1 use super::bitmask::BitMask;
2 use super::EMPTY;
3 use core::{mem, ptr};
4 
5 // Use the native word size as the group size. Using a 64-bit group size on
6 // a 32-bit architecture will just end up being more expensive because
7 // shifts and multiplies will need to be emulated.
8 #[cfg(any(
9     target_pointer_width = "64",
10     target_arch = "aarch64",
11     target_arch = "x86_64",
12     target_arch = "wasm32",
13 ))]
14 type GroupWord = u64;
15 #[cfg(all(
16     target_pointer_width = "32",
17     not(target_arch = "aarch64"),
18     not(target_arch = "x86_64"),
19     not(target_arch = "wasm32"),
20 ))]
21 type GroupWord = u32;
22 
23 pub type BitMaskWord = GroupWord;
24 pub const BITMASK_STRIDE: usize = 8;
25 // We only care about the highest bit of each byte for the mask.
26 #[allow(clippy::cast_possible_truncation, clippy::unnecessary_cast)]
27 pub const BITMASK_MASK: BitMaskWord = 0x8080_8080_8080_8080_u64 as GroupWord;
28 
29 /// Helper function to replicate a byte across a `GroupWord`.
30 #[inline]
repeat(byte: u8) -> GroupWord31 fn repeat(byte: u8) -> GroupWord {
32     GroupWord::from_ne_bytes([byte; Group::WIDTH])
33 }
34 
35 /// Abstraction over a group of control bytes which can be scanned in
36 /// parallel.
37 ///
38 /// This implementation uses a word-sized integer.
39 #[derive(Copy, Clone)]
40 pub struct Group(GroupWord);
41 
42 // We perform all operations in the native endianness, and convert to
43 // little-endian just before creating a BitMask. The can potentially
44 // enable the compiler to eliminate unnecessary byte swaps if we are
45 // only checking whether a BitMask is empty.
46 #[allow(clippy::use_self)]
47 impl Group {
48     /// Number of bytes in the group.
49     pub const WIDTH: usize = mem::size_of::<Self>();
50 
51     /// Returns a full group of empty bytes, suitable for use as the initial
52     /// value for an empty hash table.
53     ///
54     /// This is guaranteed to be aligned to the group size.
55     #[inline]
static_empty() -> &'static [u8; Group::WIDTH]56     pub const fn static_empty() -> &'static [u8; Group::WIDTH] {
57         #[repr(C)]
58         struct AlignedBytes {
59             _align: [Group; 0],
60             bytes: [u8; Group::WIDTH],
61         }
62         const ALIGNED_BYTES: AlignedBytes = AlignedBytes {
63             _align: [],
64             bytes: [EMPTY; Group::WIDTH],
65         };
66         &ALIGNED_BYTES.bytes
67     }
68 
69     /// Loads a group of bytes starting at the given address.
70     #[inline]
71     #[allow(clippy::cast_ptr_alignment)] // unaligned load
load(ptr: *const u8) -> Self72     pub unsafe fn load(ptr: *const u8) -> Self {
73         Group(ptr::read_unaligned(ptr.cast()))
74     }
75 
76     /// Loads a group of bytes starting at the given address, which must be
77     /// aligned to `mem::align_of::<Group>()`.
78     #[inline]
79     #[allow(clippy::cast_ptr_alignment)]
load_aligned(ptr: *const u8) -> Self80     pub unsafe fn load_aligned(ptr: *const u8) -> Self {
81         // FIXME: use align_offset once it stabilizes
82         debug_assert_eq!(ptr as usize & (mem::align_of::<Self>() - 1), 0);
83         Group(ptr::read(ptr.cast()))
84     }
85 
86     /// Stores the group of bytes to the given address, which must be
87     /// aligned to `mem::align_of::<Group>()`.
88     #[inline]
89     #[allow(clippy::cast_ptr_alignment)]
store_aligned(self, ptr: *mut u8)90     pub unsafe fn store_aligned(self, ptr: *mut u8) {
91         // FIXME: use align_offset once it stabilizes
92         debug_assert_eq!(ptr as usize & (mem::align_of::<Self>() - 1), 0);
93         ptr::write(ptr.cast(), self.0);
94     }
95 
96     /// Returns a `BitMask` indicating all bytes in the group which *may*
97     /// have the given value.
98     ///
99     /// This function may return a false positive in certain cases where
100     /// the byte in the group differs from the searched value only in its
101     /// lowest bit. This is fine because:
102     /// - This never happens for `EMPTY` and `DELETED`, only full entries.
103     /// - The check for key equality will catch these.
104     /// - This only happens if there is at least 1 true match.
105     /// - The chance of this happening is very low (< 1% chance per byte).
106     #[inline]
match_byte(self, byte: u8) -> BitMask107     pub fn match_byte(self, byte: u8) -> BitMask {
108         // This algorithm is derived from
109         // https://graphics.stanford.edu/~seander/bithacks.html##ValueInWord
110         let cmp = self.0 ^ repeat(byte);
111         BitMask((cmp.wrapping_sub(repeat(0x01)) & !cmp & repeat(0x80)).to_le())
112     }
113 
114     /// Returns a `BitMask` indicating all bytes in the group which are
115     /// `EMPTY`.
116     #[inline]
match_empty(self) -> BitMask117     pub fn match_empty(self) -> BitMask {
118         // If the high bit is set, then the byte must be either:
119         // 1111_1111 (EMPTY) or 1000_0000 (DELETED).
120         // So we can just check if the top two bits are 1 by ANDing them.
121         BitMask((self.0 & (self.0 << 1) & repeat(0x80)).to_le())
122     }
123 
124     /// Returns a `BitMask` indicating all bytes in the group which are
125     /// `EMPTY` or `DELETED`.
126     #[inline]
match_empty_or_deleted(self) -> BitMask127     pub fn match_empty_or_deleted(self) -> BitMask {
128         // A byte is EMPTY or DELETED iff the high bit is set
129         BitMask((self.0 & repeat(0x80)).to_le())
130     }
131 
132     /// Returns a `BitMask` indicating all bytes in the group which are full.
133     #[inline]
match_full(self) -> BitMask134     pub fn match_full(self) -> BitMask {
135         self.match_empty_or_deleted().invert()
136     }
137 
138     /// Performs the following transformation on all bytes in the group:
139     /// - `EMPTY => EMPTY`
140     /// - `DELETED => EMPTY`
141     /// - `FULL => DELETED`
142     #[inline]
convert_special_to_empty_and_full_to_deleted(self) -> Self143     pub fn convert_special_to_empty_and_full_to_deleted(self) -> Self {
144         // Map high_bit = 1 (EMPTY or DELETED) to 1111_1111
145         // and high_bit = 0 (FULL) to 1000_0000
146         //
147         // Here's this logic expanded to concrete values:
148         //   let full = 1000_0000 (true) or 0000_0000 (false)
149         //   !1000_0000 + 1 = 0111_1111 + 1 = 1000_0000 (no carry)
150         //   !0000_0000 + 0 = 1111_1111 + 0 = 1111_1111 (no carry)
151         let full = !self.0 & repeat(0x80);
152         Group(!full + (full >> 7))
153     }
154 }
155