xref: /aosp_15_r20/external/ComputeLibrary/src/cpu/operators/CpuConv2d.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/common/Macros.h"
25 #include "src/cpu/ICpuOperator.h"
26 
27 namespace arm_compute
28 {
29 namespace cpu
30 {
31 /** Basic function to simulate a convolution layer. This function calls one of the following functions:
32  * -# @ref CpuGemm     (executed only in case GEMM is required for the operation)
33  * -# @ref CpuWinogradConv2d (executed only in case Winograd is required for the operation)
34  * -# @ref CpuDirectConv2d   (executed only in case Direct Convolution is required for the operation)
35  *
36  *
37  * The function selects one of the algorithms mentioned above based on:
38  *      - The size of the kernel
39  *      - Number of input/output feature maps
40  *      - Amount of memory needed
41  *
42  * Generally GEMM-based convolution is executed when neither Winograd nor FFT nor Direct convolution can be performed.
43  *
44  * FP32 Algorithm| Filter Size                                        |   Input/Output feature maps               |
45  * --------------|----------------------------------------------------|-------------------------------------------|
46  * Winograd      | 3x3 1x3 3x1 5x1 1x5 5x5(fast maths) 7x1 1x7        |  Input channels is greater than 3         |
47  * FFT           | Squared kernels and greater than 9x9               |  Input feature maps > Output feature maps |
48  * DirectConv    | 9x9                                                |                                           |
49  * GEMM          | Any size                                           |                                           |
50  *
51  * Winograd 5x5 requires fast maths enabled.
52  *
53  * FP16 Algorithm| Filter Size      |
54  * --------------|------------------|
55  * Winograd      | Not supported    |
56  * FFT           | Not supported    |
57  * DirectConv    | 9x9              |
58  * GEMM          | Any size         |
59  *
60  *
61  */
62 class CpuConv2d : public ICpuOperator
63 {
64 public:
65     /** Constructor */
66     CpuConv2d();
67     ARM_COMPUTE_DISALLOW_COPY_ALLOW_MOVE(CpuConv2d);
68     /** Default destructor */
69     ~CpuConv2d();
70     /** Set the input and output tensors.
71      *
72      * Valid data layouts:
73      * - NHWC
74      * - NCHW
75      *
76      * Valid data type configurations:
77      * |src0           |src1               |src2   |dst            |
78      * |:--------------|:------------------|:------|:--------------|
79      * |F16            |F16                |F16    |F16            |
80      * |F32            |F32                |F32    |F32            |
81      * |QASYMM8        |QASYMM8            |S32    |QASYMM8        |
82      * |QASYMM8        |QSYMM8_PER_CHANNEL |S32    |QASYMM8        |
83      * |QASYMM8_SIGNED |QASYMM8_SIGNED     |S32    |QASYMM8_SIGNED |
84      * |QASYMM8_SIGNED |QSYMM8_PER_CHANNEL |S32    |QASYMM8_SIGNED |
85      *
86      * @param[in]  src              Source tensor info. 3 lower dimensions represent a single input [width, height, IFM],
87      *                              while every optional dimension from 4 and above represent a batch of inputs.
88      *                              Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
89      * @param[in]  weights          Weights tensor info. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
90      *                              Data type supported: Same as @p src, also could be QSYMM8_PER_CHANNEL if input is QASYMM8/QASYMM8_SIGNED.
91      * @param[in]  biases           Biases tensor info. Shared biases supported. Biases are 1D tensor with dimensions [OFM].
92      *                              Data type supported: Same as @p src, except for input of QASYMM8/QASYMM8_SIGNED type where biases should be of S32 type.
93      * @param[out] dst              Destination tensor info. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
94      *                              Data types supported: Same as @p src.
95      * @param[in]  conv_info        Contains padding and stride information described in @ref PadStrideInfo.
96      * @param[in]  weights_info     Specifies if the weights tensor has been reshaped with NEWeightsReshapeKernel. If this is not part of the fully connected layer the weights
97      *                              tensor has also been transposed with cpu::kernels::CpuGemmTranspose1xWKernel. Data type supported: Same as @p input.
98      * @param[in]  dilation         (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
99      * @param[in]  act_info         (Optional) Activation layer information in case of a fused activation. Only RELU, BOUNDED_RELU and LU_BOUNDED_RELU supported.
100      * @param[in]  enable_fast_math (Optional) Enable fast math computation. In case this flag were set, the function could dispatch the fastest implementation
101      *                              available which may introduce a drop of accuracy as well. Default is false
102      * @param[in]  num_groups       (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is not supported
103      */
104     void configure(ITensorInfo *src, ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const PadStrideInfo &conv_info, const WeightsInfo &weights_info = WeightsInfo(),
105                    const Size2D &dilation = Size2D(1U, 1U), const ActivationLayerInfo &act_info = ActivationLayerInfo(), bool enable_fast_math = false, unsigned int num_groups = 1);
106     /** Static function to check if given info will lead to a valid configuration of @ref CpuConv2d
107      *
108      * Similar to CpuConv2d::configure()
109      *
110      * @return a status
111      */
112     static Status validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
113                            const WeightsInfo &weights_info = WeightsInfo(), const Size2D &dilation = Size2D(1U, 1U), const ActivationLayerInfo &act_info = ActivationLayerInfo(), bool enable_fast_math = false,
114                            unsigned int num_groups = 1);
115     /** Static function to check if given info will return the convolution called by @ref CpuConv2d
116      *
117      * @param[in] src              Source tensor info. 3 lower dimensions represent a single input [width, height, IFM],
118      *                             while every optional dimension from 4 and above represent a batch of inputs.
119      *                             Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
120      * @param[in] weights          Weights tensor info. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
121      *                             Data type supported:Same as @p src, also could be QSYMM8_PER_CHANNEL if input is QASYMM8/QASYMM8_SIGNED.
122      * @param[in] dst              Destination tensor info. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
123      *                             Data types supported: Same as @p src.
124      * @param[in] conv_info        Contains padding and stride information described in @ref PadStrideInfo.
125      * @param[in] weights_info     Specifies if the weights tensor has been reshaped with NEWeightsReshapeKernel. If this is not part of the fully connected layer the weights
126      *                             tensor has also been transposed with cpu::kernels::CpuGemmTranspose1xWKernel. Data type supported: Same as @p input.
127      * @param[in] dilation         (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
128      * @param[in] act_info         (Optional) Activation layer information in case of a fused activation.
129      * @param[in] enable_fast_math (Optional) Enable fast math computation. In case this flag were set, the function could dispatch the fastest implementation
130      *                             available which may introduce a drop of accuracy as well. Default is false
131      *
132      * @return the Convolution Method Hint
133      */
134     static ConvolutionMethod get_convolution_method(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *dst, const PadStrideInfo &conv_info,
135                                                     const WeightsInfo &weights_info = WeightsInfo(), const Size2D &dilation = Size2D(1U, 1U), const ActivationLayerInfo &act_info = ActivationLayerInfo(), bool enable_fast_math = false);
136     // Inherited methods overridden:
137     void run(ITensorPack &tensors) override;
138     void prepare(ITensorPack &constants) override;
139     experimental::MemoryRequirements workspace() const override;
140 
141 private:
142     std::unique_ptr<ICpuOperator>    _function;
143     experimental::MemoryRequirements _aux_mem{};
144 };
145 } // namespace cpu
146 } // namespace arm_compute
147