1 // Copyright 2019 The Fuchsia Authors
2 //
3 // Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4 // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5 // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6 // This file may not be copied, modified, or distributed except according to
7 // those terms.
8 
9 //! Byte order-aware numeric primitives.
10 //!
11 //! This module contains equivalents of the native multi-byte integer types with
12 //! no alignment requirement and supporting byte order conversions.
13 //!
14 //! For each native multi-byte integer type - `u16`, `i16`, `u32`, etc - and
15 //! floating point type - `f32` and `f64` - an equivalent type is defined by
16 //! this module - [`U16`], [`I16`], [`U32`], [`F64`], etc. Unlike their native
17 //! counterparts, these types have alignment 1, and take a type parameter
18 //! specifying the byte order in which the bytes are stored in memory. Each type
19 //! implements the [`FromBytes`], [`AsBytes`], and [`Unaligned`] traits.
20 //!
21 //! These two properties, taken together, make these types useful for defining
22 //! data structures whose memory layout matches a wire format such as that of a
23 //! network protocol or a file format. Such formats often have multi-byte values
24 //! at offsets that do not respect the alignment requirements of the equivalent
25 //! native types, and stored in a byte order not necessarily the same as that of
26 //! the target platform.
27 //!
28 //! Type aliases are provided for common byte orders in the [`big_endian`],
29 //! [`little_endian`], [`network_endian`], and [`native_endian`] submodules.
30 //!
31 //! # Example
32 //!
33 //! One use of these types is for representing network packet formats, such as
34 //! UDP:
35 //!
36 //! ```rust,edition2021
37 //! # #[cfg(feature = "derive")] { // This example uses derives, and won't compile without them
38 //! use zerocopy::{AsBytes, ByteSlice, FromBytes, FromZeroes, Ref, Unaligned};
39 //! use zerocopy::byteorder::network_endian::U16;
40 //!
41 //! #[derive(FromZeroes, FromBytes, AsBytes, Unaligned)]
42 //! #[repr(C)]
43 //! struct UdpHeader {
44 //!     src_port: U16,
45 //!     dst_port: U16,
46 //!     length: U16,
47 //!     checksum: U16,
48 //! }
49 //!
50 //! struct UdpPacket<B: ByteSlice> {
51 //!     header: Ref<B, UdpHeader>,
52 //!     body: B,
53 //! }
54 //!
55 //! impl<B: ByteSlice> UdpPacket<B> {
56 //!     fn parse(bytes: B) -> Option<UdpPacket<B>> {
57 //!         let (header, body) = Ref::new_from_prefix(bytes)?;
58 //!         Some(UdpPacket { header, body })
59 //!     }
60 //!
61 //!     fn src_port(&self) -> u16 {
62 //!         self.header.src_port.get()
63 //!     }
64 //!
65 //!     // more getters...
66 //! }
67 //! # }
68 //! ```
69 
70 use core::{
71     convert::{TryFrom, TryInto},
72     fmt::{self, Binary, Debug, Display, Formatter, LowerHex, Octal, UpperHex},
73     marker::PhantomData,
74     num::TryFromIntError,
75 };
76 
77 // We don't reexport `WriteBytesExt` or `ReadBytesExt` because those are only
78 // available with the `std` feature enabled, and zerocopy is `no_std` by
79 // default.
80 pub use ::byteorder::{BigEndian, ByteOrder, LittleEndian, NativeEndian, NetworkEndian, BE, LE};
81 
82 use super::*;
83 
84 macro_rules! impl_fmt_trait {
85     ($name:ident, $native:ident, $trait:ident) => {
86         impl<O: ByteOrder> $trait for $name<O> {
87             #[inline(always)]
88             fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
89                 $trait::fmt(&self.get(), f)
90             }
91         }
92     };
93 }
94 
95 macro_rules! impl_fmt_traits {
96     ($name:ident, $native:ident, "floating point number") => {
97         impl_fmt_trait!($name, $native, Display);
98     };
99     ($name:ident, $native:ident, "unsigned integer") => {
100         impl_fmt_traits!($name, $native, @all_types);
101     };
102     ($name:ident, $native:ident, "signed integer") => {
103         impl_fmt_traits!($name, $native, @all_types);
104     };
105     ($name:ident, $native:ident, @all_types) => {
106         impl_fmt_trait!($name, $native, Display);
107         impl_fmt_trait!($name, $native, Octal);
108         impl_fmt_trait!($name, $native, LowerHex);
109         impl_fmt_trait!($name, $native, UpperHex);
110         impl_fmt_trait!($name, $native, Binary);
111     };
112 }
113 
114 macro_rules! impl_ops_traits {
115     ($name:ident, $native:ident, "floating point number") => {
116         impl_ops_traits!($name, $native, @all_types);
117         impl_ops_traits!($name, $native, @signed_integer_floating_point);
118     };
119     ($name:ident, $native:ident, "unsigned integer") => {
120         impl_ops_traits!($name, $native, @signed_unsigned_integer);
121         impl_ops_traits!($name, $native, @all_types);
122     };
123     ($name:ident, $native:ident, "signed integer") => {
124         impl_ops_traits!($name, $native, @signed_unsigned_integer);
125         impl_ops_traits!($name, $native, @signed_integer_floating_point);
126         impl_ops_traits!($name, $native, @all_types);
127     };
128     ($name:ident, $native:ident, @signed_unsigned_integer) => {
129         impl_ops_traits!(@without_byteorder_swap $name, $native, BitAnd, bitand, BitAndAssign, bitand_assign);
130         impl_ops_traits!(@without_byteorder_swap $name, $native, BitOr, bitor, BitOrAssign, bitor_assign);
131         impl_ops_traits!(@without_byteorder_swap $name, $native, BitXor, bitxor, BitXorAssign, bitxor_assign);
132         impl_ops_traits!(@with_byteorder_swap $name, $native, Shl, shl, ShlAssign, shl_assign);
133         impl_ops_traits!(@with_byteorder_swap $name, $native, Shr, shr, ShrAssign, shr_assign);
134 
135         impl<O> core::ops::Not for $name<O> {
136             type Output = $name<O>;
137 
138             #[inline(always)]
139             fn not(self) -> $name<O> {
140                  let self_native = $native::from_ne_bytes(self.0);
141                  $name((!self_native).to_ne_bytes(), PhantomData)
142             }
143         }
144     };
145     ($name:ident, $native:ident, @signed_integer_floating_point) => {
146         impl<O: ByteOrder> core::ops::Neg for $name<O> {
147             type Output = $name<O>;
148 
149             #[inline(always)]
150             fn neg(self) -> $name<O> {
151                 let self_native: $native = self.get();
152                 #[allow(clippy::arithmetic_side_effects)]
153                 $name::<O>::new(-self_native)
154             }
155         }
156     };
157     ($name:ident, $native:ident, @all_types) => {
158         impl_ops_traits!(@with_byteorder_swap $name, $native, Add, add, AddAssign, add_assign);
159         impl_ops_traits!(@with_byteorder_swap $name, $native, Div, div, DivAssign, div_assign);
160         impl_ops_traits!(@with_byteorder_swap $name, $native, Mul, mul, MulAssign, mul_assign);
161         impl_ops_traits!(@with_byteorder_swap $name, $native, Rem, rem, RemAssign, rem_assign);
162         impl_ops_traits!(@with_byteorder_swap $name, $native, Sub, sub, SubAssign, sub_assign);
163     };
164     (@with_byteorder_swap $name:ident, $native:ident, $trait:ident, $method:ident, $trait_assign:ident, $method_assign:ident) => {
165         impl<O: ByteOrder> core::ops::$trait for $name<O> {
166             type Output = $name<O>;
167 
168             #[inline(always)]
169             fn $method(self, rhs: $name<O>) -> $name<O> {
170                 let self_native: $native = self.get();
171                 let rhs_native: $native = rhs.get();
172                 let result_native = core::ops::$trait::$method(self_native, rhs_native);
173                 $name::<O>::new(result_native)
174             }
175         }
176 
177         impl<O: ByteOrder> core::ops::$trait_assign for $name<O> {
178             #[inline(always)]
179             fn $method_assign(&mut self, rhs: $name<O>) {
180                 *self = core::ops::$trait::$method(*self, rhs);
181             }
182         }
183     };
184     // Implement traits in terms of the same trait on the native type, but
185     // without performing a byte order swap. This only works for bitwise
186     // operations like `&`, `|`, etc.
187     (@without_byteorder_swap $name:ident, $native:ident, $trait:ident, $method:ident, $trait_assign:ident, $method_assign:ident) => {
188         impl<O: ByteOrder> core::ops::$trait for $name<O> {
189             type Output = $name<O>;
190 
191             #[inline(always)]
192             fn $method(self, rhs: $name<O>) -> $name<O> {
193                 let self_native = $native::from_ne_bytes(self.0);
194                 let rhs_native = $native::from_ne_bytes(rhs.0);
195                 let result_native = core::ops::$trait::$method(self_native, rhs_native);
196                 $name(result_native.to_ne_bytes(), PhantomData)
197             }
198         }
199 
200         impl<O: ByteOrder> core::ops::$trait_assign for $name<O> {
201             #[inline(always)]
202             fn $method_assign(&mut self, rhs: $name<O>) {
203                 *self = core::ops::$trait::$method(*self, rhs);
204             }
205         }
206     };
207 }
208 
209 macro_rules! doc_comment {
210     ($x:expr, $($tt:tt)*) => {
211         #[doc = $x]
212         $($tt)*
213     };
214 }
215 
216 macro_rules! define_max_value_constant {
217     ($name:ident, $bytes:expr, "unsigned integer") => {
218         /// The maximum value.
219         ///
220         /// This constant should be preferred to constructing a new value using
221         /// `new`, as `new` may perform an endianness swap depending on the
222         /// endianness `O` and the endianness of the platform.
223         pub const MAX_VALUE: $name<O> = $name([0xFFu8; $bytes], PhantomData);
224     };
225     // We don't provide maximum and minimum value constants for signed values
226     // and floats because there's no way to do it generically - it would require
227     // a different value depending on the value of the `ByteOrder` type
228     // parameter. Currently, one workaround would be to provide implementations
229     // for concrete implementations of that trait. In the long term, if we are
230     // ever able to make the `new` constructor a const fn, we could use that
231     // instead.
232     ($name:ident, $bytes:expr, "signed integer") => {};
233     ($name:ident, $bytes:expr, "floating point number") => {};
234 }
235 
236 macro_rules! define_type {
237     ($article:ident,
238         $name:ident,
239         $native:ident,
240         $bits:expr,
241         $bytes:expr,
242         $read_method:ident,
243         $write_method:ident,
244         $number_kind:tt,
245         [$($larger_native:ty),*],
246         [$($larger_native_try:ty),*],
247         [$($larger_byteorder:ident),*],
248         [$($larger_byteorder_try:ident),*]) => {
249         doc_comment! {
250             concat!("A ", stringify!($bits), "-bit ", $number_kind,
251             " stored in a given byte order.
252 
253 `", stringify!($name), "` is like the native `", stringify!($native), "` type with
254 two major differences: First, it has no alignment requirement (its alignment is 1).
255 Second, the endianness of its memory layout is given by the type parameter `O`,
256 which can be any type which implements [`ByteOrder`]. In particular, this refers
257 to [`BigEndian`], [`LittleEndian`], [`NativeEndian`], and [`NetworkEndian`].
258 
259 ", stringify!($article), " `", stringify!($name), "` can be constructed using
260 the [`new`] method, and its contained value can be obtained as a native
261 `",stringify!($native), "` using the [`get`] method, or updated in place with
262 the [`set`] method. In all cases, if the endianness `O` is not the same as the
263 endianness of the current platform, an endianness swap will be performed in
264 order to uphold the invariants that a) the layout of `", stringify!($name), "`
265 has endianness `O` and that, b) the layout of `", stringify!($native), "` has
266 the platform's native endianness.
267 
268 `", stringify!($name), "` implements [`FromBytes`], [`AsBytes`], and [`Unaligned`],
269 making it useful for parsing and serialization. See the module documentation for an
270 example of how it can be used for parsing UDP packets.
271 
272 [`new`]: crate::byteorder::", stringify!($name), "::new
273 [`get`]: crate::byteorder::", stringify!($name), "::get
274 [`set`]: crate::byteorder::", stringify!($name), "::set
275 [`FromBytes`]: crate::FromBytes
276 [`AsBytes`]: crate::AsBytes
277 [`Unaligned`]: crate::Unaligned"),
278             #[derive(Copy, Clone, Eq, PartialEq, Hash)]
279             #[cfg_attr(any(feature = "derive", test), derive(KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned))]
280             #[repr(transparent)]
281             pub struct $name<O>([u8; $bytes], PhantomData<O>);
282         }
283 
284         #[cfg(not(any(feature = "derive", test)))]
285         impl_known_layout!(O => $name<O>);
286 
287         safety_comment! {
288             /// SAFETY:
289             /// `$name<O>` is `repr(transparent)`, and so it has the same layout
290             /// as its only non-zero field, which is a `u8` array. `u8` arrays
291             /// are `FromZeroes`, `FromBytes`, `AsBytes`, and `Unaligned`.
292             impl_or_verify!(O => FromZeroes for $name<O>);
293             impl_or_verify!(O => FromBytes for $name<O>);
294             impl_or_verify!(O => AsBytes for $name<O>);
295             impl_or_verify!(O => Unaligned for $name<O>);
296         }
297 
298         impl<O> Default for $name<O> {
299             #[inline(always)]
300             fn default() -> $name<O> {
301                 $name::ZERO
302             }
303         }
304 
305         impl<O> $name<O> {
306             /// The value zero.
307             ///
308             /// This constant should be preferred to constructing a new value
309             /// using `new`, as `new` may perform an endianness swap depending
310             /// on the endianness and platform.
311             pub const ZERO: $name<O> = $name([0u8; $bytes], PhantomData);
312 
313             define_max_value_constant!($name, $bytes, $number_kind);
314 
315             /// Constructs a new value from bytes which are already in the
316             /// endianness `O`.
317             #[inline(always)]
318             pub const fn from_bytes(bytes: [u8; $bytes]) -> $name<O> {
319                 $name(bytes, PhantomData)
320             }
321         }
322 
323         impl<O: ByteOrder> $name<O> {
324             // TODO(joshlf): Make these const fns if the `ByteOrder` methods
325             // ever become const fns.
326 
327             /// Constructs a new value, possibly performing an endianness swap
328             /// to guarantee that the returned value has endianness `O`.
329             #[inline(always)]
330             pub fn new(n: $native) -> $name<O> {
331                 let mut out = $name::default();
332                 O::$write_method(&mut out.0[..], n);
333                 out
334             }
335 
336             /// Returns the value as a primitive type, possibly performing an
337             /// endianness swap to guarantee that the return value has the
338             /// endianness of the native platform.
339             #[inline(always)]
340             pub fn get(self) -> $native {
341                 O::$read_method(&self.0[..])
342             }
343 
344             /// Updates the value in place as a primitive type, possibly
345             /// performing an endianness swap to guarantee that the stored value
346             /// has the endianness `O`.
347             #[inline(always)]
348             pub fn set(&mut self, n: $native) {
349                 O::$write_method(&mut self.0[..], n);
350             }
351         }
352 
353         // The reasoning behind which traits to implement here is to only
354         // implement traits which won't cause inference issues. Notably,
355         // comparison traits like PartialEq and PartialOrd tend to cause
356         // inference issues.
357 
358         impl<O: ByteOrder> From<$name<O>> for [u8; $bytes] {
359             #[inline(always)]
360             fn from(x: $name<O>) -> [u8; $bytes] {
361                 x.0
362             }
363         }
364 
365         impl<O: ByteOrder> From<[u8; $bytes]> for $name<O> {
366             #[inline(always)]
367             fn from(bytes: [u8; $bytes]) -> $name<O> {
368                 $name(bytes, PhantomData)
369             }
370         }
371 
372         impl<O: ByteOrder> From<$name<O>> for $native {
373             #[inline(always)]
374             fn from(x: $name<O>) -> $native {
375                 x.get()
376             }
377         }
378 
379         impl<O: ByteOrder> From<$native> for $name<O> {
380             #[inline(always)]
381             fn from(x: $native) -> $name<O> {
382                 $name::new(x)
383             }
384         }
385 
386         $(
387             impl<O: ByteOrder> From<$name<O>> for $larger_native {
388                 #[inline(always)]
389                 fn from(x: $name<O>) -> $larger_native {
390                     x.get().into()
391                 }
392             }
393         )*
394 
395         $(
396             impl<O: ByteOrder> TryFrom<$larger_native_try> for $name<O> {
397                 type Error = TryFromIntError;
398                 #[inline(always)]
399                 fn try_from(x: $larger_native_try) -> Result<$name<O>, TryFromIntError> {
400                     $native::try_from(x).map($name::new)
401                 }
402             }
403         )*
404 
405         $(
406             impl<O: ByteOrder, P: ByteOrder> From<$name<O>> for $larger_byteorder<P> {
407                 #[inline(always)]
408                 fn from(x: $name<O>) -> $larger_byteorder<P> {
409                     $larger_byteorder::new(x.get().into())
410                 }
411             }
412         )*
413 
414         $(
415             impl<O: ByteOrder, P: ByteOrder> TryFrom<$larger_byteorder_try<P>> for $name<O> {
416                 type Error = TryFromIntError;
417                 #[inline(always)]
418                 fn try_from(x: $larger_byteorder_try<P>) -> Result<$name<O>, TryFromIntError> {
419                     x.get().try_into().map($name::new)
420                 }
421             }
422         )*
423 
424         impl<O: ByteOrder> AsRef<[u8; $bytes]> for $name<O> {
425             #[inline(always)]
426             fn as_ref(&self) -> &[u8; $bytes] {
427                 &self.0
428             }
429         }
430 
431         impl<O: ByteOrder> AsMut<[u8; $bytes]> for $name<O> {
432             #[inline(always)]
433             fn as_mut(&mut self) -> &mut [u8; $bytes] {
434                 &mut self.0
435             }
436         }
437 
438         impl<O: ByteOrder> PartialEq<$name<O>> for [u8; $bytes] {
439             #[inline(always)]
440             fn eq(&self, other: &$name<O>) -> bool {
441                 self.eq(&other.0)
442             }
443         }
444 
445         impl<O: ByteOrder> PartialEq<[u8; $bytes]> for $name<O> {
446             #[inline(always)]
447             fn eq(&self, other: &[u8; $bytes]) -> bool {
448                 self.0.eq(other)
449             }
450         }
451 
452         impl_fmt_traits!($name, $native, $number_kind);
453         impl_ops_traits!($name, $native, $number_kind);
454 
455         impl<O: ByteOrder> Debug for $name<O> {
456             #[inline]
457             fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
458                 // This results in a format like "U16(42)".
459                 f.debug_tuple(stringify!($name)).field(&self.get()).finish()
460             }
461         }
462     };
463 }
464 
465 define_type!(
466     A,
467     U16,
468     u16,
469     16,
470     2,
471     read_u16,
472     write_u16,
473     "unsigned integer",
474     [u32, u64, u128, usize],
475     [u32, u64, u128, usize],
476     [U32, U64, U128],
477     [U32, U64, U128]
478 );
479 define_type!(
480     A,
481     U32,
482     u32,
483     32,
484     4,
485     read_u32,
486     write_u32,
487     "unsigned integer",
488     [u64, u128],
489     [u64, u128],
490     [U64, U128],
491     [U64, U128]
492 );
493 define_type!(
494     A,
495     U64,
496     u64,
497     64,
498     8,
499     read_u64,
500     write_u64,
501     "unsigned integer",
502     [u128],
503     [u128],
504     [U128],
505     [U128]
506 );
507 define_type!(A, U128, u128, 128, 16, read_u128, write_u128, "unsigned integer", [], [], [], []);
508 define_type!(
509     An,
510     I16,
511     i16,
512     16,
513     2,
514     read_i16,
515     write_i16,
516     "signed integer",
517     [i32, i64, i128, isize],
518     [i32, i64, i128, isize],
519     [I32, I64, I128],
520     [I32, I64, I128]
521 );
522 define_type!(
523     An,
524     I32,
525     i32,
526     32,
527     4,
528     read_i32,
529     write_i32,
530     "signed integer",
531     [i64, i128],
532     [i64, i128],
533     [I64, I128],
534     [I64, I128]
535 );
536 define_type!(
537     An,
538     I64,
539     i64,
540     64,
541     8,
542     read_i64,
543     write_i64,
544     "signed integer",
545     [i128],
546     [i128],
547     [I128],
548     [I128]
549 );
550 define_type!(An, I128, i128, 128, 16, read_i128, write_i128, "signed integer", [], [], [], []);
551 define_type!(
552     An,
553     F32,
554     f32,
555     32,
556     4,
557     read_f32,
558     write_f32,
559     "floating point number",
560     [f64],
561     [],
562     [F64],
563     []
564 );
565 define_type!(An, F64, f64, 64, 8, read_f64, write_f64, "floating point number", [], [], [], []);
566 
567 macro_rules! module {
568     ($name:ident, $trait:ident, $endianness_str:expr) => {
569         /// Numeric primitives stored in
570         #[doc = $endianness_str]
571         /// byte order.
572         pub mod $name {
573             use byteorder::$trait;
574 
575             module!(@ty U16,  $trait, "16-bit unsigned integer", $endianness_str);
576             module!(@ty U32,  $trait, "32-bit unsigned integer", $endianness_str);
577             module!(@ty U64,  $trait, "64-bit unsigned integer", $endianness_str);
578             module!(@ty U128, $trait, "128-bit unsigned integer", $endianness_str);
579             module!(@ty I16,  $trait, "16-bit signed integer", $endianness_str);
580             module!(@ty I32,  $trait, "32-bit signed integer", $endianness_str);
581             module!(@ty I64,  $trait, "64-bit signed integer", $endianness_str);
582             module!(@ty I128, $trait, "128-bit signed integer", $endianness_str);
583             module!(@ty F32,  $trait, "32-bit floating point number", $endianness_str);
584             module!(@ty F64,  $trait, "64-bit floating point number", $endianness_str);
585         }
586     };
587     (@ty $ty:ident, $trait:ident, $desc_str:expr, $endianness_str:expr) => {
588         /// A
589         #[doc = $desc_str]
590         /// stored in
591         #[doc = $endianness_str]
592         /// byte order.
593         pub type $ty = crate::byteorder::$ty<$trait>;
594     };
595 }
596 
597 module!(big_endian, BigEndian, "big-endian");
598 module!(little_endian, LittleEndian, "little-endian");
599 module!(network_endian, NetworkEndian, "network-endian");
600 module!(native_endian, NativeEndian, "native-endian");
601 
602 #[cfg(any(test, kani))]
603 mod tests {
604     use ::byteorder::NativeEndian;
605 
606     use {
607         super::*,
608         crate::{AsBytes, FromBytes, Unaligned},
609     };
610 
611     #[cfg(not(kani))]
612     mod compatibility {
613         pub(super) use rand::{
614             distributions::{Distribution, Standard},
615             rngs::SmallRng,
616             Rng, SeedableRng,
617         };
618 
619         pub(crate) trait Arbitrary {}
620 
621         impl<T> Arbitrary for T {}
622     }
623 
624     #[cfg(kani)]
625     mod compatibility {
626         pub(crate) use kani::Arbitrary;
627 
628         pub(crate) struct SmallRng;
629 
630         impl SmallRng {
seed_from_u64(_state: u64) -> Self631             pub(crate) fn seed_from_u64(_state: u64) -> Self {
632                 Self
633             }
634         }
635 
636         pub(crate) trait Rng {
sample<T, D: Distribution<T>>(&mut self, _distr: D) -> T where T: Arbitrary,637             fn sample<T, D: Distribution<T>>(&mut self, _distr: D) -> T
638             where
639                 T: Arbitrary,
640             {
641                 kani::any()
642             }
643         }
644 
645         impl Rng for SmallRng {}
646 
647         pub(crate) trait Distribution<T> {}
648         impl<T, U> Distribution<T> for U {}
649 
650         pub(crate) struct Standard;
651     }
652 
653     use compatibility::*;
654 
655     // A native integer type (u16, i32, etc).
656     #[cfg_attr(kani, allow(dead_code))]
657     trait Native: Arbitrary + FromBytes + AsBytes + Copy + PartialEq + Debug {
658         const ZERO: Self;
659         const MAX_VALUE: Self;
660 
661         type Distribution: Distribution<Self>;
662         const DIST: Self::Distribution;
663 
rand<R: Rng>(rng: &mut R) -> Self664         fn rand<R: Rng>(rng: &mut R) -> Self {
665             rng.sample(Self::DIST)
666         }
667 
checked_add(self, rhs: Self) -> Option<Self>668         fn checked_add(self, rhs: Self) -> Option<Self>;
checked_div(self, rhs: Self) -> Option<Self>669         fn checked_div(self, rhs: Self) -> Option<Self>;
checked_mul(self, rhs: Self) -> Option<Self>670         fn checked_mul(self, rhs: Self) -> Option<Self>;
checked_rem(self, rhs: Self) -> Option<Self>671         fn checked_rem(self, rhs: Self) -> Option<Self>;
checked_sub(self, rhs: Self) -> Option<Self>672         fn checked_sub(self, rhs: Self) -> Option<Self>;
checked_shl(self, rhs: Self) -> Option<Self>673         fn checked_shl(self, rhs: Self) -> Option<Self>;
checked_shr(self, rhs: Self) -> Option<Self>674         fn checked_shr(self, rhs: Self) -> Option<Self>;
675 
is_nan(self) -> bool676         fn is_nan(self) -> bool;
677 
678         /// For `f32` and `f64`, NaN values are not considered equal to
679         /// themselves. This method is like `assert_eq!`, but it treats NaN
680         /// values as equal.
assert_eq_or_nan(self, other: Self)681         fn assert_eq_or_nan(self, other: Self) {
682             let slf = (!self.is_nan()).then(|| self);
683             let other = (!other.is_nan()).then(|| other);
684             assert_eq!(slf, other);
685         }
686     }
687 
688     trait ByteArray:
689         FromBytes + AsBytes + Copy + AsRef<[u8]> + AsMut<[u8]> + Debug + Default + Eq
690     {
691         /// Invert the order of the bytes in the array.
invert(self) -> Self692         fn invert(self) -> Self;
693     }
694 
695     trait ByteOrderType: FromBytes + AsBytes + Unaligned + Copy + Eq + Debug {
696         type Native: Native;
697         type ByteArray: ByteArray;
698 
699         const ZERO: Self;
700 
new(native: Self::Native) -> Self701         fn new(native: Self::Native) -> Self;
get(self) -> Self::Native702         fn get(self) -> Self::Native;
set(&mut self, native: Self::Native)703         fn set(&mut self, native: Self::Native);
from_bytes(bytes: Self::ByteArray) -> Self704         fn from_bytes(bytes: Self::ByteArray) -> Self;
into_bytes(self) -> Self::ByteArray705         fn into_bytes(self) -> Self::ByteArray;
706 
707         /// For `f32` and `f64`, NaN values are not considered equal to
708         /// themselves. This method is like `assert_eq!`, but it treats NaN
709         /// values as equal.
assert_eq_or_nan(self, other: Self)710         fn assert_eq_or_nan(self, other: Self) {
711             let slf = (!self.get().is_nan()).then(|| self);
712             let other = (!other.get().is_nan()).then(|| other);
713             assert_eq!(slf, other);
714         }
715     }
716 
717     trait ByteOrderTypeUnsigned: ByteOrderType {
718         const MAX_VALUE: Self;
719     }
720 
721     macro_rules! impl_byte_array {
722         ($bytes:expr) => {
723             impl ByteArray for [u8; $bytes] {
724                 fn invert(mut self) -> [u8; $bytes] {
725                     self.reverse();
726                     self
727                 }
728             }
729         };
730     }
731 
732     impl_byte_array!(2);
733     impl_byte_array!(4);
734     impl_byte_array!(8);
735     impl_byte_array!(16);
736 
737     macro_rules! impl_byte_order_type_unsigned {
738         ($name:ident, unsigned) => {
739             impl<O: ByteOrder> ByteOrderTypeUnsigned for $name<O> {
740                 const MAX_VALUE: $name<O> = $name::MAX_VALUE;
741             }
742         };
743         ($name:ident, signed) => {};
744     }
745 
746     macro_rules! impl_traits {
747         ($name:ident, $native:ident, $bytes:expr, $sign:ident $(, @$float:ident)?) => {
748             impl Native for $native {
749                 // For some types, `0 as $native` is required (for example, when
750                 // `$native` is a floating-point type; `0` is an integer), but
751                 // for other types, it's a trivial cast. In all cases, Clippy
752                 // thinks it's dangerous.
753                 #[allow(trivial_numeric_casts, clippy::as_conversions)]
754                 const ZERO: $native = 0 as $native;
755                 const MAX_VALUE: $native = $native::MAX;
756 
757                 type Distribution = Standard;
758                 const DIST: Standard = Standard;
759 
760                 impl_traits!(@float_dependent_methods $(@$float)?);
761             }
762 
763             impl<O: ByteOrder> ByteOrderType for $name<O> {
764                 type Native = $native;
765                 type ByteArray = [u8; $bytes];
766 
767                 const ZERO: $name<O> = $name::ZERO;
768 
769                 fn new(native: $native) -> $name<O> {
770                     $name::new(native)
771                 }
772 
773                 fn get(self) -> $native {
774                     $name::get(self)
775                 }
776 
777                 fn set(&mut self, native: $native) {
778                     $name::set(self, native)
779                 }
780 
781                 fn from_bytes(bytes: [u8; $bytes]) -> $name<O> {
782                     $name::from(bytes)
783                 }
784 
785                 fn into_bytes(self) -> [u8; $bytes] {
786                     <[u8; $bytes]>::from(self)
787                 }
788             }
789 
790             impl_byte_order_type_unsigned!($name, $sign);
791         };
792         (@float_dependent_methods) => {
793             fn checked_add(self, rhs: Self) -> Option<Self> { self.checked_add(rhs) }
794             fn checked_div(self, rhs: Self) -> Option<Self> { self.checked_div(rhs) }
795             fn checked_mul(self, rhs: Self) -> Option<Self> { self.checked_mul(rhs) }
796             fn checked_rem(self, rhs: Self) -> Option<Self> { self.checked_rem(rhs) }
797             fn checked_sub(self, rhs: Self) -> Option<Self> { self.checked_sub(rhs) }
798             fn checked_shl(self, rhs: Self) -> Option<Self> { self.checked_shl(rhs.try_into().unwrap_or(u32::MAX)) }
799             fn checked_shr(self, rhs: Self) -> Option<Self> { self.checked_shr(rhs.try_into().unwrap_or(u32::MAX)) }
800             fn is_nan(self) -> bool { false }
801         };
802         (@float_dependent_methods @float) => {
803             fn checked_add(self, rhs: Self) -> Option<Self> { Some(self + rhs) }
804             fn checked_div(self, rhs: Self) -> Option<Self> { Some(self / rhs) }
805             fn checked_mul(self, rhs: Self) -> Option<Self> { Some(self * rhs) }
806             fn checked_rem(self, rhs: Self) -> Option<Self> { Some(self % rhs) }
807             fn checked_sub(self, rhs: Self) -> Option<Self> { Some(self - rhs) }
808             fn checked_shl(self, _rhs: Self) -> Option<Self> { unimplemented!() }
809             fn checked_shr(self, _rhs: Self) -> Option<Self> { unimplemented!() }
810             fn is_nan(self) -> bool { self.is_nan() }
811         };
812     }
813 
814     impl_traits!(U16, u16, 2, unsigned);
815     impl_traits!(U32, u32, 4, unsigned);
816     impl_traits!(U64, u64, 8, unsigned);
817     impl_traits!(U128, u128, 16, unsigned);
818     impl_traits!(I16, i16, 2, signed);
819     impl_traits!(I32, i32, 4, signed);
820     impl_traits!(I64, i64, 8, signed);
821     impl_traits!(I128, i128, 16, signed);
822     impl_traits!(F32, f32, 4, signed, @float);
823     impl_traits!(F64, f64, 8, signed, @float);
824 
825     macro_rules! call_for_unsigned_types {
826         ($fn:ident, $byteorder:ident) => {
827             $fn::<U16<$byteorder>>();
828             $fn::<U32<$byteorder>>();
829             $fn::<U64<$byteorder>>();
830             $fn::<U128<$byteorder>>();
831         };
832     }
833 
834     macro_rules! call_for_signed_types {
835         ($fn:ident, $byteorder:ident) => {
836             $fn::<I16<$byteorder>>();
837             $fn::<I32<$byteorder>>();
838             $fn::<I64<$byteorder>>();
839             $fn::<I128<$byteorder>>();
840         };
841     }
842 
843     macro_rules! call_for_float_types {
844         ($fn:ident, $byteorder:ident) => {
845             $fn::<F32<$byteorder>>();
846             $fn::<F64<$byteorder>>();
847         };
848     }
849 
850     macro_rules! call_for_all_types {
851         ($fn:ident, $byteorder:ident) => {
852             call_for_unsigned_types!($fn, $byteorder);
853             call_for_signed_types!($fn, $byteorder);
854             call_for_float_types!($fn, $byteorder);
855         };
856     }
857 
858     #[cfg(target_endian = "big")]
859     type NonNativeEndian = LittleEndian;
860     #[cfg(target_endian = "little")]
861     type NonNativeEndian = BigEndian;
862 
863     // We use a `u64` seed so that we can use `SeedableRng::seed_from_u64`.
864     // `SmallRng`'s `SeedableRng::Seed` differs by platform, so if we wanted to
865     // call `SeedableRng::from_seed`, which takes a `Seed`, we would need
866     // conditional compilation by `target_pointer_width`.
867     const RNG_SEED: u64 = 0x7A03CAE2F32B5B8F;
868 
869     const RAND_ITERS: usize = if cfg!(any(miri, kani)) {
870         // The tests below which use this constant used to take a very long time
871         // on Miri, which slows down local development and CI jobs. We're not
872         // using Miri to check for the correctness of our code, but rather its
873         // soundness, and at least in the context of these particular tests, a
874         // single loop iteration is just as good for surfacing UB as multiple
875         // iterations are.
876         //
877         // As of the writing of this comment, here's one set of measurements:
878         //
879         //   $ # RAND_ITERS == 1
880         //   $ cargo miri test -- -Z unstable-options --report-time endian
881         //   test byteorder::tests::test_native_endian ... ok <0.049s>
882         //   test byteorder::tests::test_non_native_endian ... ok <0.061s>
883         //
884         //   $ # RAND_ITERS == 1024
885         //   $ cargo miri test -- -Z unstable-options --report-time endian
886         //   test byteorder::tests::test_native_endian ... ok <25.716s>
887         //   test byteorder::tests::test_non_native_endian ... ok <38.127s>
888         1
889     } else {
890         1024
891     };
892 
893     #[cfg_attr(test, test)]
894     #[cfg_attr(kani, kani::proof)]
test_zero()895     fn test_zero() {
896         fn test_zero<T: ByteOrderType>() {
897             assert_eq!(T::ZERO.get(), T::Native::ZERO);
898         }
899 
900         call_for_all_types!(test_zero, NativeEndian);
901         call_for_all_types!(test_zero, NonNativeEndian);
902     }
903 
904     #[cfg_attr(test, test)]
905     #[cfg_attr(kani, kani::proof)]
test_max_value()906     fn test_max_value() {
907         fn test_max_value<T: ByteOrderTypeUnsigned>() {
908             assert_eq!(T::MAX_VALUE.get(), T::Native::MAX_VALUE);
909         }
910 
911         call_for_unsigned_types!(test_max_value, NativeEndian);
912         call_for_unsigned_types!(test_max_value, NonNativeEndian);
913     }
914 
915     #[cfg_attr(test, test)]
916     #[cfg_attr(kani, kani::proof)]
test_endian()917     fn test_endian() {
918         fn test<T: ByteOrderType>(invert: bool) {
919             let mut r = SmallRng::seed_from_u64(RNG_SEED);
920             for _ in 0..RAND_ITERS {
921                 let native = T::Native::rand(&mut r);
922                 let mut bytes = T::ByteArray::default();
923                 bytes.as_bytes_mut().copy_from_slice(native.as_bytes());
924                 if invert {
925                     bytes = bytes.invert();
926                 }
927                 let mut from_native = T::new(native);
928                 let from_bytes = T::from_bytes(bytes);
929 
930                 from_native.assert_eq_or_nan(from_bytes);
931                 from_native.get().assert_eq_or_nan(native);
932                 from_bytes.get().assert_eq_or_nan(native);
933 
934                 assert_eq!(from_native.into_bytes(), bytes);
935                 assert_eq!(from_bytes.into_bytes(), bytes);
936 
937                 let updated = T::Native::rand(&mut r);
938                 from_native.set(updated);
939                 from_native.get().assert_eq_or_nan(updated);
940             }
941         }
942 
943         fn test_native<T: ByteOrderType>() {
944             test::<T>(false);
945         }
946 
947         fn test_non_native<T: ByteOrderType>() {
948             test::<T>(true);
949         }
950 
951         call_for_all_types!(test_native, NativeEndian);
952         call_for_all_types!(test_non_native, NonNativeEndian);
953     }
954 
955     #[test]
test_ops_impls()956     fn test_ops_impls() {
957         // Test implementations of traits in `core::ops`. Some of these are
958         // fairly banal, but some are optimized to perform the operation without
959         // swapping byte order (namely, bit-wise operations which are identical
960         // regardless of byte order). These are important to test, and while
961         // we're testing those anyway, it's trivial to test all of the impls.
962 
963         fn test<T, F, G, H>(op: F, op_native: G, op_native_checked: Option<H>)
964         where
965             T: ByteOrderType,
966             F: Fn(T, T) -> T,
967             G: Fn(T::Native, T::Native) -> T::Native,
968             H: Fn(T::Native, T::Native) -> Option<T::Native>,
969         {
970             let mut r = SmallRng::seed_from_u64(RNG_SEED);
971             for _ in 0..RAND_ITERS {
972                 let n0 = T::Native::rand(&mut r);
973                 let n1 = T::Native::rand(&mut r);
974                 let t0 = T::new(n0);
975                 let t1 = T::new(n1);
976 
977                 // If this operation would overflow/underflow, skip it rather
978                 // than attempt to catch and recover from panics.
979                 if matches!(&op_native_checked, Some(checked) if checked(n0, n1).is_none()) {
980                     continue;
981                 }
982 
983                 let n_res = op_native(n0, n1);
984                 let t_res = op(t0, t1);
985 
986                 // For `f32` and `f64`, NaN values are not considered equal to
987                 // themselves. We store `Option<f32>`/`Option<f64>` and store
988                 // NaN as `None` so they can still be compared.
989                 let n_res = (!T::Native::is_nan(n_res)).then(|| n_res);
990                 let t_res = (!T::Native::is_nan(t_res.get())).then(|| t_res.get());
991                 assert_eq!(n_res, t_res);
992             }
993         }
994 
995         macro_rules! test {
996             (@binary $trait:ident, $method:ident $([$checked_method:ident])?, $($call_for_macros:ident),*) => {{
997                 test!(
998                     @inner $trait,
999                     core::ops::$trait::$method,
1000                     core::ops::$trait::$method,
1001                     {
1002                         #[allow(unused_mut, unused_assignments)]
1003                         let mut op_native_checked = None::<fn(T::Native, T::Native) -> Option<T::Native>>;
1004                         $(
1005                             op_native_checked = Some(T::Native::$checked_method);
1006                         )?
1007                         op_native_checked
1008                     },
1009                     $($call_for_macros),*
1010                 );
1011             }};
1012             (@unary $trait:ident, $method:ident $([$checked_method:ident])?, $($call_for_macros:ident),*) => {{
1013                 test!(
1014                     @inner $trait,
1015                     |slf, _rhs| core::ops::$trait::$method(slf),
1016                     |slf, _rhs| core::ops::$trait::$method(slf),
1017                     {
1018                         #[allow(unused_mut, unused_assignments)]
1019                         let mut op_native_checked = None::<fn(T::Native, T::Native) -> Option<T::Native>>;
1020                         $(
1021                             op_native_checked = Some(|slf, _rhs| T::Native::$checked_method(slf));
1022                         )?
1023                         op_native_checked
1024                     },
1025                     $($call_for_macros),*
1026                 );
1027             }};
1028             (@inner $trait:ident, $op:expr, $op_native:expr, $op_native_checked:expr, $($call_for_macros:ident),*) => {{
1029                 fn t<T: ByteOrderType + core::ops::$trait<Output = T>>()
1030                 where
1031                     T::Native: core::ops::$trait<Output = T::Native>,
1032                 {
1033                     test::<T, _, _, _>(
1034                         $op,
1035                         $op_native,
1036                         $op_native_checked,
1037                     );
1038                 }
1039 
1040                 $(
1041                     $call_for_macros!(t, NativeEndian);
1042                     $call_for_macros!(t, NonNativeEndian);
1043                 )*
1044             }};
1045         }
1046 
1047         test!(@binary Add, add[checked_add], call_for_all_types);
1048         test!(@binary Div, div[checked_div], call_for_all_types);
1049         test!(@binary Mul, mul[checked_mul], call_for_all_types);
1050         test!(@binary Rem, rem[checked_rem], call_for_all_types);
1051         test!(@binary Sub, sub[checked_sub], call_for_all_types);
1052 
1053         test!(@binary BitAnd, bitand, call_for_unsigned_types, call_for_signed_types);
1054         test!(@binary BitOr, bitor, call_for_unsigned_types, call_for_signed_types);
1055         test!(@binary BitXor, bitxor, call_for_unsigned_types, call_for_signed_types);
1056         test!(@binary Shl, shl[checked_shl], call_for_unsigned_types, call_for_signed_types);
1057         test!(@binary Shr, shr[checked_shr], call_for_unsigned_types, call_for_signed_types);
1058 
1059         test!(@unary Not, not, call_for_signed_types, call_for_unsigned_types);
1060         test!(@unary Neg, neg, call_for_signed_types, call_for_float_types);
1061     }
1062 
1063     #[test]
test_debug_impl()1064     fn test_debug_impl() {
1065         // Ensure that Debug applies format options to the inner value.
1066         let val = U16::<LE>::new(10);
1067         assert_eq!(format!("{:?}", val), "U16(10)");
1068         assert_eq!(format!("{:03?}", val), "U16(010)");
1069         assert_eq!(format!("{:x?}", val), "U16(a)");
1070     }
1071 }
1072