1 use crate::time::wheel::Stack;
2
3 use std::fmt;
4
5 /// Wheel for a single level in the timer. This wheel contains 64 slots.
6 pub(crate) struct Level<T> {
7 level: usize,
8
9 /// Bit field tracking which slots currently contain entries.
10 ///
11 /// Using a bit field to track slots that contain entries allows avoiding a
12 /// scan to find entries. This field is updated when entries are added or
13 /// removed from a slot.
14 ///
15 /// The least-significant bit represents slot zero.
16 occupied: u64,
17
18 /// Slots
19 slot: [T; LEVEL_MULT],
20 }
21
22 /// Indicates when a slot must be processed next.
23 #[derive(Debug)]
24 pub(crate) struct Expiration {
25 /// The level containing the slot.
26 pub(crate) level: usize,
27
28 /// The slot index.
29 pub(crate) slot: usize,
30
31 /// The instant at which the slot needs to be processed.
32 pub(crate) deadline: u64,
33 }
34
35 /// Level multiplier.
36 ///
37 /// Being a power of 2 is very important.
38 const LEVEL_MULT: usize = 64;
39
40 impl<T: Stack> Level<T> {
new(level: usize) -> Level<T>41 pub(crate) fn new(level: usize) -> Level<T> {
42 Level {
43 level,
44 occupied: 0,
45 slot: std::array::from_fn(|_| T::default()),
46 }
47 }
48
49 /// Finds the slot that needs to be processed next and returns the slot and
50 /// `Instant` at which this slot must be processed.
next_expiration(&self, now: u64) -> Option<Expiration>51 pub(crate) fn next_expiration(&self, now: u64) -> Option<Expiration> {
52 // Use the `occupied` bit field to get the index of the next slot that
53 // needs to be processed.
54 let slot = match self.next_occupied_slot(now) {
55 Some(slot) => slot,
56 None => return None,
57 };
58
59 // From the slot index, calculate the `Instant` at which it needs to be
60 // processed. This value *must* be in the future with respect to `now`.
61
62 let level_range = level_range(self.level);
63 let slot_range = slot_range(self.level);
64
65 // TODO: This can probably be simplified w/ power of 2 math
66 let level_start = now - (now % level_range);
67 let mut deadline = level_start + slot as u64 * slot_range;
68 if deadline < now {
69 // A timer is in a slot "prior" to the current time. This can occur
70 // because we do not have an infinite hierarchy of timer levels, and
71 // eventually a timer scheduled for a very distant time might end up
72 // being placed in a slot that is beyond the end of all of the
73 // arrays.
74 //
75 // To deal with this, we first limit timers to being scheduled no
76 // more than MAX_DURATION ticks in the future; that is, they're at
77 // most one rotation of the top level away. Then, we force timers
78 // that logically would go into the top+1 level, to instead go into
79 // the top level's slots.
80 //
81 // What this means is that the top level's slots act as a
82 // pseudo-ring buffer, and we rotate around them indefinitely. If we
83 // compute a deadline before now, and it's the top level, it
84 // therefore means we're actually looking at a slot in the future.
85 debug_assert_eq!(self.level, super::NUM_LEVELS - 1);
86
87 deadline += level_range;
88 }
89 debug_assert!(
90 deadline >= now,
91 "deadline={:016X}; now={:016X}; level={}; slot={}; occupied={:b}",
92 deadline,
93 now,
94 self.level,
95 slot,
96 self.occupied
97 );
98
99 Some(Expiration {
100 level: self.level,
101 slot,
102 deadline,
103 })
104 }
105
next_occupied_slot(&self, now: u64) -> Option<usize>106 fn next_occupied_slot(&self, now: u64) -> Option<usize> {
107 if self.occupied == 0 {
108 return None;
109 }
110
111 // Get the slot for now using Maths
112 let now_slot = (now / slot_range(self.level)) as usize;
113 let occupied = self.occupied.rotate_right(now_slot as u32);
114 let zeros = occupied.trailing_zeros() as usize;
115 let slot = (zeros + now_slot) % 64;
116
117 Some(slot)
118 }
119
add_entry(&mut self, when: u64, item: T::Owned, store: &mut T::Store)120 pub(crate) fn add_entry(&mut self, when: u64, item: T::Owned, store: &mut T::Store) {
121 let slot = slot_for(when, self.level);
122
123 self.slot[slot].push(item, store);
124 self.occupied |= occupied_bit(slot);
125 }
126
remove_entry(&mut self, when: u64, item: &T::Borrowed, store: &mut T::Store)127 pub(crate) fn remove_entry(&mut self, when: u64, item: &T::Borrowed, store: &mut T::Store) {
128 let slot = slot_for(when, self.level);
129
130 self.slot[slot].remove(item, store);
131
132 if self.slot[slot].is_empty() {
133 // The bit is currently set
134 debug_assert!(self.occupied & occupied_bit(slot) != 0);
135
136 // Unset the bit
137 self.occupied ^= occupied_bit(slot);
138 }
139 }
140
pop_entry_slot(&mut self, slot: usize, store: &mut T::Store) -> Option<T::Owned>141 pub(crate) fn pop_entry_slot(&mut self, slot: usize, store: &mut T::Store) -> Option<T::Owned> {
142 let ret = self.slot[slot].pop(store);
143
144 if ret.is_some() && self.slot[slot].is_empty() {
145 // The bit is currently set
146 debug_assert!(self.occupied & occupied_bit(slot) != 0);
147
148 self.occupied ^= occupied_bit(slot);
149 }
150
151 ret
152 }
153
peek_entry_slot(&self, slot: usize) -> Option<T::Owned>154 pub(crate) fn peek_entry_slot(&self, slot: usize) -> Option<T::Owned> {
155 self.slot[slot].peek()
156 }
157 }
158
159 impl<T> fmt::Debug for Level<T> {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result160 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
161 fmt.debug_struct("Level")
162 .field("occupied", &self.occupied)
163 .finish()
164 }
165 }
166
occupied_bit(slot: usize) -> u64167 fn occupied_bit(slot: usize) -> u64 {
168 1 << slot
169 }
170
slot_range(level: usize) -> u64171 fn slot_range(level: usize) -> u64 {
172 LEVEL_MULT.pow(level as u32) as u64
173 }
174
level_range(level: usize) -> u64175 fn level_range(level: usize) -> u64 {
176 LEVEL_MULT as u64 * slot_range(level)
177 }
178
179 /// Convert a duration (milliseconds) and a level to a slot position
slot_for(duration: u64, level: usize) -> usize180 fn slot_for(duration: u64, level: usize) -> usize {
181 ((duration >> (level * 6)) % LEVEL_MULT as u64) as usize
182 }
183
184 #[cfg(all(test, not(loom)))]
185 mod test {
186 use super::*;
187
188 #[test]
test_slot_for()189 fn test_slot_for() {
190 for pos in 0..64 {
191 assert_eq!(pos as usize, slot_for(pos, 0));
192 }
193
194 for level in 1..5 {
195 for pos in level..64 {
196 let a = pos * 64_usize.pow(level as u32);
197 assert_eq!(pos, slot_for(a as u64, level));
198 }
199 }
200 }
201 }
202