1 use crate::codec::UserError;
2 use crate::frame::Reason;
3 use crate::proto::{self, WindowSize};
4 
5 use bytes::{Buf, Bytes};
6 use http::HeaderMap;
7 
8 use std::fmt;
9 #[cfg(feature = "stream")]
10 use std::pin::Pin;
11 use std::task::{Context, Poll};
12 
13 /// Sends the body stream and trailers to the remote peer.
14 ///
15 /// # Overview
16 ///
17 /// A `SendStream` is provided by [`SendRequest`] and [`SendResponse`] once the
18 /// HTTP/2 message header has been sent sent. It is used to stream the message
19 /// body and send the message trailers. See method level documentation for more
20 /// details.
21 ///
22 /// The `SendStream` instance is also used to manage outbound flow control.
23 ///
24 /// If a `SendStream` is dropped without explicitly closing the send stream, a
25 /// `RST_STREAM` frame will be sent. This essentially cancels the request /
26 /// response exchange.
27 ///
28 /// The ways to explicitly close the send stream are:
29 ///
30 /// * Set `end_of_stream` to true when calling [`send_request`],
31 ///   [`send_response`], or [`send_data`].
32 /// * Send trailers with [`send_trailers`].
33 /// * Explicitly reset the stream with [`send_reset`].
34 ///
35 /// # Flow control
36 ///
37 /// In HTTP/2, data cannot be sent to the remote peer unless there is
38 /// available window capacity on both the stream and the connection. When a data
39 /// frame is sent, both the stream window and the connection window are
40 /// decremented. When the stream level window reaches zero, no further data can
41 /// be sent on that stream. When the connection level window reaches zero, no
42 /// further data can be sent on any stream for that connection.
43 ///
44 /// When the remote peer is ready to receive more data, it sends `WINDOW_UPDATE`
45 /// frames. These frames increment the windows. See the [specification] for more
46 /// details on the principles of HTTP/2 flow control.
47 ///
48 /// The implications for sending data are that the caller **should** ensure that
49 /// both the stream and the connection has available window capacity before
50 /// loading the data to send into memory. The `SendStream` instance provides the
51 /// necessary APIs to perform this logic. This, however, is not an obligation.
52 /// If the caller attempts to send data on a stream when there is no available
53 /// window capacity, the library will buffer the data until capacity becomes
54 /// available, at which point the buffer will be flushed to the connection.
55 ///
56 /// **NOTE**: There is no bound on the amount of data that the library will
57 /// buffer. If you are sending large amounts of data, you really should hook
58 /// into the flow control lifecycle. Otherwise, you risk using up significant
59 /// amounts of memory.
60 ///
61 /// To hook into the flow control lifecycle, the caller signals to the library
62 /// that it intends to send data by calling [`reserve_capacity`], specifying the
63 /// amount of data, in octets, that the caller intends to send. After this,
64 /// `poll_capacity` is used to be notified when the requested capacity is
65 /// assigned to the stream. Once [`poll_capacity`] returns `Ready` with the number
66 /// of octets available to the stream, the caller is able to actually send the
67 /// data using [`send_data`].
68 ///
69 /// Because there is also a connection level window that applies to **all**
70 /// streams on a connection, when capacity is assigned to a stream (indicated by
71 /// `poll_capacity` returning `Ready`), this capacity is reserved on the
72 /// connection and will **not** be assigned to any other stream. If data is
73 /// never written to the stream, that capacity is effectively lost to other
74 /// streams and this introduces the risk of deadlocking a connection.
75 ///
76 /// To avoid throttling data on a connection, the caller should not reserve
77 /// capacity until ready to send data and once any capacity is assigned to the
78 /// stream, the caller should immediately send data consuming this capacity.
79 /// There is no guarantee as to when the full capacity requested will become
80 /// available. For example, if the caller requests 64 KB of data and 512 bytes
81 /// become available, the caller should immediately send 512 bytes of data.
82 ///
83 /// See [`reserve_capacity`] documentation for more details.
84 ///
85 /// [`SendRequest`]: client/struct.SendRequest.html
86 /// [`SendResponse`]: server/struct.SendResponse.html
87 /// [specification]: http://httpwg.org/specs/rfc7540.html#FlowControl
88 /// [`reserve_capacity`]: #method.reserve_capacity
89 /// [`poll_capacity`]: #method.poll_capacity
90 /// [`send_data`]: #method.send_data
91 /// [`send_request`]: client/struct.SendRequest.html#method.send_request
92 /// [`send_response`]: server/struct.SendResponse.html#method.send_response
93 /// [`send_data`]: #method.send_data
94 /// [`send_trailers`]: #method.send_trailers
95 /// [`send_reset`]: #method.send_reset
96 #[derive(Debug)]
97 pub struct SendStream<B> {
98     inner: proto::StreamRef<B>,
99 }
100 
101 /// A stream identifier, as described in [Section 5.1.1] of RFC 7540.
102 ///
103 /// Streams are identified with an unsigned 31-bit integer. Streams
104 /// initiated by a client MUST use odd-numbered stream identifiers; those
105 /// initiated by the server MUST use even-numbered stream identifiers.  A
106 /// stream identifier of zero (0x0) is used for connection control
107 /// messages; the stream identifier of zero cannot be used to establish a
108 /// new stream.
109 ///
110 /// [Section 5.1.1]: https://tools.ietf.org/html/rfc7540#section-5.1.1
111 #[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
112 pub struct StreamId(u32);
113 
114 impl From<StreamId> for u32 {
from(src: StreamId) -> Self115     fn from(src: StreamId) -> Self {
116         src.0
117     }
118 }
119 
120 /// Receives the body stream and trailers from the remote peer.
121 ///
122 /// A `RecvStream` is provided by [`client::ResponseFuture`] and
123 /// [`server::Connection`] with the received HTTP/2 message head (the response
124 /// and request head respectively).
125 ///
126 /// A `RecvStream` instance is used to receive the streaming message body and
127 /// any trailers from the remote peer. It is also used to manage inbound flow
128 /// control.
129 ///
130 /// See method level documentation for more details on receiving data. See
131 /// [`FlowControl`] for more details on inbound flow control.
132 ///
133 /// [`client::ResponseFuture`]: client/struct.ResponseFuture.html
134 /// [`server::Connection`]: server/struct.Connection.html
135 /// [`FlowControl`]: struct.FlowControl.html
136 /// [`Stream`]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html
137 #[must_use = "streams do nothing unless polled"]
138 pub struct RecvStream {
139     inner: FlowControl,
140 }
141 
142 /// A handle to release window capacity to a remote stream.
143 ///
144 /// This type allows the caller to manage inbound data [flow control]. The
145 /// caller is expected to call [`release_capacity`] after dropping data frames.
146 ///
147 /// # Overview
148 ///
149 /// Each stream has a window size. This window size is the maximum amount of
150 /// inbound data that can be in-flight. In-flight data is defined as data that
151 /// has been received, but not yet released.
152 ///
153 /// When a stream is created, the window size is set to the connection's initial
154 /// window size value. When a data frame is received, the window size is then
155 /// decremented by size of the data frame before the data is provided to the
156 /// caller. As the caller finishes using the data, [`release_capacity`] must be
157 /// called. This will then increment the window size again, allowing the peer to
158 /// send more data.
159 ///
160 /// There is also a connection level window as well as the stream level window.
161 /// Received data counts against the connection level window as well and calls
162 /// to [`release_capacity`] will also increment the connection level window.
163 ///
164 /// # Sending `WINDOW_UPDATE` frames
165 ///
166 /// `WINDOW_UPDATE` frames will not be sent out for **every** call to
167 /// `release_capacity`, as this would end up slowing down the protocol. Instead,
168 /// `h2` waits until the window size is increased to a certain threshold and
169 /// then sends out a single `WINDOW_UPDATE` frame representing all the calls to
170 /// `release_capacity` since the last `WINDOW_UPDATE` frame.
171 ///
172 /// This essentially batches window updating.
173 ///
174 /// # Scenarios
175 ///
176 /// Following is a basic scenario with an HTTP/2 connection containing a
177 /// single active stream.
178 ///
179 /// * A new stream is activated. The receive window is initialized to 1024 (the
180 ///   value of the initial window size for this connection).
181 /// * A `DATA` frame is received containing a payload of 600 bytes.
182 /// * The receive window size is reduced to 424 bytes.
183 /// * [`release_capacity`] is called with 200.
184 /// * The receive window size is now 624 bytes. The peer may send no more than
185 ///   this.
186 /// * A `DATA` frame is received with a payload of 624 bytes.
187 /// * The window size is now 0 bytes. The peer may not send any more data.
188 /// * [`release_capacity`] is called with 1024.
189 /// * The receive window size is now 1024 bytes. The peer may now send more
190 /// data.
191 ///
192 /// [flow control]: ../index.html#flow-control
193 /// [`release_capacity`]: struct.FlowControl.html#method.release_capacity
194 #[derive(Clone, Debug)]
195 pub struct FlowControl {
196     inner: proto::OpaqueStreamRef,
197 }
198 
199 /// A handle to send and receive PING frames with the peer.
200 // NOT Clone on purpose
201 pub struct PingPong {
202     inner: proto::UserPings,
203 }
204 
205 /// Sent via [`PingPong`][] to send a PING frame to a peer.
206 ///
207 /// [`PingPong`]: struct.PingPong.html
208 pub struct Ping {
209     _p: (),
210 }
211 
212 /// Received via [`PingPong`][] when a peer acknowledges a [`Ping`][].
213 ///
214 /// [`PingPong`]: struct.PingPong.html
215 /// [`Ping`]: struct.Ping.html
216 pub struct Pong {
217     _p: (),
218 }
219 
220 // ===== impl SendStream =====
221 
222 impl<B: Buf> SendStream<B> {
new(inner: proto::StreamRef<B>) -> Self223     pub(crate) fn new(inner: proto::StreamRef<B>) -> Self {
224         SendStream { inner }
225     }
226 
227     /// Requests capacity to send data.
228     ///
229     /// This function is used to express intent to send data. This requests
230     /// connection level capacity. Once the capacity is available, it is
231     /// assigned to the stream and not reused by other streams.
232     ///
233     /// This function may be called repeatedly. The `capacity` argument is the
234     /// **total** amount of requested capacity. Sequential calls to
235     /// `reserve_capacity` are *not* additive. Given the following:
236     ///
237     /// ```rust
238     /// # use h2::*;
239     /// # fn doc(mut send_stream: SendStream<&'static [u8]>) {
240     /// send_stream.reserve_capacity(100);
241     /// send_stream.reserve_capacity(200);
242     /// # }
243     /// ```
244     ///
245     /// After the second call to `reserve_capacity`, the *total* requested
246     /// capacity will be 200.
247     ///
248     /// `reserve_capacity` is also used to cancel previous capacity requests.
249     /// Given the following:
250     ///
251     /// ```rust
252     /// # use h2::*;
253     /// # fn doc(mut send_stream: SendStream<&'static [u8]>) {
254     /// send_stream.reserve_capacity(100);
255     /// send_stream.reserve_capacity(0);
256     /// # }
257     /// ```
258     ///
259     /// After the second call to `reserve_capacity`, the *total* requested
260     /// capacity will be 0, i.e. there is no requested capacity for the stream.
261     ///
262     /// If `reserve_capacity` is called with a lower value than the amount of
263     /// capacity **currently** assigned to the stream, this capacity will be
264     /// returned to the connection to be re-assigned to other streams.
265     ///
266     /// Also, the amount of capacity that is reserved gets decremented as data
267     /// is sent. For example:
268     ///
269     /// ```rust
270     /// # use h2::*;
271     /// # async fn doc(mut send_stream: SendStream<&'static [u8]>) {
272     /// send_stream.reserve_capacity(100);
273     ///
274     /// send_stream.send_data(b"hello", false).unwrap();
275     /// // At this point, the total amount of requested capacity is 95 bytes.
276     ///
277     /// // Calling `reserve_capacity` with `100` again essentially requests an
278     /// // additional 5 bytes.
279     /// send_stream.reserve_capacity(100);
280     /// # }
281     /// ```
282     ///
283     /// See [Flow control](struct.SendStream.html#flow-control) for an overview
284     /// of how send flow control works.
reserve_capacity(&mut self, capacity: usize)285     pub fn reserve_capacity(&mut self, capacity: usize) {
286         // TODO: Check for overflow
287         self.inner.reserve_capacity(capacity as WindowSize)
288     }
289 
290     /// Returns the stream's current send capacity.
291     ///
292     /// This allows the caller to check the current amount of available capacity
293     /// before sending data.
capacity(&self) -> usize294     pub fn capacity(&self) -> usize {
295         self.inner.capacity() as usize
296     }
297 
298     /// Requests to be notified when the stream's capacity increases.
299     ///
300     /// Before calling this, capacity should be requested with
301     /// `reserve_capacity`. Once capacity is requested, the connection will
302     /// assign capacity to the stream **as it becomes available**. There is no
303     /// guarantee as to when and in what increments capacity gets assigned to
304     /// the stream.
305     ///
306     /// To get notified when the available capacity increases, the caller calls
307     /// `poll_capacity`, which returns `Ready(Some(n))` when `n` has been
308     /// increased by the connection. Note that `n` here represents the **total**
309     /// amount of assigned capacity at that point in time. It is also possible
310     /// that `n` is lower than the previous call if, since then, the caller has
311     /// sent data.
poll_capacity(&mut self, cx: &mut Context) -> Poll<Option<Result<usize, crate::Error>>>312     pub fn poll_capacity(&mut self, cx: &mut Context) -> Poll<Option<Result<usize, crate::Error>>> {
313         self.inner
314             .poll_capacity(cx)
315             .map_ok(|w| w as usize)
316             .map_err(Into::into)
317     }
318 
319     /// Sends a single data frame to the remote peer.
320     ///
321     /// This function may be called repeatedly as long as `end_of_stream` is set
322     /// to `false`. Setting `end_of_stream` to `true` sets the end stream flag
323     /// on the data frame. Any further calls to `send_data` or `send_trailers`
324     /// will return an [`Error`].
325     ///
326     /// `send_data` can be called without reserving capacity. In this case, the
327     /// data is buffered and the capacity is implicitly requested. Once the
328     /// capacity becomes available, the data is flushed to the connection.
329     /// However, this buffering is unbounded. As such, sending large amounts of
330     /// data without reserving capacity before hand could result in large
331     /// amounts of data being buffered in memory.
332     ///
333     /// [`Error`]: struct.Error.html
send_data(&mut self, data: B, end_of_stream: bool) -> Result<(), crate::Error>334     pub fn send_data(&mut self, data: B, end_of_stream: bool) -> Result<(), crate::Error> {
335         self.inner
336             .send_data(data, end_of_stream)
337             .map_err(Into::into)
338     }
339 
340     /// Sends trailers to the remote peer.
341     ///
342     /// Sending trailers implicitly closes the send stream. Once the send stream
343     /// is closed, no more data can be sent.
send_trailers(&mut self, trailers: HeaderMap) -> Result<(), crate::Error>344     pub fn send_trailers(&mut self, trailers: HeaderMap) -> Result<(), crate::Error> {
345         self.inner.send_trailers(trailers).map_err(Into::into)
346     }
347 
348     /// Resets the stream.
349     ///
350     /// This cancels the request / response exchange. If the response has not
351     /// yet been received, the associated `ResponseFuture` will return an
352     /// [`Error`] to reflect the canceled exchange.
353     ///
354     /// [`Error`]: struct.Error.html
send_reset(&mut self, reason: Reason)355     pub fn send_reset(&mut self, reason: Reason) {
356         self.inner.send_reset(reason)
357     }
358 
359     /// Polls to be notified when the client resets this stream.
360     ///
361     /// If stream is still open, this returns `Poll::Pending`, and
362     /// registers the task to be notified if a `RST_STREAM` is received.
363     ///
364     /// If a `RST_STREAM` frame is received for this stream, calling this
365     /// method will yield the `Reason` for the reset.
366     ///
367     /// # Error
368     ///
369     /// If connection sees an error, this returns that error instead of a
370     /// `Reason`.
poll_reset(&mut self, cx: &mut Context) -> Poll<Result<Reason, crate::Error>>371     pub fn poll_reset(&mut self, cx: &mut Context) -> Poll<Result<Reason, crate::Error>> {
372         self.inner.poll_reset(cx, proto::PollReset::Streaming)
373     }
374 
375     /// Returns the stream ID of this `SendStream`.
376     ///
377     /// # Panics
378     ///
379     /// If the lock on the stream store has been poisoned.
stream_id(&self) -> StreamId380     pub fn stream_id(&self) -> StreamId {
381         StreamId::from_internal(self.inner.stream_id())
382     }
383 }
384 
385 // ===== impl StreamId =====
386 
387 impl StreamId {
from_internal(id: crate::frame::StreamId) -> Self388     pub(crate) fn from_internal(id: crate::frame::StreamId) -> Self {
389         StreamId(id.into())
390     }
391 
392     /// Returns the `u32` corresponding to this `StreamId`
393     ///
394     /// # Note
395     ///
396     /// This is the same as the `From<StreamId>` implementation, but
397     /// included as an inherent method because that implementation doesn't
398     /// appear in rustdocs, as well as a way to force the type instead of
399     /// relying on inference.
as_u32(&self) -> u32400     pub fn as_u32(&self) -> u32 {
401         (*self).into()
402     }
403 }
404 // ===== impl RecvStream =====
405 
406 impl RecvStream {
new(inner: FlowControl) -> Self407     pub(crate) fn new(inner: FlowControl) -> Self {
408         RecvStream { inner }
409     }
410 
411     /// Get the next data frame.
data(&mut self) -> Option<Result<Bytes, crate::Error>>412     pub async fn data(&mut self) -> Option<Result<Bytes, crate::Error>> {
413         futures_util::future::poll_fn(move |cx| self.poll_data(cx)).await
414     }
415 
416     /// Get optional trailers for this stream.
trailers(&mut self) -> Result<Option<HeaderMap>, crate::Error>417     pub async fn trailers(&mut self) -> Result<Option<HeaderMap>, crate::Error> {
418         futures_util::future::poll_fn(move |cx| self.poll_trailers(cx)).await
419     }
420 
421     /// Poll for the next data frame.
poll_data(&mut self, cx: &mut Context<'_>) -> Poll<Option<Result<Bytes, crate::Error>>>422     pub fn poll_data(&mut self, cx: &mut Context<'_>) -> Poll<Option<Result<Bytes, crate::Error>>> {
423         self.inner.inner.poll_data(cx).map_err(Into::into)
424     }
425 
426     #[doc(hidden)]
poll_trailers( &mut self, cx: &mut Context, ) -> Poll<Result<Option<HeaderMap>, crate::Error>>427     pub fn poll_trailers(
428         &mut self,
429         cx: &mut Context,
430     ) -> Poll<Result<Option<HeaderMap>, crate::Error>> {
431         match ready!(self.inner.inner.poll_trailers(cx)) {
432             Some(Ok(map)) => Poll::Ready(Ok(Some(map))),
433             Some(Err(e)) => Poll::Ready(Err(e.into())),
434             None => Poll::Ready(Ok(None)),
435         }
436     }
437 
438     /// Returns true if the receive half has reached the end of stream.
439     ///
440     /// A return value of `true` means that calls to `poll` and `poll_trailers`
441     /// will both return `None`.
is_end_stream(&self) -> bool442     pub fn is_end_stream(&self) -> bool {
443         self.inner.inner.is_end_stream()
444     }
445 
446     /// Get a mutable reference to this stream's `FlowControl`.
447     ///
448     /// It can be used immediately, or cloned to be used later.
flow_control(&mut self) -> &mut FlowControl449     pub fn flow_control(&mut self) -> &mut FlowControl {
450         &mut self.inner
451     }
452 
453     /// Returns the stream ID of this stream.
454     ///
455     /// # Panics
456     ///
457     /// If the lock on the stream store has been poisoned.
stream_id(&self) -> StreamId458     pub fn stream_id(&self) -> StreamId {
459         self.inner.stream_id()
460     }
461 }
462 
463 #[cfg(feature = "stream")]
464 impl futures_core::Stream for RecvStream {
465     type Item = Result<Bytes, crate::Error>;
466 
poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>>467     fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
468         self.poll_data(cx)
469     }
470 }
471 
472 impl fmt::Debug for RecvStream {
fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result473     fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
474         fmt.debug_struct("RecvStream")
475             .field("inner", &self.inner)
476             .finish()
477     }
478 }
479 
480 impl Drop for RecvStream {
drop(&mut self)481     fn drop(&mut self) {
482         // Eagerly clear any received DATA frames now, since its no longer
483         // possible to retrieve them. However, this will be called
484         // again once *all* stream refs have been dropped, since
485         // this won't send a RST_STREAM frame, in case the user wishes to
486         // still *send* DATA.
487         self.inner.inner.clear_recv_buffer();
488     }
489 }
490 
491 // ===== impl FlowControl =====
492 
493 impl FlowControl {
new(inner: proto::OpaqueStreamRef) -> Self494     pub(crate) fn new(inner: proto::OpaqueStreamRef) -> Self {
495         FlowControl { inner }
496     }
497 
498     /// Returns the stream ID of the stream whose capacity will
499     /// be released by this `FlowControl`.
stream_id(&self) -> StreamId500     pub fn stream_id(&self) -> StreamId {
501         StreamId::from_internal(self.inner.stream_id())
502     }
503 
504     /// Get the current available capacity of data this stream *could* receive.
available_capacity(&self) -> isize505     pub fn available_capacity(&self) -> isize {
506         self.inner.available_recv_capacity()
507     }
508 
509     /// Get the currently *used* capacity for this stream.
510     ///
511     /// This is the amount of bytes that can be released back to the remote.
used_capacity(&self) -> usize512     pub fn used_capacity(&self) -> usize {
513         self.inner.used_recv_capacity() as usize
514     }
515 
516     /// Release window capacity back to remote stream.
517     ///
518     /// This releases capacity back to the stream level and the connection level
519     /// windows. Both window sizes will be increased by `sz`.
520     ///
521     /// See [struct level] documentation for more details.
522     ///
523     /// # Errors
524     ///
525     /// This function errors if increasing the receive window size by `sz` would
526     /// result in a window size greater than the target window size. In other
527     /// words, the caller cannot release more capacity than data has been
528     /// received. If 1024 bytes of data have been received, at most 1024 bytes
529     /// can be released.
530     ///
531     /// [struct level]: #
release_capacity(&mut self, sz: usize) -> Result<(), crate::Error>532     pub fn release_capacity(&mut self, sz: usize) -> Result<(), crate::Error> {
533         if sz > proto::MAX_WINDOW_SIZE as usize {
534             return Err(UserError::ReleaseCapacityTooBig.into());
535         }
536         self.inner
537             .release_capacity(sz as proto::WindowSize)
538             .map_err(Into::into)
539     }
540 }
541 
542 // ===== impl PingPong =====
543 
544 impl PingPong {
new(inner: proto::UserPings) -> Self545     pub(crate) fn new(inner: proto::UserPings) -> Self {
546         PingPong { inner }
547     }
548 
549     /// Send a PING frame and wait for the peer to send the pong.
ping(&mut self, ping: Ping) -> Result<Pong, crate::Error>550     pub async fn ping(&mut self, ping: Ping) -> Result<Pong, crate::Error> {
551         self.send_ping(ping)?;
552         futures_util::future::poll_fn(|cx| self.poll_pong(cx)).await
553     }
554 
555     #[doc(hidden)]
send_ping(&mut self, ping: Ping) -> Result<(), crate::Error>556     pub fn send_ping(&mut self, ping: Ping) -> Result<(), crate::Error> {
557         // Passing a `Ping` here is just to be forwards-compatible with
558         // eventually allowing choosing a ping payload. For now, we can
559         // just ignore it.
560         let _ = ping;
561 
562         self.inner.send_ping().map_err(|err| match err {
563             Some(err) => err.into(),
564             None => UserError::SendPingWhilePending.into(),
565         })
566     }
567 
568     #[doc(hidden)]
poll_pong(&mut self, cx: &mut Context) -> Poll<Result<Pong, crate::Error>>569     pub fn poll_pong(&mut self, cx: &mut Context) -> Poll<Result<Pong, crate::Error>> {
570         ready!(self.inner.poll_pong(cx))?;
571         Poll::Ready(Ok(Pong { _p: () }))
572     }
573 }
574 
575 impl fmt::Debug for PingPong {
fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result576     fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
577         fmt.debug_struct("PingPong").finish()
578     }
579 }
580 
581 // ===== impl Ping =====
582 
583 impl Ping {
584     /// Creates a new opaque `Ping` to be sent via a [`PingPong`][].
585     ///
586     /// The payload is "opaque", such that it shouldn't be depended on.
587     ///
588     /// [`PingPong`]: struct.PingPong.html
opaque() -> Ping589     pub fn opaque() -> Ping {
590         Ping { _p: () }
591     }
592 }
593 
594 impl fmt::Debug for Ping {
fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result595     fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
596         fmt.debug_struct("Ping").finish()
597     }
598 }
599 
600 // ===== impl Pong =====
601 
602 impl fmt::Debug for Pong {
fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result603     fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
604         fmt.debug_struct("Pong").finish()
605     }
606 }
607