xref: /aosp_15_r20/external/pytorch/torch/distributed/optim/functional_adadelta.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1# mypy: allow-untyped-defs
2from typing import Dict, List, Optional
3
4import torch
5import torch.optim._functional as F
6from torch import Tensor
7
8
9__all__: List[str] = []
10
11
12# Define a TorchScript compatible Functional Adadelta Optimizer
13# where we use these optimizer in a functional way.
14# Instead of using the `param.grad` when updating parameters,
15# we explicitly allow the distributed optimizer pass gradients to
16# the `step` function. In this way, we could separate the gradients
17# and parameters and allow multithreaded trainer to update the
18# parameters without data traces on accumulating to the same .grad.
19# NOTE: This should be only used by distributed optimizer internals
20# and not meant to expose to the user.
21@torch.jit.script
22class _FunctionalAdadelta:
23    def __init__(
24        self,
25        params: List[Tensor],
26        lr: float = 1.0,
27        rho: float = 0.9,
28        eps: float = 1e-6,
29        weight_decay: float = 0.0,
30        foreach: bool = False,
31        maximize: bool = False,
32        _allow_empty_param_list: bool = False,
33    ):
34        self.defaults = {
35            "lr": lr,
36            "rho": rho,
37            "eps": eps,
38            "weight_decay": weight_decay,
39        }
40        self.foreach = foreach
41        self.maximize = maximize
42
43        if len(params) == 0 and not _allow_empty_param_list:
44            raise ValueError("optimizer got an empty parameter list")
45
46        # NOTE: we only have one param_group and don't allow user to add additional
47        # param group as it's not a common use case.
48        self.param_group = {"params": params}
49
50        self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {})
51
52    def step(self, gradients: List[Optional[Tensor]]):
53        params = self.param_group["params"]
54        params_with_grad = []
55        grads = []
56        square_avgs = []
57        acc_deltas = []
58        state_steps = []
59        lr = self.defaults["lr"]
60        rho = self.defaults["rho"]
61        eps = self.defaults["eps"]
62        weight_decay = self.defaults["weight_decay"]
63
64        if len(params) != len(gradients):
65            raise ValueError(
66                "the gradients passed in does not equal to the size of the parameters!"
67                + f"Params length: {len(params)}. "
68                + f"Gradients length: {len(gradients)}"
69            )
70        has_complex = False
71        for param, gradient in zip(params, gradients):
72            if gradient is not None:
73                has_complex |= torch.is_complex(param)
74                params_with_grad.append(param)
75                grads.append(gradient)
76                # Lazy state initialization
77                if param not in self.state:
78                    self.state[param] = {}
79                    state = self.state[param]
80                    state["step"] = torch.tensor(0.0)
81                    state["square_avg"] = torch.zeros_like(
82                        param, memory_format=torch.preserve_format
83                    )
84                    state["acc_delta"] = torch.zeros_like(
85                        param, memory_format=torch.preserve_format
86                    )
87
88                state = self.state[param]
89                square_avgs.append(state["square_avg"])
90                acc_deltas.append(state["acc_delta"])
91                state_steps.append(state["step"])
92
93        with torch.no_grad():
94            F.adadelta(
95                params_with_grad,
96                grads,
97                square_avgs,
98                acc_deltas,
99                state_steps,
100                lr=lr,
101                rho=rho,
102                eps=eps,
103                weight_decay=weight_decay,
104                foreach=self.foreach,
105                maximize=self.maximize,
106                has_complex=has_complex,
107            )
108