1 use rand::{Rng, SeedableRng};
2
3 use base64::engine::{general_purpose::STANDARD, Engine};
4 use base64::*;
5
6 use base64::engine::general_purpose::{GeneralPurpose, NO_PAD};
7
8 // generate random contents of the specified length and test encode/decode roundtrip
roundtrip_random<E: Engine>( byte_buf: &mut Vec<u8>, str_buf: &mut String, engine: &E, byte_len: usize, approx_values_per_byte: u8, max_rounds: u64, )9 fn roundtrip_random<E: Engine>(
10 byte_buf: &mut Vec<u8>,
11 str_buf: &mut String,
12 engine: &E,
13 byte_len: usize,
14 approx_values_per_byte: u8,
15 max_rounds: u64,
16 ) {
17 // let the short ones be short but don't let it get too crazy large
18 let num_rounds = calculate_number_of_rounds(byte_len, approx_values_per_byte, max_rounds);
19 let mut r = rand::rngs::SmallRng::from_entropy();
20 let mut decode_buf = Vec::new();
21
22 for _ in 0..num_rounds {
23 byte_buf.clear();
24 str_buf.clear();
25 decode_buf.clear();
26 while byte_buf.len() < byte_len {
27 byte_buf.push(r.gen::<u8>());
28 }
29
30 engine.encode_string(&byte_buf, str_buf);
31 engine.decode_vec(&str_buf, &mut decode_buf).unwrap();
32
33 assert_eq!(byte_buf, &decode_buf);
34 }
35 }
36
calculate_number_of_rounds(byte_len: usize, approx_values_per_byte: u8, max: u64) -> u6437 fn calculate_number_of_rounds(byte_len: usize, approx_values_per_byte: u8, max: u64) -> u64 {
38 // don't overflow
39 let mut prod = approx_values_per_byte as u64;
40
41 for _ in 0..byte_len {
42 if prod > max {
43 return max;
44 }
45
46 prod = prod.saturating_mul(prod);
47 }
48
49 prod
50 }
51
52 #[test]
roundtrip_random_short_standard()53 fn roundtrip_random_short_standard() {
54 let mut byte_buf: Vec<u8> = Vec::new();
55 let mut str_buf = String::new();
56
57 for input_len in 0..40 {
58 roundtrip_random(&mut byte_buf, &mut str_buf, &STANDARD, input_len, 4, 10000);
59 }
60 }
61
62 #[test]
roundtrip_random_with_fast_loop_standard()63 fn roundtrip_random_with_fast_loop_standard() {
64 let mut byte_buf: Vec<u8> = Vec::new();
65 let mut str_buf = String::new();
66
67 for input_len in 40..100 {
68 roundtrip_random(&mut byte_buf, &mut str_buf, &STANDARD, input_len, 4, 1000);
69 }
70 }
71
72 #[test]
roundtrip_random_short_no_padding()73 fn roundtrip_random_short_no_padding() {
74 let mut byte_buf: Vec<u8> = Vec::new();
75 let mut str_buf = String::new();
76
77 let engine = GeneralPurpose::new(&alphabet::STANDARD, NO_PAD);
78 for input_len in 0..40 {
79 roundtrip_random(&mut byte_buf, &mut str_buf, &engine, input_len, 4, 10000);
80 }
81 }
82
83 #[test]
roundtrip_random_no_padding()84 fn roundtrip_random_no_padding() {
85 let mut byte_buf: Vec<u8> = Vec::new();
86 let mut str_buf = String::new();
87
88 let engine = GeneralPurpose::new(&alphabet::STANDARD, NO_PAD);
89
90 for input_len in 40..100 {
91 roundtrip_random(&mut byte_buf, &mut str_buf, &engine, input_len, 4, 1000);
92 }
93 }
94
95 #[test]
roundtrip_decode_trailing_10_bytes()96 fn roundtrip_decode_trailing_10_bytes() {
97 // This is a special case because we decode 8 byte blocks of input at a time as much as we can,
98 // ideally unrolled to 32 bytes at a time, in stages 1 and 2. Since we also write a u64's worth
99 // of bytes (8) to the output, we always write 2 garbage bytes that then will be overwritten by
100 // the NEXT block. However, if the next block only contains 2 bytes, it will decode to 1 byte,
101 // and therefore be too short to cover up the trailing 2 garbage bytes. Thus, we have stage 3
102 // to handle that case.
103
104 for num_quads in 0..25 {
105 let mut s: String = "ABCD".repeat(num_quads);
106 s.push_str("EFGHIJKLZg");
107
108 let engine = GeneralPurpose::new(&alphabet::STANDARD, NO_PAD);
109 let decoded = engine.decode(&s).unwrap();
110 assert_eq!(num_quads * 3 + 7, decoded.len());
111
112 assert_eq!(s, engine.encode(&decoded));
113 }
114 }
115
116 #[test]
display_wrapper_matches_normal_encode()117 fn display_wrapper_matches_normal_encode() {
118 let mut bytes = Vec::<u8>::with_capacity(256);
119
120 for i in 0..255 {
121 bytes.push(i);
122 }
123 bytes.push(255);
124
125 assert_eq!(
126 STANDARD.encode(&bytes),
127 format!("{}", display::Base64Display::new(&bytes, &STANDARD))
128 );
129 }
130
131 #[test]
encode_engine_slice_error_when_buffer_too_small()132 fn encode_engine_slice_error_when_buffer_too_small() {
133 for num_triples in 1..100 {
134 let input = "AAA".repeat(num_triples);
135 let mut vec = vec![0; (num_triples - 1) * 4];
136 assert_eq!(
137 EncodeSliceError::OutputSliceTooSmall,
138 STANDARD.encode_slice(&input, &mut vec).unwrap_err()
139 );
140 vec.push(0);
141 assert_eq!(
142 EncodeSliceError::OutputSliceTooSmall,
143 STANDARD.encode_slice(&input, &mut vec).unwrap_err()
144 );
145 vec.push(0);
146 assert_eq!(
147 EncodeSliceError::OutputSliceTooSmall,
148 STANDARD.encode_slice(&input, &mut vec).unwrap_err()
149 );
150 vec.push(0);
151 assert_eq!(
152 EncodeSliceError::OutputSliceTooSmall,
153 STANDARD.encode_slice(&input, &mut vec).unwrap_err()
154 );
155 vec.push(0);
156 assert_eq!(
157 num_triples * 4,
158 STANDARD.encode_slice(&input, &mut vec).unwrap()
159 );
160 }
161 }
162