1 // Currently, rust warns when an unsafe fn contains an unsafe {} block. However,
2 // in the future, this will change to the reverse. For now, suppress this
3 // warning and generally stick with being explicit about unsafety.
4 #![allow(unused_unsafe)]
5 #![cfg_attr(not(feature = "rt"), allow(dead_code))]
6 
7 //! Time driver.
8 
9 mod entry;
10 pub(crate) use entry::TimerEntry;
11 use entry::{EntryList, TimerHandle, TimerShared, MAX_SAFE_MILLIS_DURATION};
12 
13 mod handle;
14 pub(crate) use self::handle::Handle;
15 use self::wheel::Wheel;
16 
17 mod source;
18 pub(crate) use source::TimeSource;
19 
20 mod wheel;
21 
22 use crate::loom::sync::atomic::{AtomicBool, Ordering};
23 use crate::loom::sync::{Mutex, RwLock};
24 use crate::runtime::driver::{self, IoHandle, IoStack};
25 use crate::time::error::Error;
26 use crate::time::{Clock, Duration};
27 use crate::util::WakeList;
28 
29 use crate::loom::sync::atomic::AtomicU64;
30 use std::fmt;
31 use std::{num::NonZeroU64, ptr::NonNull};
32 
33 struct AtomicOptionNonZeroU64(AtomicU64);
34 
35 // A helper type to store the `next_wake`.
36 impl AtomicOptionNonZeroU64 {
new(val: Option<NonZeroU64>) -> Self37     fn new(val: Option<NonZeroU64>) -> Self {
38         Self(AtomicU64::new(val.map_or(0, NonZeroU64::get)))
39     }
40 
store(&self, val: Option<NonZeroU64>)41     fn store(&self, val: Option<NonZeroU64>) {
42         self.0
43             .store(val.map_or(0, NonZeroU64::get), Ordering::Relaxed);
44     }
45 
load(&self) -> Option<NonZeroU64>46     fn load(&self) -> Option<NonZeroU64> {
47         NonZeroU64::new(self.0.load(Ordering::Relaxed))
48     }
49 }
50 
51 /// Time implementation that drives [`Sleep`][sleep], [`Interval`][interval], and [`Timeout`][timeout].
52 ///
53 /// A `Driver` instance tracks the state necessary for managing time and
54 /// notifying the [`Sleep`][sleep] instances once their deadlines are reached.
55 ///
56 /// It is expected that a single instance manages many individual [`Sleep`][sleep]
57 /// instances. The `Driver` implementation is thread-safe and, as such, is able
58 /// to handle callers from across threads.
59 ///
60 /// After creating the `Driver` instance, the caller must repeatedly call `park`
61 /// or `park_timeout`. The time driver will perform no work unless `park` or
62 /// `park_timeout` is called repeatedly.
63 ///
64 /// The driver has a resolution of one millisecond. Any unit of time that falls
65 /// between milliseconds are rounded up to the next millisecond.
66 ///
67 /// When an instance is dropped, any outstanding [`Sleep`][sleep] instance that has not
68 /// elapsed will be notified with an error. At this point, calling `poll` on the
69 /// [`Sleep`][sleep] instance will result in panic.
70 ///
71 /// # Implementation
72 ///
73 /// The time driver is based on the [paper by Varghese and Lauck][paper].
74 ///
75 /// A hashed timing wheel is a vector of slots, where each slot handles a time
76 /// slice. As time progresses, the timer walks over the slot for the current
77 /// instant, and processes each entry for that slot. When the timer reaches the
78 /// end of the wheel, it starts again at the beginning.
79 ///
80 /// The implementation maintains six wheels arranged in a set of levels. As the
81 /// levels go up, the slots of the associated wheel represent larger intervals
82 /// of time. At each level, the wheel has 64 slots. Each slot covers a range of
83 /// time equal to the wheel at the lower level. At level zero, each slot
84 /// represents one millisecond of time.
85 ///
86 /// The wheels are:
87 ///
88 /// * Level 0: 64 x 1 millisecond slots.
89 /// * Level 1: 64 x 64 millisecond slots.
90 /// * Level 2: 64 x ~4 second slots.
91 /// * Level 3: 64 x ~4 minute slots.
92 /// * Level 4: 64 x ~4 hour slots.
93 /// * Level 5: 64 x ~12 day slots.
94 ///
95 /// When the timer processes entries at level zero, it will notify all the
96 /// `Sleep` instances as their deadlines have been reached. For all higher
97 /// levels, all entries will be redistributed across the wheel at the next level
98 /// down. Eventually, as time progresses, entries with [`Sleep`][sleep] instances will
99 /// either be canceled (dropped) or their associated entries will reach level
100 /// zero and be notified.
101 ///
102 /// [paper]: http://www.cs.columbia.edu/~nahum/w6998/papers/ton97-timing-wheels.pdf
103 /// [sleep]: crate::time::Sleep
104 /// [timeout]: crate::time::Timeout
105 /// [interval]: crate::time::Interval
106 #[derive(Debug)]
107 pub(crate) struct Driver {
108     /// Parker to delegate to.
109     park: IoStack,
110 }
111 
112 /// Timer state shared between `Driver`, `Handle`, and `Registration`.
113 struct Inner {
114     /// The earliest time at which we promise to wake up without unparking.
115     next_wake: AtomicOptionNonZeroU64,
116 
117     /// Sharded Timer wheels.
118     wheels: RwLock<ShardedWheel>,
119 
120     /// Number of entries in the sharded timer wheels.
121     wheels_len: u32,
122 
123     /// True if the driver is being shutdown.
124     pub(super) is_shutdown: AtomicBool,
125 
126     // When `true`, a call to `park_timeout` should immediately return and time
127     // should not advance. One reason for this to be `true` is if the task
128     // passed to `Runtime::block_on` called `task::yield_now()`.
129     //
130     // While it may look racy, it only has any effect when the clock is paused
131     // and pausing the clock is restricted to a single-threaded runtime.
132     #[cfg(feature = "test-util")]
133     did_wake: AtomicBool,
134 }
135 
136 /// Wrapper around the sharded timer wheels.
137 struct ShardedWheel(Box<[Mutex<wheel::Wheel>]>);
138 
139 // ===== impl Driver =====
140 
141 impl Driver {
142     /// Creates a new `Driver` instance that uses `park` to block the current
143     /// thread and `time_source` to get the current time and convert to ticks.
144     ///
145     /// Specifying the source of time is useful when testing.
new(park: IoStack, clock: &Clock, shards: u32) -> (Driver, Handle)146     pub(crate) fn new(park: IoStack, clock: &Clock, shards: u32) -> (Driver, Handle) {
147         assert!(shards > 0);
148 
149         let time_source = TimeSource::new(clock);
150         let wheels: Vec<_> = (0..shards)
151             .map(|_| Mutex::new(wheel::Wheel::new()))
152             .collect();
153 
154         let handle = Handle {
155             time_source,
156             inner: Inner {
157                 next_wake: AtomicOptionNonZeroU64::new(None),
158                 wheels: RwLock::new(ShardedWheel(wheels.into_boxed_slice())),
159                 wheels_len: shards,
160                 is_shutdown: AtomicBool::new(false),
161                 #[cfg(feature = "test-util")]
162                 did_wake: AtomicBool::new(false),
163             },
164         };
165 
166         let driver = Driver { park };
167 
168         (driver, handle)
169     }
170 
park(&mut self, handle: &driver::Handle)171     pub(crate) fn park(&mut self, handle: &driver::Handle) {
172         self.park_internal(handle, None);
173     }
174 
park_timeout(&mut self, handle: &driver::Handle, duration: Duration)175     pub(crate) fn park_timeout(&mut self, handle: &driver::Handle, duration: Duration) {
176         self.park_internal(handle, Some(duration));
177     }
178 
shutdown(&mut self, rt_handle: &driver::Handle)179     pub(crate) fn shutdown(&mut self, rt_handle: &driver::Handle) {
180         let handle = rt_handle.time();
181 
182         if handle.is_shutdown() {
183             return;
184         }
185 
186         handle.inner.is_shutdown.store(true, Ordering::SeqCst);
187 
188         // Advance time forward to the end of time.
189 
190         handle.process_at_time(0, u64::MAX);
191 
192         self.park.shutdown(rt_handle);
193     }
194 
park_internal(&mut self, rt_handle: &driver::Handle, limit: Option<Duration>)195     fn park_internal(&mut self, rt_handle: &driver::Handle, limit: Option<Duration>) {
196         let handle = rt_handle.time();
197         assert!(!handle.is_shutdown());
198 
199         // Finds out the min expiration time to park.
200         let expiration_time = {
201             let mut wheels_lock = rt_handle.time().inner.wheels.write();
202             let expiration_time = wheels_lock
203                 .0
204                 .iter_mut()
205                 .filter_map(|wheel| wheel.get_mut().next_expiration_time())
206                 .min();
207 
208             rt_handle
209                 .time()
210                 .inner
211                 .next_wake
212                 .store(next_wake_time(expiration_time));
213 
214             expiration_time
215         };
216 
217         match expiration_time {
218             Some(when) => {
219                 let now = handle.time_source.now(rt_handle.clock());
220                 // Note that we effectively round up to 1ms here - this avoids
221                 // very short-duration microsecond-resolution sleeps that the OS
222                 // might treat as zero-length.
223                 let mut duration = handle
224                     .time_source
225                     .tick_to_duration(when.saturating_sub(now));
226 
227                 if duration > Duration::from_millis(0) {
228                     if let Some(limit) = limit {
229                         duration = std::cmp::min(limit, duration);
230                     }
231 
232                     self.park_thread_timeout(rt_handle, duration);
233                 } else {
234                     self.park.park_timeout(rt_handle, Duration::from_secs(0));
235                 }
236             }
237             None => {
238                 if let Some(duration) = limit {
239                     self.park_thread_timeout(rt_handle, duration);
240                 } else {
241                     self.park.park(rt_handle);
242                 }
243             }
244         }
245 
246         // Process pending timers after waking up
247         handle.process(rt_handle.clock());
248     }
249 
250     cfg_test_util! {
251         fn park_thread_timeout(&mut self, rt_handle: &driver::Handle, duration: Duration) {
252             let handle = rt_handle.time();
253             let clock = rt_handle.clock();
254 
255             if clock.can_auto_advance() {
256                 self.park.park_timeout(rt_handle, Duration::from_secs(0));
257 
258                 // If the time driver was woken, then the park completed
259                 // before the "duration" elapsed (usually caused by a
260                 // yield in `Runtime::block_on`). In this case, we don't
261                 // advance the clock.
262                 if !handle.did_wake() {
263                     // Simulate advancing time
264                     if let Err(msg) = clock.advance(duration) {
265                         panic!("{}", msg);
266                     }
267                 }
268             } else {
269                 self.park.park_timeout(rt_handle, duration);
270             }
271         }
272     }
273 
274     cfg_not_test_util! {
275         fn park_thread_timeout(&mut self, rt_handle: &driver::Handle, duration: Duration) {
276             self.park.park_timeout(rt_handle, duration);
277         }
278     }
279 }
280 
281 // Helper function to turn expiration_time into next_wake_time.
282 // Since the `park_timeout` will round up to 1ms for avoiding very
283 // short-duration microsecond-resolution sleeps, we do the same here.
284 // The conversion is as follows
285 // None => None
286 // Some(0) => Some(1)
287 // Some(i) => Some(i)
next_wake_time(expiration_time: Option<u64>) -> Option<NonZeroU64>288 fn next_wake_time(expiration_time: Option<u64>) -> Option<NonZeroU64> {
289     expiration_time.and_then(|v| {
290         if v == 0 {
291             NonZeroU64::new(1)
292         } else {
293             NonZeroU64::new(v)
294         }
295     })
296 }
297 
298 impl Handle {
299     /// Runs timer related logic, and returns the next wakeup time
process(&self, clock: &Clock)300     pub(self) fn process(&self, clock: &Clock) {
301         let now = self.time_source().now(clock);
302         // For fairness, randomly select one to start.
303         let shards = self.inner.get_shard_size();
304         let start = crate::runtime::context::thread_rng_n(shards);
305         self.process_at_time(start, now);
306     }
307 
process_at_time(&self, start: u32, now: u64)308     pub(self) fn process_at_time(&self, start: u32, now: u64) {
309         let shards = self.inner.get_shard_size();
310 
311         let expiration_time = (start..shards + start)
312             .filter_map(|i| self.process_at_sharded_time(i, now))
313             .min();
314 
315         self.inner.next_wake.store(next_wake_time(expiration_time));
316     }
317 
318     // Returns the next wakeup time of this shard.
process_at_sharded_time(&self, id: u32, mut now: u64) -> Option<u64>319     pub(self) fn process_at_sharded_time(&self, id: u32, mut now: u64) -> Option<u64> {
320         let mut waker_list = WakeList::new();
321         let mut wheels_lock = self.inner.wheels.read();
322         let mut lock = wheels_lock.lock_sharded_wheel(id);
323 
324         if now < lock.elapsed() {
325             // Time went backwards! This normally shouldn't happen as the Rust language
326             // guarantees that an Instant is monotonic, but can happen when running
327             // Linux in a VM on a Windows host due to std incorrectly trusting the
328             // hardware clock to be monotonic.
329             //
330             // See <https://github.com/tokio-rs/tokio/issues/3619> for more information.
331             now = lock.elapsed();
332         }
333 
334         while let Some(entry) = lock.poll(now) {
335             debug_assert!(unsafe { entry.is_pending() });
336 
337             // SAFETY: We hold the driver lock, and just removed the entry from any linked lists.
338             if let Some(waker) = unsafe { entry.fire(Ok(())) } {
339                 waker_list.push(waker);
340 
341                 if !waker_list.can_push() {
342                     // Wake a batch of wakers. To avoid deadlock, we must do this with the lock temporarily dropped.
343                     drop(lock);
344                     drop(wheels_lock);
345 
346                     waker_list.wake_all();
347 
348                     wheels_lock = self.inner.wheels.read();
349                     lock = wheels_lock.lock_sharded_wheel(id);
350                 }
351             }
352         }
353         let next_wake_up = lock.poll_at();
354         drop(lock);
355         drop(wheels_lock);
356 
357         waker_list.wake_all();
358         next_wake_up
359     }
360 
361     /// Removes a registered timer from the driver.
362     ///
363     /// The timer will be moved to the cancelled state. Wakers will _not_ be
364     /// invoked. If the timer is already completed, this function is a no-op.
365     ///
366     /// This function always acquires the driver lock, even if the entry does
367     /// not appear to be registered.
368     ///
369     /// SAFETY: The timer must not be registered with some other driver, and
370     /// `add_entry` must not be called concurrently.
clear_entry(&self, entry: NonNull<TimerShared>)371     pub(self) unsafe fn clear_entry(&self, entry: NonNull<TimerShared>) {
372         unsafe {
373             let wheels_lock = self.inner.wheels.read();
374             let mut lock = wheels_lock.lock_sharded_wheel(entry.as_ref().shard_id());
375 
376             if entry.as_ref().might_be_registered() {
377                 lock.remove(entry);
378             }
379 
380             entry.as_ref().handle().fire(Ok(()));
381         }
382     }
383 
384     /// Removes and re-adds an entry to the driver.
385     ///
386     /// SAFETY: The timer must be either unregistered, or registered with this
387     /// driver. No other threads are allowed to concurrently manipulate the
388     /// timer at all (the current thread should hold an exclusive reference to
389     /// the `TimerEntry`)
reregister( &self, unpark: &IoHandle, new_tick: u64, entry: NonNull<TimerShared>, )390     pub(self) unsafe fn reregister(
391         &self,
392         unpark: &IoHandle,
393         new_tick: u64,
394         entry: NonNull<TimerShared>,
395     ) {
396         let waker = unsafe {
397             let wheels_lock = self.inner.wheels.read();
398 
399             let mut lock = wheels_lock.lock_sharded_wheel(entry.as_ref().shard_id());
400 
401             // We may have raced with a firing/deregistration, so check before
402             // deregistering.
403             if unsafe { entry.as_ref().might_be_registered() } {
404                 lock.remove(entry);
405             }
406 
407             // Now that we have exclusive control of this entry, mint a handle to reinsert it.
408             let entry = entry.as_ref().handle();
409 
410             if self.is_shutdown() {
411                 unsafe { entry.fire(Err(crate::time::error::Error::shutdown())) }
412             } else {
413                 entry.set_expiration(new_tick);
414 
415                 // Note: We don't have to worry about racing with some other resetting
416                 // thread, because add_entry and reregister require exclusive control of
417                 // the timer entry.
418                 match unsafe { lock.insert(entry) } {
419                     Ok(when) => {
420                         if self
421                             .inner
422                             .next_wake
423                             .load()
424                             .map(|next_wake| when < next_wake.get())
425                             .unwrap_or(true)
426                         {
427                             unpark.unpark();
428                         }
429 
430                         None
431                     }
432                     Err((entry, crate::time::error::InsertError::Elapsed)) => unsafe {
433                         entry.fire(Ok(()))
434                     },
435                 }
436             }
437 
438             // Must release lock before invoking waker to avoid the risk of deadlock.
439         };
440 
441         // The timer was fired synchronously as a result of the reregistration.
442         // Wake the waker; this is needed because we might reset _after_ a poll,
443         // and otherwise the task won't be awoken to poll again.
444         if let Some(waker) = waker {
445             waker.wake();
446         }
447     }
448 
449     cfg_test_util! {
450         fn did_wake(&self) -> bool {
451             self.inner.did_wake.swap(false, Ordering::SeqCst)
452         }
453     }
454 }
455 
456 // ===== impl Inner =====
457 
458 impl Inner {
459     // Check whether the driver has been shutdown
is_shutdown(&self) -> bool460     pub(super) fn is_shutdown(&self) -> bool {
461         self.is_shutdown.load(Ordering::SeqCst)
462     }
463 
464     // Gets the number of shards.
get_shard_size(&self) -> u32465     fn get_shard_size(&self) -> u32 {
466         self.wheels_len
467     }
468 }
469 
470 impl fmt::Debug for Inner {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result471     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
472         fmt.debug_struct("Inner").finish()
473     }
474 }
475 
476 // ===== impl ShardedWheel =====
477 
478 impl ShardedWheel {
479     /// Locks the driver's sharded wheel structure.
lock_sharded_wheel( &self, shard_id: u32, ) -> crate::loom::sync::MutexGuard<'_, Wheel>480     pub(super) fn lock_sharded_wheel(
481         &self,
482         shard_id: u32,
483     ) -> crate::loom::sync::MutexGuard<'_, Wheel> {
484         let index = shard_id % (self.0.len() as u32);
485         // Safety: This modulo operation ensures that the index is not out of bounds.
486         unsafe { self.0.get_unchecked(index as usize) }.lock()
487     }
488 }
489 
490 #[cfg(test)]
491 mod tests;
492