1:mod:`math` --- Mathematical functions 2====================================== 3 4.. module:: math 5 :synopsis: Mathematical functions (sin() etc.). 6 7.. testsetup:: 8 9 from math import fsum 10 11-------------- 12 13This module provides access to the mathematical functions defined by the C 14standard. 15 16These functions cannot be used with complex numbers; use the functions of the 17same name from the :mod:`cmath` module if you require support for complex 18numbers. The distinction between functions which support complex numbers and 19those which don't is made since most users do not want to learn quite as much 20mathematics as required to understand complex numbers. Receiving an exception 21instead of a complex result allows earlier detection of the unexpected complex 22number used as a parameter, so that the programmer can determine how and why it 23was generated in the first place. 24 25The following functions are provided by this module. Except when explicitly 26noted otherwise, all return values are floats. 27 28 29Number-theoretic and representation functions 30--------------------------------------------- 31 32.. function:: ceil(x) 33 34 Return the ceiling of *x*, the smallest integer greater than or equal to *x*. 35 If *x* is not a float, delegates to :meth:`x.__ceil__ <object.__ceil__>`, 36 which should return an :class:`~numbers.Integral` value. 37 38 39.. function:: comb(n, k) 40 41 Return the number of ways to choose *k* items from *n* items without repetition 42 and without order. 43 44 Evaluates to ``n! / (k! * (n - k)!)`` when ``k <= n`` and evaluates 45 to zero when ``k > n``. 46 47 Also called the binomial coefficient because it is equivalent 48 to the coefficient of k-th term in polynomial expansion of 49 ``(1 + x)ⁿ``. 50 51 Raises :exc:`TypeError` if either of the arguments are not integers. 52 Raises :exc:`ValueError` if either of the arguments are negative. 53 54 .. versionadded:: 3.8 55 56 57.. function:: copysign(x, y) 58 59 Return a float with the magnitude (absolute value) of *x* but the sign of 60 *y*. On platforms that support signed zeros, ``copysign(1.0, -0.0)`` 61 returns *-1.0*. 62 63 64.. function:: fabs(x) 65 66 Return the absolute value of *x*. 67 68 69.. function:: factorial(n) 70 71 Return *n* factorial as an integer. Raises :exc:`ValueError` if *n* is not integral or 72 is negative. 73 74 .. deprecated:: 3.9 75 Accepting floats with integral values (like ``5.0``) is deprecated. 76 77 78.. function:: floor(x) 79 80 Return the floor of *x*, the largest integer less than or equal to *x*. If 81 *x* is not a float, delegates to :meth:`x.__floor__ <object.__floor__>`, which 82 should return an :class:`~numbers.Integral` value. 83 84 85.. function:: fmod(x, y) 86 87 Return ``fmod(x, y)``, as defined by the platform C library. Note that the 88 Python expression ``x % y`` may not return the same result. The intent of the C 89 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite 90 precision) equal to ``x - n*y`` for some integer *n* such that the result has 91 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y`` 92 returns a result with the sign of *y* instead, and may not be exactly computable 93 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but 94 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be 95 represented exactly as a float, and rounds to the surprising ``1e100``. For 96 this reason, function :func:`fmod` is generally preferred when working with 97 floats, while Python's ``x % y`` is preferred when working with integers. 98 99 100.. function:: frexp(x) 101 102 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float 103 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero, 104 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick 105 apart" the internal representation of a float in a portable way. 106 107 108.. function:: fsum(iterable) 109 110 Return an accurate floating point sum of values in the iterable. Avoids 111 loss of precision by tracking multiple intermediate partial sums:: 112 113 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1]) 114 0.9999999999999999 115 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1]) 116 1.0 117 118 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the 119 typical case where the rounding mode is half-even. On some non-Windows 120 builds, the underlying C library uses extended precision addition and may 121 occasionally double-round an intermediate sum causing it to be off in its 122 least significant bit. 123 124 For further discussion and two alternative approaches, see the `ASPN cookbook 125 recipes for accurate floating point summation 126 <https://code.activestate.com/recipes/393090/>`_\. 127 128 129.. function:: gcd(*integers) 130 131 Return the greatest common divisor of the specified integer arguments. 132 If any of the arguments is nonzero, then the returned value is the largest 133 positive integer that is a divisor of all arguments. If all arguments 134 are zero, then the returned value is ``0``. ``gcd()`` without arguments 135 returns ``0``. 136 137 .. versionadded:: 3.5 138 139 .. versionchanged:: 3.9 140 Added support for an arbitrary number of arguments. Formerly, only two 141 arguments were supported. 142 143 144.. function:: isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) 145 146 Return ``True`` if the values *a* and *b* are close to each other and 147 ``False`` otherwise. 148 149 Whether or not two values are considered close is determined according to 150 given absolute and relative tolerances. 151 152 *rel_tol* is the relative tolerance -- it is the maximum allowed difference 153 between *a* and *b*, relative to the larger absolute value of *a* or *b*. 154 For example, to set a tolerance of 5%, pass ``rel_tol=0.05``. The default 155 tolerance is ``1e-09``, which assures that the two values are the same 156 within about 9 decimal digits. *rel_tol* must be greater than zero. 157 158 *abs_tol* is the minimum absolute tolerance -- useful for comparisons near 159 zero. *abs_tol* must be at least zero. 160 161 If no errors occur, the result will be: 162 ``abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)``. 163 164 The IEEE 754 special values of ``NaN``, ``inf``, and ``-inf`` will be 165 handled according to IEEE rules. Specifically, ``NaN`` is not considered 166 close to any other value, including ``NaN``. ``inf`` and ``-inf`` are only 167 considered close to themselves. 168 169 .. versionadded:: 3.5 170 171 .. seealso:: 172 173 :pep:`485` -- A function for testing approximate equality 174 175 176.. function:: isfinite(x) 177 178 Return ``True`` if *x* is neither an infinity nor a NaN, and 179 ``False`` otherwise. (Note that ``0.0`` *is* considered finite.) 180 181 .. versionadded:: 3.2 182 183 184.. function:: isinf(x) 185 186 Return ``True`` if *x* is a positive or negative infinity, and 187 ``False`` otherwise. 188 189 190.. function:: isnan(x) 191 192 Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise. 193 194 195.. function:: isqrt(n) 196 197 Return the integer square root of the nonnegative integer *n*. This is the 198 floor of the exact square root of *n*, or equivalently the greatest integer 199 *a* such that *a*\ ² |nbsp| ≤ |nbsp| *n*. 200 201 For some applications, it may be more convenient to have the least integer 202 *a* such that *n* |nbsp| ≤ |nbsp| *a*\ ², or in other words the ceiling of 203 the exact square root of *n*. For positive *n*, this can be computed using 204 ``a = 1 + isqrt(n - 1)``. 205 206 .. versionadded:: 3.8 207 208 209.. function:: lcm(*integers) 210 211 Return the least common multiple of the specified integer arguments. 212 If all arguments are nonzero, then the returned value is the smallest 213 positive integer that is a multiple of all arguments. If any of the arguments 214 is zero, then the returned value is ``0``. ``lcm()`` without arguments 215 returns ``1``. 216 217 .. versionadded:: 3.9 218 219 220.. function:: ldexp(x, i) 221 222 Return ``x * (2**i)``. This is essentially the inverse of function 223 :func:`frexp`. 224 225 226.. function:: modf(x) 227 228 Return the fractional and integer parts of *x*. Both results carry the sign 229 of *x* and are floats. 230 231 232.. function:: nextafter(x, y) 233 234 Return the next floating-point value after *x* towards *y*. 235 236 If *x* is equal to *y*, return *y*. 237 238 Examples: 239 240 * ``math.nextafter(x, math.inf)`` goes up: towards positive infinity. 241 * ``math.nextafter(x, -math.inf)`` goes down: towards minus infinity. 242 * ``math.nextafter(x, 0.0)`` goes towards zero. 243 * ``math.nextafter(x, math.copysign(math.inf, x))`` goes away from zero. 244 245 See also :func:`math.ulp`. 246 247 .. versionadded:: 3.9 248 249.. function:: perm(n, k=None) 250 251 Return the number of ways to choose *k* items from *n* items 252 without repetition and with order. 253 254 Evaluates to ``n! / (n - k)!`` when ``k <= n`` and evaluates 255 to zero when ``k > n``. 256 257 If *k* is not specified or is None, then *k* defaults to *n* 258 and the function returns ``n!``. 259 260 Raises :exc:`TypeError` if either of the arguments are not integers. 261 Raises :exc:`ValueError` if either of the arguments are negative. 262 263 .. versionadded:: 3.8 264 265 266.. function:: prod(iterable, *, start=1) 267 268 Calculate the product of all the elements in the input *iterable*. 269 The default *start* value for the product is ``1``. 270 271 When the iterable is empty, return the start value. This function is 272 intended specifically for use with numeric values and may reject 273 non-numeric types. 274 275 .. versionadded:: 3.8 276 277 278.. function:: remainder(x, y) 279 280 Return the IEEE 754-style remainder of *x* with respect to *y*. For 281 finite *x* and finite nonzero *y*, this is the difference ``x - n*y``, 282 where ``n`` is the closest integer to the exact value of the quotient ``x / 283 y``. If ``x / y`` is exactly halfway between two consecutive integers, the 284 nearest *even* integer is used for ``n``. The remainder ``r = remainder(x, 285 y)`` thus always satisfies ``abs(r) <= 0.5 * abs(y)``. 286 287 Special cases follow IEEE 754: in particular, ``remainder(x, math.inf)`` is 288 *x* for any finite *x*, and ``remainder(x, 0)`` and 289 ``remainder(math.inf, x)`` raise :exc:`ValueError` for any non-NaN *x*. 290 If the result of the remainder operation is zero, that zero will have 291 the same sign as *x*. 292 293 On platforms using IEEE 754 binary floating-point, the result of this 294 operation is always exactly representable: no rounding error is introduced. 295 296 .. versionadded:: 3.7 297 298 299.. function:: trunc(x) 300 301 Return *x* with the fractional part 302 removed, leaving the integer part. This rounds toward 0: ``trunc()`` is 303 equivalent to :func:`floor` for positive *x*, and equivalent to :func:`ceil` 304 for negative *x*. If *x* is not a float, delegates to :meth:`x.__trunc__ 305 <object.__trunc__>`, which should return an :class:`~numbers.Integral` value. 306 307.. function:: ulp(x) 308 309 Return the value of the least significant bit of the float *x*: 310 311 * If *x* is a NaN (not a number), return *x*. 312 * If *x* is negative, return ``ulp(-x)``. 313 * If *x* is a positive infinity, return *x*. 314 * If *x* is equal to zero, return the smallest positive 315 *denormalized* representable float (smaller than the minimum positive 316 *normalized* float, :data:`sys.float_info.min <sys.float_info>`). 317 * If *x* is equal to the largest positive representable float, 318 return the value of the least significant bit of *x*, such that the first 319 float smaller than *x* is ``x - ulp(x)``. 320 * Otherwise (*x* is a positive finite number), return the value of the least 321 significant bit of *x*, such that the first float bigger than *x* 322 is ``x + ulp(x)``. 323 324 ULP stands for "Unit in the Last Place". 325 326 See also :func:`math.nextafter` and :data:`sys.float_info.epsilon 327 <sys.float_info>`. 328 329 .. versionadded:: 3.9 330 331 332Note that :func:`frexp` and :func:`modf` have a different call/return pattern 333than their C equivalents: they take a single argument and return a pair of 334values, rather than returning their second return value through an 'output 335parameter' (there is no such thing in Python). 336 337For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all* 338floating-point numbers of sufficiently large magnitude are exact integers. 339Python floats typically carry no more than 53 bits of precision (the same as the 340platform C double type), in which case any float *x* with ``abs(x) >= 2**52`` 341necessarily has no fractional bits. 342 343 344Power and logarithmic functions 345------------------------------- 346 347.. function:: cbrt(x) 348 349 Return the cube root of *x*. 350 351 .. versionadded:: 3.11 352 353 354.. function:: exp(x) 355 356 Return *e* raised to the power *x*, where *e* = 2.718281... is the base 357 of natural logarithms. This is usually more accurate than ``math.e ** x`` 358 or ``pow(math.e, x)``. 359 360 361.. function:: exp2(x) 362 363 Return *2* raised to the power *x*. 364 365 .. versionadded:: 3.11 366 367 368.. function:: expm1(x) 369 370 Return *e* raised to the power *x*, minus 1. Here *e* is the base of natural 371 logarithms. For small floats *x*, the subtraction in ``exp(x) - 1`` 372 can result in a `significant loss of precision 373 <https://en.wikipedia.org/wiki/Loss_of_significance>`_\; the :func:`expm1` 374 function provides a way to compute this quantity to full precision:: 375 376 >>> from math import exp, expm1 377 >>> exp(1e-5) - 1 # gives result accurate to 11 places 378 1.0000050000069649e-05 379 >>> expm1(1e-5) # result accurate to full precision 380 1.0000050000166668e-05 381 382 .. versionadded:: 3.2 383 384 385.. function:: log(x[, base]) 386 387 With one argument, return the natural logarithm of *x* (to base *e*). 388 389 With two arguments, return the logarithm of *x* to the given *base*, 390 calculated as ``log(x)/log(base)``. 391 392 393.. function:: log1p(x) 394 395 Return the natural logarithm of *1+x* (base *e*). The 396 result is calculated in a way which is accurate for *x* near zero. 397 398 399.. function:: log2(x) 400 401 Return the base-2 logarithm of *x*. This is usually more accurate than 402 ``log(x, 2)``. 403 404 .. versionadded:: 3.3 405 406 .. seealso:: 407 408 :meth:`int.bit_length` returns the number of bits necessary to represent 409 an integer in binary, excluding the sign and leading zeros. 410 411 412.. function:: log10(x) 413 414 Return the base-10 logarithm of *x*. This is usually more accurate 415 than ``log(x, 10)``. 416 417 418.. function:: pow(x, y) 419 420 Return ``x`` raised to the power ``y``. Exceptional cases follow 421 the IEEE 754 standard as far as possible. In particular, 422 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even 423 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite, 424 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)`` 425 is undefined, and raises :exc:`ValueError`. 426 427 Unlike the built-in ``**`` operator, :func:`math.pow` converts both 428 its arguments to type :class:`float`. Use ``**`` or the built-in 429 :func:`pow` function for computing exact integer powers. 430 431 .. versionchanged:: 3.11 432 The special cases ``pow(0.0, -inf)`` and ``pow(-0.0, -inf)`` were 433 changed to return ``inf`` instead of raising :exc:`ValueError`, 434 for consistency with IEEE 754. 435 436 437.. function:: sqrt(x) 438 439 Return the square root of *x*. 440 441 442Trigonometric functions 443----------------------- 444 445.. function:: acos(x) 446 447 Return the arc cosine of *x*, in radians. The result is between ``0`` and 448 ``pi``. 449 450 451.. function:: asin(x) 452 453 Return the arc sine of *x*, in radians. The result is between ``-pi/2`` and 454 ``pi/2``. 455 456 457.. function:: atan(x) 458 459 Return the arc tangent of *x*, in radians. The result is between ``-pi/2`` and 460 ``pi/2``. 461 462 463.. function:: atan2(y, x) 464 465 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``. 466 The vector in the plane from the origin to point ``(x, y)`` makes this angle 467 with the positive X axis. The point of :func:`atan2` is that the signs of both 468 inputs are known to it, so it can compute the correct quadrant for the angle. 469 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1, 470 -1)`` is ``-3*pi/4``. 471 472 473.. function:: cos(x) 474 475 Return the cosine of *x* radians. 476 477 478.. function:: dist(p, q) 479 480 Return the Euclidean distance between two points *p* and *q*, each 481 given as a sequence (or iterable) of coordinates. The two points 482 must have the same dimension. 483 484 Roughly equivalent to:: 485 486 sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q))) 487 488 .. versionadded:: 3.8 489 490 491.. function:: hypot(*coordinates) 492 493 Return the Euclidean norm, ``sqrt(sum(x**2 for x in coordinates))``. 494 This is the length of the vector from the origin to the point 495 given by the coordinates. 496 497 For a two dimensional point ``(x, y)``, this is equivalent to computing 498 the hypotenuse of a right triangle using the Pythagorean theorem, 499 ``sqrt(x*x + y*y)``. 500 501 .. versionchanged:: 3.8 502 Added support for n-dimensional points. Formerly, only the two 503 dimensional case was supported. 504 505 .. versionchanged:: 3.10 506 Improved the algorithm's accuracy so that the maximum error is 507 under 1 ulp (unit in the last place). More typically, the result 508 is almost always correctly rounded to within 1/2 ulp. 509 510 511.. function:: sin(x) 512 513 Return the sine of *x* radians. 514 515 516.. function:: tan(x) 517 518 Return the tangent of *x* radians. 519 520 521Angular conversion 522------------------ 523 524.. function:: degrees(x) 525 526 Convert angle *x* from radians to degrees. 527 528 529.. function:: radians(x) 530 531 Convert angle *x* from degrees to radians. 532 533 534Hyperbolic functions 535-------------------- 536 537`Hyperbolic functions <https://en.wikipedia.org/wiki/Hyperbolic_function>`_ 538are analogs of trigonometric functions that are based on hyperbolas 539instead of circles. 540 541.. function:: acosh(x) 542 543 Return the inverse hyperbolic cosine of *x*. 544 545 546.. function:: asinh(x) 547 548 Return the inverse hyperbolic sine of *x*. 549 550 551.. function:: atanh(x) 552 553 Return the inverse hyperbolic tangent of *x*. 554 555 556.. function:: cosh(x) 557 558 Return the hyperbolic cosine of *x*. 559 560 561.. function:: sinh(x) 562 563 Return the hyperbolic sine of *x*. 564 565 566.. function:: tanh(x) 567 568 Return the hyperbolic tangent of *x*. 569 570 571Special functions 572----------------- 573 574.. function:: erf(x) 575 576 Return the `error function <https://en.wikipedia.org/wiki/Error_function>`_ at 577 *x*. 578 579 The :func:`erf` function can be used to compute traditional statistical 580 functions such as the `cumulative standard normal distribution 581 <https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_functions>`_:: 582 583 def phi(x): 584 'Cumulative distribution function for the standard normal distribution' 585 return (1.0 + erf(x / sqrt(2.0))) / 2.0 586 587 .. versionadded:: 3.2 588 589 590.. function:: erfc(x) 591 592 Return the complementary error function at *x*. The `complementary error 593 function <https://en.wikipedia.org/wiki/Error_function>`_ is defined as 594 ``1.0 - erf(x)``. It is used for large values of *x* where a subtraction 595 from one would cause a `loss of significance 596 <https://en.wikipedia.org/wiki/Loss_of_significance>`_\. 597 598 .. versionadded:: 3.2 599 600 601.. function:: gamma(x) 602 603 Return the `Gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ at 604 *x*. 605 606 .. versionadded:: 3.2 607 608 609.. function:: lgamma(x) 610 611 Return the natural logarithm of the absolute value of the Gamma 612 function at *x*. 613 614 .. versionadded:: 3.2 615 616 617Constants 618--------- 619 620.. data:: pi 621 622 The mathematical constant *π* = 3.141592..., to available precision. 623 624 625.. data:: e 626 627 The mathematical constant *e* = 2.718281..., to available precision. 628 629 630.. data:: tau 631 632 The mathematical constant *τ* = 6.283185..., to available precision. 633 Tau is a circle constant equal to 2\ *π*, the ratio of a circle's circumference to 634 its radius. To learn more about Tau, check out Vi Hart's video `Pi is (still) 635 Wrong <https://www.youtube.com/watch?v=jG7vhMMXagQ>`_, and start celebrating 636 `Tau day <https://tauday.com/>`_ by eating twice as much pie! 637 638 .. versionadded:: 3.6 639 640 641.. data:: inf 642 643 A floating-point positive infinity. (For negative infinity, use 644 ``-math.inf``.) Equivalent to the output of ``float('inf')``. 645 646 .. versionadded:: 3.5 647 648 649.. data:: nan 650 651 A floating-point "not a number" (NaN) value. Equivalent to the output of 652 ``float('nan')``. Due to the requirements of the `IEEE-754 standard 653 <https://en.wikipedia.org/wiki/IEEE_754>`_, ``math.nan`` and ``float('nan')`` are 654 not considered to equal to any other numeric value, including themselves. To check 655 whether a number is a NaN, use the :func:`isnan` function to test 656 for NaNs instead of ``is`` or ``==``. 657 Example:: 658 659 >>> import math 660 >>> math.nan == math.nan 661 False 662 >>> float('nan') == float('nan') 663 False 664 >>> math.isnan(math.nan) 665 True 666 >>> math.isnan(float('nan')) 667 True 668 669 .. versionchanged:: 3.11 670 It is now always available. 671 672 .. versionadded:: 3.5 673 674 675.. impl-detail:: 676 677 The :mod:`math` module consists mostly of thin wrappers around the platform C 678 math library functions. Behavior in exceptional cases follows Annex F of 679 the C99 standard where appropriate. The current implementation will raise 680 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)`` 681 (where C99 Annex F recommends signaling invalid operation or divide-by-zero), 682 and :exc:`OverflowError` for results that overflow (for example, 683 ``exp(1000.0)``). A NaN will not be returned from any of the functions 684 above unless one or more of the input arguments was a NaN; in that case, 685 most functions will return a NaN, but (again following C99 Annex F) there 686 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or 687 ``hypot(float('nan'), float('inf'))``. 688 689 Note that Python makes no effort to distinguish signaling NaNs from 690 quiet NaNs, and behavior for signaling NaNs remains unspecified. 691 Typical behavior is to treat all NaNs as though they were quiet. 692 693 694.. seealso:: 695 696 Module :mod:`cmath` 697 Complex number versions of many of these functions. 698 699.. |nbsp| unicode:: 0xA0 700 :trim: 701