xref: /aosp_15_r20/external/pytorch/benchmarks/fastrnns/runner.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1from collections import namedtuple
2from functools import partial
3
4import torchvision.models as cnn
5
6import torch
7
8from .factory import (
9    dropoutlstm_creator,
10    imagenet_cnn_creator,
11    layernorm_pytorch_lstm_creator,
12    lnlstm_creator,
13    lstm_creator,
14    lstm_multilayer_creator,
15    lstm_premul_bias_creator,
16    lstm_premul_creator,
17    lstm_simple_creator,
18    pytorch_lstm_creator,
19    varlen_lstm_creator,
20    varlen_pytorch_lstm_creator,
21)
22
23
24class DisableCuDNN:
25    def __enter__(self):
26        self.saved = torch.backends.cudnn.enabled
27        torch.backends.cudnn.enabled = False
28
29    def __exit__(self, *args, **kwargs):
30        torch.backends.cudnn.enabled = self.saved
31
32
33class DummyContext:
34    def __enter__(self):
35        pass
36
37    def __exit__(self, *args, **kwargs):
38        pass
39
40
41class AssertNoJIT:
42    def __enter__(self):
43        import os
44
45        enabled = os.environ.get("PYTORCH_JIT", 1)
46        assert not enabled
47
48    def __exit__(self, *args, **kwargs):
49        pass
50
51
52RNNRunner = namedtuple(
53    "RNNRunner",
54    [
55        "name",
56        "creator",
57        "context",
58    ],
59)
60
61
62def get_nn_runners(*names):
63    return [nn_runners[name] for name in names]
64
65
66nn_runners = {
67    "cudnn": RNNRunner("cudnn", pytorch_lstm_creator, DummyContext),
68    "cudnn_dropout": RNNRunner(
69        "cudnn_dropout", partial(pytorch_lstm_creator, dropout=0.4), DummyContext
70    ),
71    "cudnn_layernorm": RNNRunner(
72        "cudnn_layernorm", layernorm_pytorch_lstm_creator, DummyContext
73    ),
74    "vl_cudnn": RNNRunner("vl_cudnn", varlen_pytorch_lstm_creator, DummyContext),
75    "vl_jit": RNNRunner(
76        "vl_jit", partial(varlen_lstm_creator, script=True), DummyContext
77    ),
78    "vl_py": RNNRunner("vl_py", varlen_lstm_creator, DummyContext),
79    "aten": RNNRunner("aten", pytorch_lstm_creator, DisableCuDNN),
80    "jit": RNNRunner("jit", lstm_creator, DummyContext),
81    "jit_premul": RNNRunner("jit_premul", lstm_premul_creator, DummyContext),
82    "jit_premul_bias": RNNRunner(
83        "jit_premul_bias", lstm_premul_bias_creator, DummyContext
84    ),
85    "jit_simple": RNNRunner("jit_simple", lstm_simple_creator, DummyContext),
86    "jit_multilayer": RNNRunner(
87        "jit_multilayer", lstm_multilayer_creator, DummyContext
88    ),
89    "jit_layernorm": RNNRunner("jit_layernorm", lnlstm_creator, DummyContext),
90    "jit_layernorm_decom": RNNRunner(
91        "jit_layernorm_decom",
92        partial(lnlstm_creator, decompose_layernorm=True),
93        DummyContext,
94    ),
95    "jit_dropout": RNNRunner("jit_dropout", dropoutlstm_creator, DummyContext),
96    "py": RNNRunner("py", partial(lstm_creator, script=False), DummyContext),
97    "resnet18": RNNRunner(
98        "resnet18", imagenet_cnn_creator(cnn.resnet18, jit=False), DummyContext
99    ),
100    "resnet18_jit": RNNRunner(
101        "resnet18_jit", imagenet_cnn_creator(cnn.resnet18), DummyContext
102    ),
103    "resnet50": RNNRunner(
104        "resnet50", imagenet_cnn_creator(cnn.resnet50, jit=False), DummyContext
105    ),
106    "resnet50_jit": RNNRunner(
107        "resnet50_jit", imagenet_cnn_creator(cnn.resnet50), DummyContext
108    ),
109}
110