WasmEHInfo = new (Allocator) WasmEHFuncInfo();
227    }
228  
229    assert(Target.isCompatibleDataLayout(getDataLayout()) &&
230           "Can't create a MachineFunction using a Module with a "
231           "Target-incompatible DataLayout attached\n");
232  
233    PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget());
234  }
235  
initTargetMachineFunctionInfo(const TargetSubtargetInfo & STI)236  void MachineFunction::initTargetMachineFunctionInfo(
237      const TargetSubtargetInfo &STI) {
238    assert(!MFInfo && "MachineFunctionInfo already set");
239    MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI);
240  }
241  
~MachineFunction()242  MachineFunction::~MachineFunction() {
243    clear();
244  }
245  
clear()246  void MachineFunction::clear() {
247    Properties.reset();
248    // Don't call destructors on MachineInstr and MachineOperand. All of their
249    // memory comes from the BumpPtrAllocator which is about to be purged.
250    //
251    // Do call MachineBasicBlock destructors, it contains std::vectors.
252    for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
253      I->Insts.clearAndLeakNodesUnsafely();
254    MBBNumbering.clear();
255  
256    InstructionRecycler.clear(Allocator);
257    OperandRecycler.clear(Allocator);
258    BasicBlockRecycler.clear(Allocator);
259    CodeViewAnnotations.clear();
260    VariableDbgInfos.clear();
261    if (RegInfo) {
262      RegInfo->~MachineRegisterInfo();
263      Allocator.Deallocate(RegInfo);
264    }
265    if (MFInfo) {
266      MFInfo->~MachineFunctionInfo();
267      Allocator.Deallocate(MFInfo);
268    }
269  
270    FrameInfo->~MachineFrameInfo();
271    Allocator.Deallocate(FrameInfo);
272  
273    ConstantPool->~MachineConstantPool();
274    Allocator.Deallocate(ConstantPool);
275  
276    if (JumpTableInfo) {
277      JumpTableInfo->~MachineJumpTableInfo();
278      Allocator.Deallocate(JumpTableInfo);
279    }
280  
281    if (WinEHInfo) {
282      WinEHInfo->~WinEHFuncInfo();
283      Allocator.Deallocate(WinEHInfo);
284    }
285  
286    if (WasmEHInfo) {
287      WasmEHInfo->~WasmEHFuncInfo();
288      Allocator.Deallocate(WasmEHInfo);
289    }
290  }
291  
getDataLayout() const292  const DataLayout &MachineFunction::getDataLayout() const {
293    return F.getParent()->getDataLayout();
294  }
295  
296  /// Get the JumpTableInfo for this function.
297  /// If it does not already exist, allocate one.
298  MachineJumpTableInfo *MachineFunction::
getOrCreateJumpTableInfo(unsigned EntryKind)299  getOrCreateJumpTableInfo(unsigned EntryKind) {
300    if (JumpTableInfo) return JumpTableInfo;
301  
302    JumpTableInfo = new (Allocator)
303      MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
304    return JumpTableInfo;
305  }
306  
getDenormalMode(const fltSemantics & FPType) const307  DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
308    return F.getDenormalMode(FPType);
309  }
310  
311  /// Should we be emitting segmented stack stuff for the function
shouldSplitStack() const312  bool MachineFunction::shouldSplitStack() const {
313    return getFunction().hasFnAttribute("split-stack");
314  }
315  
316  [[nodiscard]] unsigned
addFrameInst(const MCCFIInstruction & Inst)317  MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
318    FrameInstructions.push_back(Inst);
319    return FrameInstructions.size() - 1;
320  }
321  
322  /// This discards all of the MachineBasicBlock numbers and recomputes them.
323  /// This guarantees that the MBB numbers are sequential, dense, and match the
324  /// ordering of the blocks within the function.  If a specific MachineBasicBlock
325  /// is specified, only that block and those after it are renumbered.
RenumberBlocks(MachineBasicBlock * MBB)326  void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
327    if (empty()) { MBBNumbering.clear(); return; }
328    MachineFunction::iterator MBBI, E = end();
329    if (MBB == nullptr)
330      MBBI = begin();
331    else
332      MBBI = MBB->getIterator();
333  
334    // Figure out the block number this should have.
335    unsigned BlockNo = 0;
336    if (MBBI != begin())
337      BlockNo = std::prev(MBBI)->getNumber() + 1;
338  
339    for (; MBBI != E; ++MBBI, ++BlockNo) {
340      if (MBBI->getNumber() != (int)BlockNo) {
341        // Remove use of the old number.
342        if (MBBI->getNumber() != -1) {
343          assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
344                 "MBB number mismatch!");
345          MBBNumbering[MBBI->getNumber()] = nullptr;
346        }
347  
348        // If BlockNo is already taken, set that block's number to -1.
349        if (MBBNumbering[BlockNo])
350          MBBNumbering[BlockNo]->setNumber(-1);
351  
352        MBBNumbering[BlockNo] = &*MBBI;
353        MBBI->setNumber(BlockNo);
354      }
355    }
356  
357    // Okay, all the blocks are renumbered.  If we have compactified the block
358    // numbering, shrink MBBNumbering now.
359    assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
360    MBBNumbering.resize(BlockNo);
361  }
362  
363  /// This method iterates over the basic blocks and assigns their IsBeginSection
364  /// and IsEndSection fields. This must be called after MBB layout is finalized
365  /// and the SectionID's are assigned to MBBs.
assignBeginEndSections()366  void MachineFunction::assignBeginEndSections() {
367    front().setIsBeginSection();
368    auto CurrentSectionID = front().getSectionID();
369    for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
370      if (MBBI->getSectionID() == CurrentSectionID)
371        continue;
372      MBBI->setIsBeginSection();
373      std::prev(MBBI)->setIsEndSection();
374      CurrentSectionID = MBBI->getSectionID();
375    }
376    back().setIsEndSection();
377  }
378  
379  /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
CreateMachineInstr(const MCInstrDesc & MCID,DebugLoc DL,bool NoImplicit)380  MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
381                                                    DebugLoc DL,
382                                                    bool NoImplicit) {
383    return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
384        MachineInstr(*this, MCID, std::move(DL), NoImplicit);
385  }
386  
387  /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
388  /// identical in all ways except the instruction has no parent, prev, or next.
389  MachineInstr *
CloneMachineInstr(const MachineInstr * Orig)390  MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
391    return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
392               MachineInstr(*this, *Orig);
393  }
394  
cloneMachineInstrBundle(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,const MachineInstr & Orig)395  MachineInstr &MachineFunction::cloneMachineInstrBundle(
396      MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
397      const MachineInstr &Orig) {
398    MachineInstr *FirstClone = nullptr;
399    MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
400    while (true) {
401      MachineInstr *Cloned = CloneMachineInstr(&*I);
402      MBB.insert(InsertBefore, Cloned);
403      if (FirstClone == nullptr) {
404        FirstClone = Cloned;
405      } else {
406        Cloned->bundleWithPred();
407      }
408  
409      if (!I->isBundledWithSucc())
410        break;
411      ++I;
412    }
413    // Copy over call site info to the cloned instruction if needed. If Orig is in
414    // a bundle, copyCallSiteInfo takes care of finding the call instruction in
415    // the bundle.
416    if (Orig.shouldUpdateCallSiteInfo())
417      copyCallSiteInfo(&Orig, FirstClone);
418    return *FirstClone;
419  }
420  
421  /// Delete the given MachineInstr.
422  ///
423  /// This function also serves as the MachineInstr destructor - the real
424  /// ~MachineInstr() destructor must be empty.
deleteMachineInstr(MachineInstr * MI)425  void MachineFunction::deleteMachineInstr(MachineInstr *MI) {
426    // Verify that a call site info is at valid state. This assertion should
427    // be triggered during the implementation of support for the
428    // call site info of a new architecture. If the assertion is triggered,
429    // back trace will tell where to insert a call to updateCallSiteInfo().
430    assert((!MI->isCandidateForCallSiteEntry() ||
431            CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
432           "Call site info was not updated!");
433    // Strip it for parts. The operand array and the MI object itself are
434    // independently recyclable.
435    if (MI->Operands)
436      deallocateOperandArray(MI->CapOperands, MI->Operands);
437    // Don't call ~MachineInstr() which must be trivial anyway because
438    // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
439    // destructors.
440    InstructionRecycler.Deallocate(Allocator, MI);
441  }
442  
443  /// Allocate a new MachineBasicBlock. Use this instead of
444  /// `new MachineBasicBlock'.
445  MachineBasicBlock *
CreateMachineBasicBlock(const BasicBlock * bb)446  MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
447    MachineBasicBlock *MBB =
448        new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
449            MachineBasicBlock(*this, bb);
450    // Set BBID for `-basic-block=sections=labels` and
451    // `-basic-block-sections=list` to allow robust mapping of profiles to basic
452    // blocks.
453    if (Target.getBBSectionsType() == BasicBlockSection::Labels ||
454        Target.getBBSectionsType() == BasicBlockSection::List)
455      MBB->setBBID(NextBBID++);
456    return MBB;
457  }
458  
459  /// Delete the given MachineBasicBlock.
deleteMachineBasicBlock(MachineBasicBlock * MBB)460  void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) {
461    assert(MBB->getParent() == this && "MBB parent mismatch!");
462    // Clean up any references to MBB in jump tables before deleting it.
463    if (JumpTableInfo)
464      JumpTableInfo->RemoveMBBFromJumpTables(MBB);
465    MBB->~MachineBasicBlock();
466    BasicBlockRecycler.Deallocate(Allocator, MBB);
467  }
468  
getMachineMemOperand(MachinePointerInfo PtrInfo,MachineMemOperand::Flags f,uint64_t s,Align base_alignment,const AAMDNodes & AAInfo,const MDNode * Ranges,SyncScope::ID SSID,AtomicOrdering Ordering,AtomicOrdering FailureOrdering)469  MachineMemOperand *MachineFunction::getMachineMemOperand(
470      MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
471      Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
472      SyncScope::ID SSID, AtomicOrdering Ordering,
473      AtomicOrdering FailureOrdering) {
474    return new (Allocator)
475        MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
476                          SSID, Ordering, FailureOrdering);
477  }
478  
getMachineMemOperand(MachinePointerInfo PtrInfo,MachineMemOperand::Flags f,LLT MemTy,Align base_alignment,const AAMDNodes & AAInfo,const MDNode * Ranges,SyncScope::ID SSID,AtomicOrdering Ordering,AtomicOrdering FailureOrdering)479  MachineMemOperand *MachineFunction::getMachineMemOperand(
480      MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
481      Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
482      SyncScope::ID SSID, AtomicOrdering Ordering,
483      AtomicOrdering FailureOrdering) {
484    return new (Allocator)
485        MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
486                          Ordering, FailureOrdering);
487  }
488  
getMachineMemOperand(const MachineMemOperand * MMO,const MachinePointerInfo & PtrInfo,uint64_t Size)489  MachineMemOperand *MachineFunction::getMachineMemOperand(
490      const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) {
491    return new (Allocator)
492        MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
493                          AAMDNodes(), nullptr, MMO->getSyncScopeID(),
494                          MMO->getSuccessOrdering(), MMO->getFailureOrdering());
495  }
496  
getMachineMemOperand(const MachineMemOperand * MMO,const MachinePointerInfo & PtrInfo,LLT Ty)497  MachineMemOperand *MachineFunction::getMachineMemOperand(
498      const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
499    return new (Allocator)
500        MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
501                          AAMDNodes(), nullptr, MMO->getSyncScopeID(),
502                          MMO->getSuccessOrdering(), MMO->getFailureOrdering());
503  }
504  
505  MachineMemOperand *
getMachineMemOperand(const MachineMemOperand * MMO,int64_t Offset,LLT Ty)506  MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
507                                        int64_t Offset, LLT Ty) {
508    const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
509  
510    // If there is no pointer value, the offset isn't tracked so we need to adjust
511    // the base alignment.
512    Align Alignment = PtrInfo.V.isNull()
513                          ? commonAlignment(MMO->getBaseAlign(), Offset)
514                          : MMO->getBaseAlign();
515  
516    // Do not preserve ranges, since we don't necessarily know what the high bits
517    // are anymore.
518    return new (Allocator) MachineMemOperand(
519        PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
520        MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
521        MMO->getSuccessOrdering(), MMO->getFailureOrdering());
522  }
523  
524  MachineMemOperand *
getMachineMemOperand(const MachineMemOperand * MMO,const AAMDNodes & AAInfo)525  MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
526                                        const AAMDNodes &AAInfo) {
527    MachinePointerInfo MPI = MMO->getValue() ?
528               MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
529               MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
530  
531    return new (Allocator) MachineMemOperand(
532        MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
533        MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
534        MMO->getFailureOrdering());
535  }
536  
537  MachineMemOperand *
getMachineMemOperand(const MachineMemOperand * MMO,MachineMemOperand::Flags Flags)538  MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
539                                        MachineMemOperand::Flags Flags) {
540    return new (Allocator) MachineMemOperand(
541        MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
542        MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
543        MMO->getSuccessOrdering(), MMO->getFailureOrdering());
544  }
545  
createMIExtraInfo(ArrayRef<MachineMemOperand * > MMOs,MCSymbol * PreInstrSymbol,MCSymbol * PostInstrSymbol,MDNode * HeapAllocMarker,MDNode * PCSections,uint32_t CFIType)546  MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
547      ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
548      MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections,
549      uint32_t CFIType) {
550    return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
551                                           PostInstrSymbol, HeapAllocMarker,
552                                           PCSections, CFIType);
553  }
554  
createExternalSymbolName(StringRef Name)555  const char *MachineFunction::createExternalSymbolName(StringRef Name) {
556    char *Dest = Allocator.Allocate<char>(Name.size() + 1);
557    llvm::copy(Name, Dest);
558    Dest[Name.size()] = 0;
559    return Dest;
560  }
561  
allocateRegMask()562  uint32_t *MachineFunction::allocateRegMask() {
563    unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
564    unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
565    uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
566    memset(Mask, 0, Size * sizeof(Mask[0]));
567    return Mask;
568  }
569  
allocateShuffleMask(ArrayRef<int> Mask)570  ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
571    int* AllocMask = Allocator.Allocate<int>(Mask.size());
572    copy(Mask, AllocMask);
573    return {AllocMask, Mask.size()};
574  }
575  
576  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const577  LLVM_DUMP_METHOD void MachineFunction::dump() const {
578    print(dbgs());
579  }
580  #endif
581  
getName() const582  StringRef MachineFunction::getName() const {
583    return getFunction().getName();
584  }
585  
print(raw_ostream & OS,const SlotIndexes * Indexes) const586  void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
587    OS << "# Machine code for function " << getName() << ": ";
588    getProperties().print(OS);
589    OS << '\n';
590  
591    // Print Frame Information
592    FrameInfo->print(*this, OS);
593  
594    // Print JumpTable Information
595    if (JumpTableInfo)
596      JumpTableInfo->print(OS);
597  
598    // Print Constant Pool
599    ConstantPool->print(OS);
600  
601    const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
602  
603    if (RegInfo && !RegInfo->livein_empty()) {
604      OS << "Function Live Ins: ";
605      for (MachineRegisterInfo::livein_iterator
606           I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
607        OS << printReg(I->first, TRI);
608        if (I->second)
609          OS << " in " << printReg(I->second, TRI);
610        if (std::next(I) != E)
611          OS << ", ";
612      }
613      OS << '\n';
614    }
615  
616    ModuleSlotTracker MST(getFunction().getParent());
617    MST.incorporateFunction(getFunction());
618    for (const auto &BB : *this) {
619      OS << '\n';
620      // If we print the whole function, print it at its most verbose level.
621      BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
622    }
623  
624    OS << "\n# End machine code for function " << getName() << ".\n\n";
625  }
626  
627  /// True if this function needs frame moves for debug or exceptions.
needsFrameMoves() const628  bool MachineFunction::needsFrameMoves() const {
629    return getMMI().hasDebugInfo() ||
630           getTarget().Options.ForceDwarfFrameSection ||
631           F.needsUnwindTableEntry();
632  }
633  
634  namespace llvm {
635  
636    template<>
637    struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
DOTGraphTraitsllvm::DOTGraphTraits638      DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
639  
getGraphNamellvm::DOTGraphTraits640      static std::string getGraphName(const MachineFunction *F) {
641        return ("CFG for '" + F->getName() + "' function").str();
642      }
643  
getNodeLabelllvm::DOTGraphTraits644      std::string getNodeLabel(const MachineBasicBlock *Node,
645                               const MachineFunction *Graph) {
646        std::string OutStr;
647        {
648          raw_string_ostream OSS(OutStr);
649  
650          if (isSimple()) {
651            OSS << printMBBReference(*Node);
652            if (const BasicBlock *BB = Node->getBasicBlock())
653              OSS << ": " << BB->getName();
654          } else
655            Node->print(OSS);
656        }
657  
658        if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
659  
660        // Process string output to make it nicer...
661        for (unsigned i = 0; i != OutStr.length(); ++i)
662          if (OutStr[i] == '\n') {                            // Left justify
663            OutStr[i] = '\\';
664            OutStr.insert(OutStr.begin()+i+1, 'l');
665          }
666        return OutStr;
667      }
668    };
669  
670  } // end namespace llvm
671  
viewCFG() const672  void MachineFunction::viewCFG() const
673  {
674  #ifndef NDEBUG
675    ViewGraph(this, "mf" + getName());
676  #else
677    errs() << "MachineFunction::viewCFG is only available in debug builds on "
678           << "systems with Graphviz or gv!\n";
679  #endif // NDEBUG
680  }
681  
viewCFGOnly() const682  void MachineFunction::viewCFGOnly() const
683  {
684  #ifndef NDEBUG
685    ViewGraph(this, "mf" + getName(), true);
686  #else
687    errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
688           << "systems with Graphviz or gv!\n";
689  #endif // NDEBUG
690  }
691  
692  /// Add the specified physical register as a live-in value and
693  /// create a corresponding virtual register for it.
addLiveIn(MCRegister PReg,const TargetRegisterClass * RC)694  Register MachineFunction::addLiveIn(MCRegister PReg,
695                                      const TargetRegisterClass *RC) {
696    MachineRegisterInfo &MRI = getRegInfo();
697    Register VReg = MRI.getLiveInVirtReg(PReg);
698    if (VReg) {
699      const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
700      (void)VRegRC;
701      // A physical register can be added several times.
702      // Between two calls, the register class of the related virtual register
703      // may have been constrained to match some operation constraints.
704      // In that case, check that the current register class includes the
705      // physical register and is a sub class of the specified RC.
706      assert((VRegRC == RC || (VRegRC->contains(PReg) &&
707                               RC->hasSubClassEq(VRegRC))) &&
708              "Register class mismatch!");
709      return VReg;
710    }
711    VReg = MRI.createVirtualRegister(RC);
712    MRI.addLiveIn(PReg, VReg);
713    return VReg;
714  }
715  
716  /// Return the MCSymbol for the specified non-empty jump table.
717  /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
718  /// normal 'L' label is returned.
getJTISymbol(unsigned JTI,MCContext & Ctx,bool isLinkerPrivate) const719  MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
720                                          bool isLinkerPrivate) const {
721    const DataLayout &DL = getDataLayout();
722    assert(JumpTableInfo && "No jump tables");
723    assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
724  
725    StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
726                                       : DL.getPrivateGlobalPrefix();
727    SmallString<60> Name;
728    raw_svector_ostream(Name)
729      << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
730    return Ctx.getOrCreateSymbol(Name);
731  }
732  
733  /// Return a function-local symbol to represent the PIC base.
getPICBaseSymbol() const734  MCSymbol *MachineFunction::getPICBaseSymbol() const {
735    const DataLayout &DL = getDataLayout();
736    return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
737                                 Twine(getFunctionNumber()) + "$pb");
738  }
739  
740  /// \name Exception Handling
741  /// \{
742  
743  LandingPadInfo &
getOrCreateLandingPadInfo(MachineBasicBlock * LandingPad)744  MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
745    unsigned N = LandingPads.size();
746    for (unsigned i = 0; i < N; ++i) {
747      LandingPadInfo &LP = LandingPads[i];
748      if (LP.LandingPadBlock == LandingPad)
749        return LP;
750    }
751  
752    LandingPads.push_back(LandingPadInfo(LandingPad));
753    return LandingPads[N];
754  }
755  
addInvoke(MachineBasicBlock * LandingPad,MCSymbol * BeginLabel,MCSymbol * EndLabel)756  void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
757                                  MCSymbol *BeginLabel, MCSymbol *EndLabel) {
758    LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
759    LP.BeginLabels.push_back(BeginLabel);
760    LP.EndLabels.push_back(EndLabel);
761  }
762  
addLandingPad(MachineBasicBlock * LandingPad)763  MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
764    MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
765    LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
766    LP.LandingPadLabel = LandingPadLabel;
767  
768    const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
769    if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
770      // If there's no typeid list specified, then "cleanup" is implicit.
771      // Otherwise, id 0 is reserved for the cleanup action.
772      if (LPI->isCleanup() && LPI->getNumClauses() != 0)
773        LP.TypeIds.push_back(0);
774  
775      // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
776      //        correct, but we need to do it this way because of how the DWARF EH
777      //        emitter processes the clauses.
778      for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
779        Value *Val = LPI->getClause(I - 1);
780        if (LPI->isCatch(I - 1)) {
781          LP.TypeIds.push_back(
782              getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts())));
783        } else {
784          // Add filters in a list.
785          auto *CVal = cast<Constant>(Val);
786          SmallVector<unsigned, 4> FilterList;
787          for (const Use &U : CVal->operands())
788            FilterList.push_back(
789                getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts())));
790  
791          LP.TypeIds.push_back(getFilterIDFor(FilterList));
792        }
793      }
794  
795    } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
796      for (unsigned I = CPI->arg_size(); I != 0; --I) {
797        auto *TypeInfo =
798            dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts());
799        LP.TypeIds.push_back(getTypeIDFor(TypeInfo));
800      }
801  
802    } else {
803      assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
804    }
805  
806    return LandingPadLabel;
807  }
808  
setCallSiteLandingPad(MCSymbol * Sym,ArrayRef<unsigned> Sites)809  void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
810                                              ArrayRef<unsigned> Sites) {
811    LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
812  }
813  
getTypeIDFor(const GlobalValue * TI)814  unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
815    for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
816      if (TypeInfos[i] == TI) return i + 1;
817  
818    TypeInfos.push_back(TI);
819    return TypeInfos.size();
820  }
821  
getFilterIDFor(ArrayRef<unsigned> TyIds)822  int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) {
823    // If the new filter coincides with the tail of an existing filter, then
824    // re-use the existing filter.  Folding filters more than this requires
825    // re-ordering filters and/or their elements - probably not worth it.
826    for (unsigned i : FilterEnds) {
827      unsigned j = TyIds.size();
828  
829      while (i && j)
830        if (FilterIds[--i] != TyIds[--j])
831          goto try_next;
832  
833      if (!j)
834        // The new filter coincides with range [i, end) of the existing filter.
835        return -(1 + i);
836  
837  try_next:;
838    }
839  
840    // Add the new filter.
841    int FilterID = -(1 + FilterIds.size());
842    FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
843    llvm::append_range(FilterIds, TyIds);
844    FilterEnds.push_back(FilterIds.size());
845    FilterIds.push_back(0); // terminator
846    return FilterID;
847  }
848  
849  MachineFunction::CallSiteInfoMap::iterator
getCallSiteInfo(const MachineInstr * MI)850  MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
851    assert(MI->isCandidateForCallSiteEntry() &&
852           "Call site info refers only to call (MI) candidates");
853  
854    if (!Target.Options.EmitCallSiteInfo)
855      return CallSitesInfo.end();
856    return CallSitesInfo.find(MI);
857  }
858  
859  /// Return the call machine instruction or find a call within bundle.
getCallInstr(const MachineInstr * MI)860  static const MachineInstr *getCallInstr(const MachineInstr *MI) {
861    if (!MI->isBundle())
862      return MI;
863  
864    for (const auto &BMI : make_range(getBundleStart(MI->getIterator()),
865                                      getBundleEnd(MI->getIterator())))
866      if (BMI.isCandidateForCallSiteEntry())
867        return &BMI;
868  
869    llvm_unreachable("Unexpected bundle without a call site candidate");
870  }
871  
eraseCallSiteInfo(const MachineInstr * MI)872  void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
873    assert(MI->shouldUpdateCallSiteInfo() &&
874           "Call site info refers only to call (MI) candidates or "
875           "candidates inside bundles");
876  
877    const MachineInstr *CallMI = getCallInstr(MI);
878    CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
879    if (CSIt == CallSitesInfo.end())
880      return;
881    CallSitesInfo.erase(CSIt);
882  }
883  
copyCallSiteInfo(const MachineInstr * Old,const MachineInstr * New)884  void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
885                                         const MachineInstr *New) {
886    assert(Old->shouldUpdateCallSiteInfo() &&
887           "Call site info refers only to call (MI) candidates or "
888           "candidates inside bundles");
889  
890    if (!New->isCandidateForCallSiteEntry())
891      return eraseCallSiteInfo(Old);
892  
893    const MachineInstr *OldCallMI = getCallInstr(Old);
894    CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
895    if (CSIt == CallSitesInfo.end())
896      return;
897  
898    CallSiteInfo CSInfo = CSIt->second;
899    CallSitesInfo[New] = CSInfo;
900  }
901  
moveCallSiteInfo(const MachineInstr * Old,const MachineInstr * New)902  void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
903                                         const MachineInstr *New) {
904    assert(Old->shouldUpdateCallSiteInfo() &&
905           "Call site info refers only to call (MI) candidates or "
906           "candidates inside bundles");
907  
908    if (!New->isCandidateForCallSiteEntry())
909      return eraseCallSiteInfo(Old);
910  
911    const MachineInstr *OldCallMI = getCallInstr(Old);
912    CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
913    if (CSIt == CallSitesInfo.end())
914      return;
915  
916    CallSiteInfo CSInfo = std::move(CSIt->second);
917    CallSitesInfo.erase(CSIt);
918    CallSitesInfo[New] = CSInfo;
919  }
920  
setDebugInstrNumberingCount(unsigned Num)921  void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
922    DebugInstrNumberingCount = Num;
923  }
924  
makeDebugValueSubstitution(DebugInstrOperandPair A,DebugInstrOperandPair B,unsigned Subreg)925  void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
926                                                   DebugInstrOperandPair B,
927                                                   unsigned Subreg) {
928    // Catch any accidental self-loops.
929    assert(A.first != B.first);
930    // Don't allow any substitutions _from_ the memory operand number.
931    assert(A.second != DebugOperandMemNumber);
932  
933    DebugValueSubstitutions.push_back({A, B, Subreg});
934  }
935  
substituteDebugValuesForInst(const MachineInstr & Old,MachineInstr & New,unsigned MaxOperand)936  void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
937                                                     MachineInstr &New,
938                                                     unsigned MaxOperand) {
939    // If the Old instruction wasn't tracked at all, there is no work to do.
940    unsigned OldInstrNum = Old.peekDebugInstrNum();
941    if (!OldInstrNum)
942      return;
943  
944    // Iterate over all operands looking for defs to create substitutions for.
945    // Avoid creating new instr numbers unless we create a new substitution.
946    // While this has no functional effect, it risks confusing someone reading
947    // MIR output.
948    // Examine all the operands, or the first N specified by the caller.
949    MaxOperand = std::min(MaxOperand, Old.getNumOperands());
950    for (unsigned int I = 0; I < MaxOperand; ++I) {
951      const auto &OldMO = Old.getOperand(I);
952      auto &NewMO = New.getOperand(I);
953      (void)NewMO;
954  
955      if (!OldMO.isReg() || !OldMO.isDef())
956        continue;
957      assert(NewMO.isDef());
958  
959      unsigned NewInstrNum = New.getDebugInstrNum();
960      makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
961                                 std::make_pair(NewInstrNum, I));
962    }
963  }
964  
salvageCopySSA(MachineInstr & MI,DenseMap<Register,DebugInstrOperandPair> & DbgPHICache)965  auto MachineFunction::salvageCopySSA(
966      MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache)
967      -> DebugInstrOperandPair {
968    const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
969  
970    // Check whether this copy-like instruction has already been salvaged into
971    // an operand pair.
972    Register Dest;
973    if (auto CopyDstSrc = TII.isCopyInstr(MI)) {
974      Dest = CopyDstSrc->Destination->getReg();
975    } else {
976      assert(MI.isSubregToReg());
977      Dest = MI.getOperand(0).getReg();
978    }
979  
980    auto CacheIt = DbgPHICache.find(Dest);
981    if (CacheIt != DbgPHICache.end())
982      return CacheIt->second;
983  
984    // Calculate the instruction number to use, or install a DBG_PHI.
985    auto OperandPair = salvageCopySSAImpl(MI);
986    DbgPHICache.insert({Dest, OperandPair});
987    return OperandPair;
988  }
989  
salvageCopySSAImpl(MachineInstr & MI)990  auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI)
991      -> DebugInstrOperandPair {
992    MachineRegisterInfo &MRI = getRegInfo();
993    const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
994    const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
995  
996    // Chase the value read by a copy-like instruction back to the instruction
997    // that ultimately _defines_ that value. This may pass:
998    //  * Through multiple intermediate copies, including subregister moves /
999    //    copies,
1000    //  * Copies from physical registers that must then be traced back to the
1001    //    defining instruction,
1002    //  * Or, physical registers may be live-in to (only) the entry block, which
1003    //    requires a DBG_PHI to be created.
1004    // We can pursue this problem in that order: trace back through copies,
1005    // optionally through a physical register, to a defining instruction. We
1006    // should never move from physreg to vreg. As we're still in SSA form, no need
1007    // to worry about partial definitions of registers.
1008  
1009    // Helper lambda to interpret a copy-like instruction. Takes instruction,
1010    // returns the register read and any subregister identifying which part is
1011    // read.
1012    auto GetRegAndSubreg =
1013        [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
1014      Register NewReg, OldReg;
1015      unsigned SubReg;
1016      if (Cpy.isCopy()) {
1017        OldReg = Cpy.getOperand(0).getReg();
1018        NewReg = Cpy.getOperand(1).getReg();
1019        SubReg = Cpy.getOperand(1).getSubReg();
1020      } else if (Cpy.isSubregToReg()) {
1021        OldReg = Cpy.getOperand(0).getReg();
1022        NewReg = Cpy.getOperand(2).getReg();
1023        SubReg = Cpy.getOperand(3).getImm();
1024      } else {
1025        auto CopyDetails = *TII.isCopyInstr(Cpy);
1026        const MachineOperand &Src = *CopyDetails.Source;
1027        const MachineOperand &Dest = *CopyDetails.Destination;
1028        OldReg = Dest.getReg();
1029        NewReg = Src.getReg();
1030        SubReg = Src.getSubReg();
1031      }
1032  
1033      return {NewReg, SubReg};
1034    };
1035  
1036    // First seek either the defining instruction, or a copy from a physreg.
1037    // During search, the current state is the current copy instruction, and which
1038    // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1039    // deal with those later.
1040    auto State = GetRegAndSubreg(MI);
1041    auto CurInst = MI.getIterator();
1042    SmallVector<unsigned, 4> SubregsSeen;
1043    while (true) {
1044      // If we've found a copy from a physreg, first portion of search is over.
1045      if (!State.first.isVirtual())
1046        break;
1047  
1048      // Record any subregister qualifier.
1049      if (State.second)
1050        SubregsSeen.push_back(State.second);
1051  
1052      assert(MRI.hasOneDef(State.first));
1053      MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
1054      CurInst = Inst.getIterator();
1055  
1056      // Any non-copy instruction is the defining instruction we're seeking.
1057      if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
1058        break;
1059      State = GetRegAndSubreg(Inst);
1060    };
1061  
1062    // Helper lambda to apply additional subregister substitutions to a known
1063    // instruction/operand pair. Adds new (fake) substitutions so that we can
1064    // record the subregister. FIXME: this isn't very space efficient if multiple
1065    // values are tracked back through the same copies; cache something later.
1066    auto ApplySubregisters =
1067        [&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
1068      for (unsigned Subreg : reverse(SubregsSeen)) {
1069        // Fetch a new instruction number, not attached to an actual instruction.
1070        unsigned NewInstrNumber = getNewDebugInstrNum();
1071        // Add a substitution from the "new" number to the known one, with a
1072        // qualifying subreg.
1073        makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
1074        // Return the new number; to find the underlying value, consumers need to
1075        // deal with the qualifying subreg.
1076        P = {NewInstrNumber, 0};
1077      }
1078      return P;
1079    };
1080  
1081    // If we managed to find the defining instruction after COPYs, return an
1082    // instruction / operand pair after adding subregister qualifiers.
1083    if (State.first.isVirtual()) {
1084      // Virtual register def -- we can just look up where this happens.
1085      MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
1086      for (auto &MO : Inst->operands()) {
1087        if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first)
1088          continue;
1089        return ApplySubregisters(
1090            {Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)});
1091      }
1092  
1093      llvm_unreachable("Vreg def with no corresponding operand?");
1094    }
1095  
1096    // Our search ended in a copy from a physreg: walk back up the function
1097    // looking for whatever defines the physreg.
1098    assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
1099    State = GetRegAndSubreg(*CurInst);
1100    Register RegToSeek = State.first;
1101  
1102    auto RMII = CurInst->getReverseIterator();
1103    auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
1104    for (auto &ToExamine : PrevInstrs) {
1105      for (auto &MO : ToExamine.operands()) {
1106        // Test for operand that defines something aliasing RegToSeek.
1107        if (!MO.isReg() || !MO.isDef() ||
1108            !TRI.regsOverlap(RegToSeek, MO.getReg()))
1109          continue;
1110  
1111        return ApplySubregisters(
1112            {ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)});
1113      }
1114    }
1115  
1116    MachineBasicBlock &InsertBB = *CurInst->getParent();
1117  
1118    // We reached the start of the block before finding a defining instruction.
1119    // There are numerous scenarios where this can happen:
1120    // * Constant physical registers,
1121    // * Several intrinsics that allow LLVM-IR to read arbitary registers,
1122    // * Arguments in the entry block,
1123    // * Exception handling landing pads.
1124    // Validating all of them is too difficult, so just insert a DBG_PHI reading
1125    // the variable value at this position, rather than checking it makes sense.
1126  
1127    // Create DBG_PHI for specified physreg.
1128    auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(),
1129                           TII.get(TargetOpcode::DBG_PHI));
1130    Builder.addReg(State.first);
1131    unsigned NewNum = getNewDebugInstrNum();
1132    Builder.addImm(NewNum);
1133    return ApplySubregisters({NewNum, 0u});
1134  }
1135  
finalizeDebugInstrRefs()1136  void MachineFunction::finalizeDebugInstrRefs() {
1137    auto *TII = getSubtarget().getInstrInfo();
1138  
1139    auto MakeUndefDbgValue = [&](MachineInstr &MI) {
1140      const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST);
1141      MI.setDesc(RefII);
1142      MI.setDebugValueUndef();
1143    };
1144  
1145    DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs;
1146    for (auto &MBB : *this) {
1147      for (auto &MI : MBB) {
1148        if (!MI.isDebugRef())
1149          continue;
1150  
1151        bool IsValidRef = true;
1152  
1153        for (MachineOperand &MO : MI.debug_operands()) {
1154          if (!MO.isReg())
1155            continue;
1156  
1157          Register Reg = MO.getReg();
1158  
1159          // Some vregs can be deleted as redundant in the meantime. Mark those
1160          // as DBG_VALUE $noreg. Additionally, some normal instructions are
1161          // quickly deleted, leaving dangling references to vregs with no def.
1162          if (Reg == 0 || !RegInfo->hasOneDef(Reg)) {
1163            IsValidRef = false;
1164            break;
1165          }
1166  
1167          assert(Reg.isVirtual());
1168          MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);
1169  
1170          // If we've found a copy-like instruction, follow it back to the
1171          // instruction that defines the source value, see salvageCopySSA docs
1172          // for why this is important.
1173          if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
1174            auto Result = salvageCopySSA(DefMI, ArgDbgPHIs);
1175            MO.ChangeToDbgInstrRef(Result.first, Result.second);
1176          } else {
1177            // Otherwise, identify the operand number that the VReg refers to.
1178            unsigned OperandIdx = 0;
1179            for (const auto &DefMO : DefMI.operands()) {
1180              if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg)
1181                break;
1182              ++OperandIdx;
1183            }
1184            assert(OperandIdx < DefMI.getNumOperands());
1185  
1186            // Morph this instr ref to point at the given instruction and operand.
1187            unsigned ID = DefMI.getDebugInstrNum();
1188            MO.ChangeToDbgInstrRef(ID, OperandIdx);
1189          }
1190        }
1191  
1192        if (!IsValidRef)
1193          MakeUndefDbgValue(MI);
1194      }
1195    }
1196  }
1197  
shouldUseDebugInstrRef() const1198  bool MachineFunction::shouldUseDebugInstrRef() const {
1199    // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1200    // have optimized code inlined into this unoptimized code, however with
1201    // fewer and less aggressive optimizations happening, coverage and accuracy
1202    // should not suffer.
1203    if (getTarget().getOptLevel() == CodeGenOpt::None)
1204      return false;
1205  
1206    // Don't use instr-ref if this function is marked optnone.
1207    if (F.hasFnAttribute(Attribute::OptimizeNone))
1208      return false;
1209  
1210    if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple()))
1211      return true;
1212  
1213    return false;
1214  }
1215  
useDebugInstrRef() const1216  bool MachineFunction::useDebugInstrRef() const {
1217    return UseDebugInstrRef;
1218  }
1219  
setUseDebugInstrRef(bool Use)1220  void MachineFunction::setUseDebugInstrRef(bool Use) {
1221    UseDebugInstrRef = Use;
1222  }
1223  
1224  // Use one million as a high / reserved number.
1225  const unsigned MachineFunction::DebugOperandMemNumber = 1000000;
1226  
1227  /// \}
1228  
1229  //===----------------------------------------------------------------------===//
1230  //  MachineJumpTableInfo implementation
1231  //===----------------------------------------------------------------------===//
1232  
1233  /// Return the size of each entry in the jump table.
getEntrySize(const DataLayout & TD) const1234  unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
1235    // The size of a jump table entry is 4 bytes unless the entry is just the
1236    // address of a block, in which case it is the pointer size.
1237    switch (getEntryKind()) {
1238    case MachineJumpTableInfo::EK_BlockAddress:
1239      return TD.getPointerSize();
1240    case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1241      return 8;
1242    case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1243    case MachineJumpTableInfo::EK_LabelDifference32:
1244    case MachineJumpTableInfo::EK_Custom32:
1245      return 4;
1246    case MachineJumpTableInfo::EK_Inline:
1247      return 0;
1248    }
1249    llvm_unreachable("Unknown jump table encoding!");
1250  }
1251  
1252  /// Return the alignment of each entry in the jump table.
getEntryAlignment(const DataLayout & TD) const1253  unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1254    // The alignment of a jump table entry is the alignment of int32 unless the
1255    // entry is just the address of a block, in which case it is the pointer
1256    // alignment.
1257    switch (getEntryKind()) {
1258    case MachineJumpTableInfo::EK_BlockAddress:
1259      return TD.getPointerABIAlignment(0).value();
1260    case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1261      return TD.getABIIntegerTypeAlignment(64).value();
1262    case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1263    case MachineJumpTableInfo::EK_LabelDifference32:
1264    case MachineJumpTableInfo::EK_Custom32:
1265      return TD.getABIIntegerTypeAlignment(32).value();
1266    case MachineJumpTableInfo::EK_Inline:
1267      return 1;
1268    }
1269    llvm_unreachable("Unknown jump table encoding!");
1270  }
1271  
1272  /// Create a new jump table entry in the jump table info.
createJumpTableIndex(const std::vector<MachineBasicBlock * > & DestBBs)1273  unsigned MachineJumpTableInfo::createJumpTableIndex(
1274                                 const std::vector<MachineBasicBlock*> &DestBBs) {
1275    assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1276    JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1277    return JumpTables.size()-1;
1278  }
1279  
1280  /// If Old is the target of any jump tables, update the jump tables to branch
1281  /// to New instead.
ReplaceMBBInJumpTables(MachineBasicBlock * Old,MachineBasicBlock * New)1282  bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1283                                                    MachineBasicBlock *New) {
1284    assert(Old != New && "Not making a change?");
1285    bool MadeChange = false;
1286    for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1287      ReplaceMBBInJumpTable(i, Old, New);
1288    return MadeChange;
1289  }
1290  
1291  /// If MBB is present in any jump tables, remove it.
RemoveMBBFromJumpTables(MachineBasicBlock * MBB)1292  bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
1293    bool MadeChange = false;
1294    for (MachineJumpTableEntry &JTE : JumpTables) {
1295      auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
1296      MadeChange |= (removeBeginItr != JTE.MBBs.end());
1297      JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
1298    }
1299    return MadeChange;
1300  }
1301  
1302  /// If Old is a target of the jump tables, update the jump table to branch to
1303  /// New instead.
ReplaceMBBInJumpTable(unsigned Idx,MachineBasicBlock * Old,MachineBasicBlock * New)1304  bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1305                                                   MachineBasicBlock *Old,
1306                                                   MachineBasicBlock *New) {
1307    assert(Old != New && "Not making a change?");
1308    bool MadeChange = false;
1309    MachineJumpTableEntry &JTE = JumpTables[Idx];
1310    for (MachineBasicBlock *&MBB : JTE.MBBs)
1311      if (MBB == Old) {
1312        MBB = New;
1313        MadeChange = true;
1314      }
1315    return MadeChange;
1316  }
1317  
print(raw_ostream & OS) const1318  void MachineJumpTableInfo::print(raw_ostream &OS) const {
1319    if (JumpTables.empty()) return;
1320  
1321    OS << "Jump Tables:\n";
1322  
1323    for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1324      OS << printJumpTableEntryReference(i) << ':';
1325      for (const MachineBasicBlock *MBB : JumpTables[i].MBBs)
1326        OS << ' ' << printMBBReference(*MBB);
1327      if (i != e)
1328        OS << '\n';
1329    }
1330  
1331    OS << '\n';
1332  }
1333  
1334  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1335  LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1336  #endif
1337  
printJumpTableEntryReference(unsigned Idx)1338  Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1339    return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1340  }
1341  
1342  //===----------------------------------------------------------------------===//
1343  //  MachineConstantPool implementation
1344  //===----------------------------------------------------------------------===//
1345  
anchor()1346  void MachineConstantPoolValue::anchor() {}
1347  
getSizeInBytes(const DataLayout & DL) const1348  unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
1349    return DL.getTypeAllocSize(Ty);
1350  }
1351  
getSizeInBytes(const DataLayout & DL) const1352  unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
1353    if (isMachineConstantPoolEntry())
1354      return Val.MachineCPVal->getSizeInBytes(DL);
1355    return DL.getTypeAllocSize(Val.ConstVal->getType());
1356  }
1357  
needsRelocation() const1358  bool MachineConstantPoolEntry::needsRelocation() const {
1359    if (isMachineConstantPoolEntry())
1360      return true;
1361    return Val.ConstVal->needsDynamicRelocation();
1362  }
1363  
1364  SectionKind
getSectionKind(const DataLayout * DL) const1365  MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1366    if (needsRelocation())
1367      return SectionKind::getReadOnlyWithRel();
1368    switch (getSizeInBytes(*DL)) {
1369    case 4:
1370      return SectionKind::getMergeableConst4();
1371    case 8:
1372      return SectionKind::getMergeableConst8();
1373    case 16:
1374      return SectionKind::getMergeableConst16();
1375    case 32:
1376      return SectionKind::getMergeableConst32();
1377    default:
1378      return SectionKind::getReadOnly();
1379    }
1380  }
1381  
~MachineConstantPool()1382  MachineConstantPool::~MachineConstantPool() {
1383    // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1384    // so keep track of which we've deleted to avoid double deletions.
1385    DenseSet<MachineConstantPoolValue*> Deleted;
1386    for (const MachineConstantPoolEntry &C : Constants)
1387      if (C.isMachineConstantPoolEntry()) {
1388        Deleted.insert(C.Val.MachineCPVal);
1389        delete C.Val.MachineCPVal;
1390      }
1391    for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
1392      if (Deleted.count(CPV) == 0)
1393        delete CPV;
1394    }
1395  }
1396  
1397  /// Test whether the given two constants can be allocated the same constant pool
1398  /// entry.
CanShareConstantPoolEntry(const Constant * A,const Constant * B,const DataLayout & DL)1399  static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1400                                        const DataLayout &DL) {
1401    // Handle the trivial case quickly.
1402    if (A == B) return true;
1403  
1404    // If they have the same type but weren't the same constant, quickly
1405    // reject them.
1406    if (A->getType() == B->getType()) return false;
1407  
1408    // We can't handle structs or arrays.
1409    if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1410        isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1411      return false;
1412  
1413    // For now, only support constants with the same size.
1414    uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1415    if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1416      return false;
1417  
1418    Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1419  
1420    // Try constant folding a bitcast of both instructions to an integer.  If we
1421    // get two identical ConstantInt's, then we are good to share them.  We use
1422    // the constant folding APIs to do this so that we get the benefit of
1423    // DataLayout.
1424    if (isa<PointerType>(A->getType()))
1425      A = ConstantFoldCastOperand(Instruction::PtrToInt,
1426                                  const_cast<Constant *>(A), IntTy, DL);
1427    else if (A->getType() != IntTy)
1428      A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1429                                  IntTy, DL);
1430    if (isa<PointerType>(B->getType()))
1431      B = ConstantFoldCastOperand(Instruction::PtrToInt,
1432                                  const_cast<Constant *>(B), IntTy, DL);
1433    else if (B->getType() != IntTy)
1434      B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1435                                  IntTy, DL);
1436  
1437    return A == B;
1438  }
1439  
1440  /// Create a new entry in the constant pool or return an existing one.
1441  /// User must specify the log2 of the minimum required alignment for the object.
getConstantPoolIndex(const Constant * C,Align Alignment)1442  unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1443                                                     Align Alignment) {
1444    if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1445  
1446    // Check to see if we already have this constant.
1447    //
1448    // FIXME, this could be made much more efficient for large constant pools.
1449    for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1450      if (!Constants[i].isMachineConstantPoolEntry() &&
1451          CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1452        if (Constants[i].getAlign() < Alignment)
1453          Constants[i].Alignment = Alignment;
1454        return i;
1455      }
1456  
1457    Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1458    return Constants.size()-1;
1459  }
1460  
getConstantPoolIndex(MachineConstantPoolValue * V,Align Alignment)1461  unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1462                                                     Align Alignment) {
1463    if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1464  
1465    // Check to see if we already have this constant.
1466    //
1467    // FIXME, this could be made much more efficient for large constant pools.
1468    int Idx = V->getExistingMachineCPValue(this, Alignment);
1469    if (Idx != -1) {
1470      MachineCPVsSharingEntries.insert(V);
1471      return (unsigned)Idx;
1472    }
1473  
1474    Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1475    return Constants.size()-1;
1476  }
1477  
print(raw_ostream & OS) const1478  void MachineConstantPool::print(raw_ostream &OS) const {
1479    if (Constants.empty()) return;
1480  
1481    OS << "Constant Pool:\n";
1482    for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1483      OS << "  cp#" << i << ": ";
1484      if (Constants[i].isMachineConstantPoolEntry())
1485        Constants[i].Val.MachineCPVal->print(OS);
1486      else
1487        Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1488      OS << ", align=" << Constants[i].getAlign().value();
1489      OS << "\n";
1490    }
1491  }
1492  
1493  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1494  LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1495  #endif
1496