xref: /openwifi/driver/sdr.c (revision e1c2ba09155849a68e30c0e3cba548476ccca9dc)
1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu
2 // SPDX-FileCopyrightText: 2019 UGent
3 // SPDX-License-Identifier: AGPL-3.0-or-later
4 
5 #include <linux/bitops.h>
6 #include <linux/dmapool.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/of_address.h>
10 #include <linux/of_platform.h>
11 #include <linux/of_irq.h>
12 #include <linux/slab.h>
13 #include <linux/clk.h>
14 #include <linux/io-64-nonatomic-lo-hi.h>
15 
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 
19 #include <linux/dmaengine.h>
20 #include <linux/slab.h>
21 #include <linux/delay.h>
22 #include <linux/etherdevice.h>
23 
24 #include <linux/init.h>
25 #include <linux/kthread.h>
26 #include <linux/module.h>
27 #include <linux/of_dma.h>
28 #include <linux/platform_device.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/wait.h>
32 #include <linux/sched/task.h>
33 #include <linux/dma/xilinx_dma.h>
34 #include <linux/spi/spi.h>
35 #include <net/mac80211.h>
36 
37 #include <linux/clk.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk-provider.h>
40 
41 #include <linux/iio/iio.h>
42 #include <linux/iio/sysfs.h>
43 
44 #include <linux/gpio.h>
45 #include <linux/leds.h>
46 
47 #define IIO_AD9361_USE_PRIVATE_H_
48 #include "ad9361/ad9361_regs.h"
49 #include "ad9361/ad9361.h"
50 #include "ad9361/ad9361_private.h"
51 
52 #include <../../drivers/iio/frequency/cf_axi_dds.h>
53 
54 #include "../user_space/sdrctl_src/nl80211_testmode_def.h"
55 #include "hw_def.h"
56 #include "sdr.h"
57 #include "git_rev.h"
58 
59 // driver API of component driver
60 extern struct tx_intf_driver_api *tx_intf_api;
61 extern struct rx_intf_driver_api *rx_intf_api;
62 extern struct openofdm_tx_driver_api *openofdm_tx_api;
63 extern struct openofdm_rx_driver_api *openofdm_rx_api;
64 extern struct xpu_driver_api *xpu_api;
65 
66 static int test_mode = 0; // 0 normal; 1 rx test
67 
68 MODULE_AUTHOR("Xianjun Jiao");
69 MODULE_DESCRIPTION("SDR driver");
70 MODULE_LICENSE("GPL v2");
71 
72 module_param(test_mode, int, 0);
73 MODULE_PARM_DESC(myint, "test_mode. 0 normal; 1 rx test");
74 
75 // ---------------rfkill---------------------------------------
76 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
77 {
78 	int reg;
79 
80 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
81 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
82 	else
83 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
84 
85 	if (reg == AD9361_RADIO_ON_TX_ATT)
86 		return true;// 0 off, 1 on
87 	return false;
88 }
89 
90 void openwifi_rfkill_init(struct ieee80211_hw *hw)
91 {
92 	struct openwifi_priv *priv = hw->priv;
93 
94 	priv->rfkill_off = openwifi_is_radio_enabled(priv);
95 	printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
96 	wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
97 	wiphy_rfkill_start_polling(hw->wiphy);
98 }
99 
100 void openwifi_rfkill_poll(struct ieee80211_hw *hw)
101 {
102 	bool enabled;
103 	struct openwifi_priv *priv = hw->priv;
104 
105 	enabled = openwifi_is_radio_enabled(priv);
106 	// printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
107 	if (unlikely(enabled != priv->rfkill_off)) {
108 		priv->rfkill_off = enabled;
109 		printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
110 		wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
111 	}
112 }
113 
114 void openwifi_rfkill_exit(struct ieee80211_hw *hw)
115 {
116 	printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
117 	wiphy_rfkill_stop_polling(hw->wiphy);
118 }
119 //----------------rfkill end-----------------------------------
120 
121 //static void ad9361_rf_init(void);
122 //static void ad9361_rf_stop(void);
123 //static void ad9361_rf_calc_rssi(void);
124 static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
125 				  struct ieee80211_conf *conf)
126 {
127 	struct openwifi_priv *priv = dev->priv;
128 	u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz + priv->drv_rx_reg_val[DRV_RX_REG_IDX_EXTRA_FO];
129 	u32 actual_tx_lo, reg_val;
130 	bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
131 
132 	if (change_flag) {
133 		priv->actual_rx_lo = actual_rx_lo;
134 
135 		actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
136 
137 		ad9361_clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo )>>1) );
138 		ad9361_clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo )>>1) );
139 
140 		if (actual_rx_lo<2412) {
141 			priv->rssi_correction = 153;
142 		} else if (actual_rx_lo<=2484) {
143 			priv->rssi_correction = 153;
144 		} else if (actual_rx_lo<5160) {
145 			priv->rssi_correction = 153;
146 		} else if (actual_rx_lo<=5240) {
147 			priv->rssi_correction = 145;
148 		} else if (actual_rx_lo<=5320) {
149 			priv->rssi_correction = 148;
150 		} else {
151 			priv->rssi_correction = 148;
152 		}
153 
154 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm
155 		reg_val=xpu_api->XPU_REG_LBT_TH_read();
156 		xpu_api->XPU_REG_LBT_TH_write( (reg_val & 0xFFFF0000) | ((priv->rssi_correction-62-16)<<1)); // wei's magic value is 135, here is 134 @ ch 44
157 
158 		if (actual_rx_lo < 2500) {
159 			//priv->slot_time = 20; //20 is default slot time in ERP(OFDM)/11g 2.4G; short one is 9.
160 			//xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_2_4GHZ<<16);
161 			if (priv->band != BAND_2_4GHZ) {
162 				priv->band = BAND_2_4GHZ;
163 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
164 			}
165 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2)*10)<<16) | 10 ); // high 16 bits to cover sig valid of ACK packet, low 16 bits is adjustment of fcs valid waiting time.  let's add 2us for those device that is really "slow"!
166 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2+2)*10)<<16) | 10 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this
167 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 0 );
168 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((10)*10)<<16);
169 		}
170 		else {
171 			//priv->slot_time = 9; //default slot time of OFDM PHY (OFDM by default means 5GHz)
172 			// xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_5_8GHZ<<16);
173 			if (priv->band != BAND_5_8GHZ) {
174 				priv->band = BAND_5_8GHZ;
175 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
176 			}
177 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2)*10)<<16) | 10 ); // because 5GHz needs longer SIFS (16 instead of 10), we need 58 instead of 48 for XPU low mac setting.  let's add 2us for those device that is really "slow"!
178 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2+2)*10)<<16) | 10 );//add 2us for longer fir.  BUT corrding to FPGA probing test, we do not need this
179 			// //xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 60*10 );
180 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 50*10 );// for longer fir we need this delay 1us shorter
181 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((16)*10)<<16);
182 		}
183 		//printk("%s ad9361_rf_set_channel %dM rssi_correction %d\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction);
184 		// //-- use less
185 		//clk_prepare_enable(priv->ad9361_phy->clks[RX_RFPLL]);
186 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
187 		//ad9361_set_trx_clock_chain_default(priv->ad9361_phy);
188 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
189 	}
190 	printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d)\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag);
191 }
192 
193 const struct openwifi_rf_ops ad9361_rf_ops = {
194 	.name		= "ad9361",
195 //	.init		= ad9361_rf_init,
196 //	.stop		= ad9361_rf_stop,
197 	.set_chan	= ad9361_rf_set_channel,
198 //	.calc_rssi	= ad9361_rf_calc_rssi,
199 };
200 
201 u16 reverse16(u16 d) {
202 	union u16_byte2 tmp0, tmp1;
203 	tmp0.a = d;
204 	tmp1.c[0] = tmp0.c[1];
205 	tmp1.c[1] = tmp0.c[0];
206 	return(tmp1.a);
207 }
208 
209 u32 reverse32(u32 d) {
210 	union u32_byte4 tmp0, tmp1;
211 	tmp0.a = d;
212 	tmp1.c[0] = tmp0.c[3];
213 	tmp1.c[1] = tmp0.c[2];
214 	tmp1.c[2] = tmp0.c[1];
215 	tmp1.c[3] = tmp0.c[0];
216 	return(tmp1.a);
217 }
218 
219 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx)
220 {
221 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
222 	int i;
223 
224 	ring->stop_flag = 0;
225 	ring->bd_wr_idx = 0;
226 	ring->bd_rd_idx = 0;
227 	ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
228 	if (ring->bds==NULL) {
229 		printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
230 		return -ENOMEM;
231 	}
232 
233 	for (i = 0; i < NUM_TX_BD; i++) {
234 		ring->bds[i].skb_linked=0; // for tx, skb is from upper layer
235 		//at first right after skb allocated, head, data, tail are the same.
236 		ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine
237 	}
238 
239 	return 0;
240 }
241 
242 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx)
243 {
244 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
245 	int i;
246 
247 	ring->stop_flag = 0;
248 	ring->bd_wr_idx = 0;
249 	ring->bd_rd_idx = 0;
250 	for (i = 0; i < NUM_TX_BD; i++) {
251 		if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
252 			continue;
253 		if (ring->bds[i].dma_mapping_addr != 0)
254 			dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV);
255 //		if (ring->bds[i].skb_linked!=NULL)
256 //			dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception
257 		if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
258 		     (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
259 			printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08llx\n", sdr_compatible_str,
260 			ring_idx, i, (void*)(ring->bds[i].skb_linked), ring->bds[i].dma_mapping_addr);
261 
262 		ring->bds[i].skb_linked=0;
263 		ring->bds[i].dma_mapping_addr = 0;
264 	}
265 	if (ring->bds)
266 		kfree(ring->bds);
267 	ring->bds = NULL;
268 }
269 
270 static int openwifi_init_rx_ring(struct openwifi_priv *priv)
271 {
272 	int i;
273 	u8 *pdata_tmp;
274 
275 	priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
276 	if (!priv->rx_cyclic_buf) {
277 		printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
278 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
279 		return(-1);
280 	}
281 
282 	// Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA
283 	for (i=0; i<NUM_RX_BD; i++) {
284 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning
285 		(*((u32*)(pdata_tmp+0 ))) = 0;
286 		(*((u32*)(pdata_tmp+4 ))) = 0;
287 	}
288 	printk("%s openwifi_init_rx_ring: tsft_low and tsft_high are cleared!\n", sdr_compatible_str);
289 
290 	return 0;
291 }
292 
293 static void openwifi_free_rx_ring(struct openwifi_priv *priv)
294 {
295 	if (priv->rx_cyclic_buf)
296 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
297 
298 	priv->rx_cyclic_buf_dma_mapping_addr = 0;
299 	priv->rx_cyclic_buf = 0;
300 }
301 
302 static int rx_dma_setup(struct ieee80211_hw *dev){
303 	struct openwifi_priv *priv = dev->priv;
304 	struct dma_device *rx_dev = priv->rx_chan->device;
305 
306 	priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
307 	if (!(priv->rxd)) {
308 		openwifi_free_rx_ring(priv);
309 		printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd));
310 		return(-1);
311 	}
312 	priv->rxd->callback = 0;
313 	priv->rxd->callback_param = 0;
314 
315 	priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
316 
317 	if (dma_submit_error(priv->rx_cookie)) {
318 		printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
319 		return(-1);
320 	}
321 
322 	dma_async_issue_pending(priv->rx_chan);
323 	return(0);
324 }
325 
326 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
327 {
328 	struct ieee80211_hw *dev = dev_id;
329 	struct openwifi_priv *priv = dev->priv;
330 	struct ieee80211_rx_status rx_status = {0};
331 	struct sk_buff *skb;
332 	struct ieee80211_hdr *hdr;
333 	u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0, ht_flag, short_gi;//, fc_di;
334 	// u32 dma_driver_buf_idx_mod;
335 	u8 *pdata_tmp, fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw;
336 	s8 signal;
337 	u16 rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0;
338 	bool content_ok = false, len_overflow = false;
339 	static u8 target_buf_idx_old = 0;
340 
341 	spin_lock(&priv->lock);
342 
343 	while(1) { // loop all rx buffers that have new rx packets
344 		pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning
345 		tsft_low =     (*((u32*)(pdata_tmp+0 )));
346 		tsft_high =    (*((u32*)(pdata_tmp+4 )));
347 		if ( tsft_low==0 && tsft_high==0 ) // no packet in the buffer
348 			break;
349 
350 		rssi_val =     (*((u16*)(pdata_tmp+8 )));
351 		len =          (*((u16*)(pdata_tmp+12)));
352 
353 		len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
354 
355 		rate_idx =     (*((u16*)(pdata_tmp+14)));
356 		short_gi =     ((rate_idx&0x20)!=0);
357 		rate_idx =     (rate_idx&0xDF);
358 
359 		fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
360 
361 		//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
362 		// phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
363 		// dma_driver_buf_idx_mod = (state.residue&0x7f);
364 		fcs_ok = ((fcs_ok&0x80)!=0);
365 		ht_flag = ((rate_idx&0x10)!=0);
366 
367 		if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) {
368 			// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
369 			// 	printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
370 			// }
371 			content_ok = true;
372 		} else {
373 			printk("%s openwifi_rx_interrupt: WARNING content!\n", sdr_compatible_str);
374 			content_ok = false;
375 		}
376 
377 		rssi_val = (rssi_val>>1);
378 		if ( (rssi_val+128)<priv->rssi_correction )
379 			signal = -128;
380 		else
381 			signal = rssi_val - priv->rssi_correction;
382 
383 		// fc_di =        (*((u32*)(pdata_tmp+16)));
384 		// addr1_high16 = (*((u16*)(pdata_tmp+16+4)));
385 		// addr1_low32  = (*((u32*)(pdata_tmp+16+4+2)));
386 		// addr2_high16 = (*((u16*)(pdata_tmp+16+6+4)));
387 		// addr2_low32  = (*((u32*)(pdata_tmp+16+6+4+2)));
388 		// addr3_high16 = (*((u16*)(pdata_tmp+16+12+4)));
389 		// addr3_low32  = (*((u32*)(pdata_tmp+16+12+4+2)));
390 		if ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&2) || ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) && fcs_ok==0 ) ) {
391 			hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
392 			addr1_low32  = *((u32*)(hdr->addr1+2));
393 			addr1_high16 = *((u16*)(hdr->addr1));
394 			if (len>=20) {
395 				addr2_low32  = *((u32*)(hdr->addr2+2));
396 				addr2_high16 = *((u16*)(hdr->addr2));
397 			}
398 			if (len>=26) {
399 				addr3_low32  = *((u32*)(hdr->addr3+2));
400 				addr3_high16 = *((u16*)(hdr->addr3));
401 			}
402 			if (len>=28)
403 				sc = hdr->seq_ctrl;
404 
405 			if ( addr1_low32!=0xffffffff || addr1_high16!=0xffff )
406 				printk("%s openwifi_rx_interrupt:%4dbytes ht%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm\n", sdr_compatible_str,
407 					len, ht_flag, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id,
408 					reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
409 					sc, fcs_ok, target_buf_idx_old, signal);
410 		}
411 
412 		// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
413 		if (content_ok) {
414 			skb = dev_alloc_skb(len);
415 			if (skb) {
416 				skb_put_data(skb,pdata_tmp+16,len);
417 
418 				rx_status.antenna = 0;
419 				// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
420 				rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
421 				rx_status.signal = signal;
422 				rx_status.freq = dev->conf.chandef.chan->center_freq;
423 				rx_status.band = dev->conf.chandef.chan->band;
424 				rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
425 				rx_status.flag |= RX_FLAG_MACTIME_START;
426 				if (!fcs_ok)
427 					rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
428 				if (rate_idx <= 15)
429 					rx_status.encoding = RX_ENC_LEGACY;
430 				else
431 					rx_status.encoding = RX_ENC_HT;
432 				rx_status.bw = RATE_INFO_BW_20;
433 				if (short_gi)
434 					rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
435 
436 				memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
437 				ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
438 			} else
439 				printk("%s openwifi_rx_interrupt: WARNING dev_alloc_skb failed!\n", sdr_compatible_str);
440 		}
441 		(*((u32*)(pdata_tmp+0 ))) = 0;
442 		(*((u32*)(pdata_tmp+4 ))) = 0; // clear the tsft_low and tsft_high to indicate the packet has been processed
443 		loop_count++;
444 		target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1));
445 	}
446 
447 	if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) )
448 		printk("%s openwifi_rx_interrupt: WARNING loop_count %d\n", sdr_compatible_str,loop_count);
449 
450 // openwifi_rx_interrupt_out:
451 	spin_unlock(&priv->lock);
452 	return IRQ_HANDLED;
453 }
454 
455 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
456 {
457 	struct ieee80211_hw *dev = dev_id;
458 	struct openwifi_priv *priv = dev->priv;
459 	struct openwifi_ring *ring;
460 	struct sk_buff *skb;
461 	struct ieee80211_tx_info *info;
462 	u32 reg_val, hw_queue_len, prio, queue_idx, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0;//, i;
463 	u8 tx_result_report;
464 	// u16 prio_rd_idx_store[64]={0};
465 
466 	spin_lock(&priv->lock);
467 
468 	while(1) { // loop all packets that have been sent by FPGA
469 		reg_val = tx_intf_api->TX_INTF_REG_PKT_INFO_read();
470 		if (reg_val!=0xFFFFFFFF) {
471 			prio = ((0x7FFFF & reg_val)>>(5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
472 			cw = ((0xF0000000 & reg_val) >> 28);
473 			num_slot_random = ((0xFF80000 &reg_val)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
474 			if(cw > 10) {
475 				cw = 10 ;
476 				num_slot_random += 512 ;
477 			}
478 
479 			ring = &(priv->tx_ring[prio]);
480 			ring->bd_rd_idx = ((reg_val>>5)&MAX_PHY_TX_SN);
481 			skb = ring->bds[ring->bd_rd_idx].skb_linked;
482 
483 			dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr,
484 					skb->len, DMA_MEM_TO_DEV);
485 
486 			if ( ring->stop_flag == 1) {
487 				// Wake up Linux queue if FPGA and driver ring have room
488 				queue_idx = ((reg_val>>(5+NUM_BIT_MAX_PHY_TX_SN))&(MAX_NUM_HW_QUEUE-1));
489 				dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
490 				hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
491 
492 				// printk("%s openwifi_tx_interrupt: WARNING loop %d prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d call %d\n", sdr_compatible_str,
493 				// loop_count, prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, priv->call_counter);
494 
495 				if ( ((dma_fifo_no_room_flag>>queue_idx)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))>=RING_ROOM_THRESHOLD ) {
496 					// printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter);
497 					printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d\n", sdr_compatible_str,
498 					prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx);
499 					ieee80211_wake_queue(dev, prio);
500 					ring->stop_flag = 0;
501 				}
502 			}
503 
504 			if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) ) {
505 				printk("%s openwifi_tx_interrupt: WARNING %08x %08x %08x %08x\n", sdr_compatible_str, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
506 				continue;
507 			}
508 
509 			skb_pull(skb, LEN_PHY_HEADER);
510 			//skb_trim(skb, num_byte_pad_skb);
511 			info = IEEE80211_SKB_CB(skb);
512 			ieee80211_tx_info_clear_status(info);
513 
514 			tx_result_report = (reg_val&0x1F);
515 			if ( !(info->flags & IEEE80211_TX_CTL_NO_ACK) ) {
516 				if ((tx_result_report&0x10)==0)
517 					info->flags |= IEEE80211_TX_STAT_ACK;
518 
519 				// printk("%s openwifi_tx_interrupt: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
520 				// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
521 				// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
522 				// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
523 				// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
524 			}
525 
526 			info->status.rates[0].count = (tx_result_report&0xF) + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
527 			info->status.rates[1].idx = -1;
528 			info->status.rates[2].idx = -1;
529 			info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES	4
530 
531 			if ( (tx_result_report&0x10) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
532 				printk("%s openwifi_tx_interrupt: WARNING tx_result %02x prio%d wr%d rd%d\n", sdr_compatible_str, tx_result_report, prio, ring->bd_wr_idx, ring->bd_rd_idx);
533 			if ( (!(info->flags & IEEE80211_TX_CTL_NO_ACK)) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&2) )
534 				printk("%s openwifi_tx_interrupt: tx_result %02x prio%d wr%d rd%d num_rand_slot %d cw %d \n", sdr_compatible_str, tx_result_report, prio, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random,cw);
535 
536 			ieee80211_tx_status_irqsafe(dev, skb);
537 
538 			loop_count++;
539 
540 			// printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx);
541 
542 		} else
543 			break;
544 	}
545 	if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
546 		printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count);
547 
548 	spin_unlock(&priv->lock);
549 	return IRQ_HANDLED;
550 }
551 
552 u32 gen_parity(u32 v){
553 	v ^= v >> 1;
554 	v ^= v >> 2;
555 	v = (v & 0x11111111U) * 0x11111111U;
556 	return (v >> 28) & 1;
557 }
558 
559 u8 gen_ht_sig_crc(u64 m)
560 {
561 	u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, ht_sig_crc;
562 
563 	for (i = 0; i < 34; i++)
564 	{
565 		temp = c[7] ^ ((m >> i) & 0x01);
566 
567 		c[7] = c[6];
568 		c[6] = c[5];
569 		c[5] = c[4];
570 		c[4] = c[3];
571 		c[3] = c[2];
572 		c[2] = c[1] ^ temp;
573 		c[1] = c[0] ^ temp;
574 		c[0] = temp;
575 	}
576 	ht_sig_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7);
577 
578 	return ht_sig_crc;
579 }
580 
581 u32 calc_phy_header(u8 rate_hw_value, bool use_ht_rate, bool use_short_gi, u32 len, u8 *bytes){
582 	//u32 signal_word = 0 ;
583 	u8  SIG_RATE = 0, HT_SIG_RATE;
584 	u8	len_2to0, len_10to3, len_msb,b0,b1,b2, header_parity ;
585 	u32 l_len, ht_len, ht_sig1, ht_sig2;
586 
587 	// printk("rate_hw_value=%u\tuse_ht_rate=%u\tuse_short_gi=%u\tlen=%u\n", rate_hw_value, use_ht_rate, use_short_gi, len);
588 
589 	// HT-mixed mode ht signal
590 
591 	if(use_ht_rate)
592 	{
593 		SIG_RATE = wifi_mcs_table_11b_force_up[4];
594 		HT_SIG_RATE = rate_hw_value;
595 		l_len  = 24 * len / wifi_n_dbps_ht_table[rate_hw_value];
596 		ht_len = len;
597 	}
598 	else
599 	{
600 		// rate_hw_value = (rate_hw_value<=4?0:(rate_hw_value-4));
601 		// SIG_RATE = wifi_mcs_table_phy_tx[rate_hw_value];
602 		SIG_RATE = wifi_mcs_table_11b_force_up[rate_hw_value];
603 		l_len = len;
604 	}
605 
606 	len_2to0 = l_len & 0x07 ;
607 	len_10to3 = (l_len >> 3 ) & 0xFF ;
608 	len_msb = (l_len >> 11) & 0x01 ;
609 
610 	b0=SIG_RATE | (len_2to0 << 5) ;
611 	b1 = len_10to3 ;
612 	header_parity = gen_parity((len_msb << 16)| (b1<<8) | b0) ;
613 	b2 = ( len_msb | (header_parity << 1) ) ;
614 
615 	memset(bytes,0,16);
616 	bytes[0] = b0 ;
617 	bytes[1] = b1 ;
618     bytes[2] = b2;
619 
620 	// HT-mixed mode signal
621 	if(use_ht_rate)
622 	{
623 		ht_sig1 = (HT_SIG_RATE & 0x7F) | ((ht_len << 8) & 0xFFFF00);
624 		ht_sig2 = 0x04 | (use_short_gi << 7);
625 		ht_sig2 = ht_sig2 | (gen_ht_sig_crc(ht_sig1 | ht_sig2 << 24) << 10);
626 
627 	    bytes[3]  = 1;
628 	    bytes[8]  = (ht_sig1 & 0xFF);
629 	    bytes[9]  = (ht_sig1 >> 8)  & 0xFF;
630 	    bytes[10] = (ht_sig1 >> 16) & 0xFF;
631 	    bytes[11] = (ht_sig2 & 0xFF);
632 	    bytes[12] = (ht_sig2 >> 8)  & 0xFF;
633 	    bytes[13] = (ht_sig2 >> 16) & 0xFF;
634 
635 		return(HT_SIG_RATE);
636 	}
637 	else
638 	{
639 		//signal_word = b0+(b1<<8)+(b2<<16) ;
640 		//return signal_word;
641 		return(SIG_RATE);
642 	}
643 }
644 
645 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
646 			cdev_to_gpio_led_data(struct led_classdev *led_cdev)
647 {
648 	return container_of(led_cdev, struct gpio_led_data, cdev);
649 }
650 
651 static void openwifi_tx(struct ieee80211_hw *dev,
652 		       struct ieee80211_tx_control *control,
653 		       struct sk_buff *skb)
654 {
655 	struct openwifi_priv *priv = dev->priv;
656 	unsigned long flags;
657 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
658 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
659 	struct openwifi_ring *ring;
660 	dma_addr_t dma_mapping_addr;
661 	unsigned int prio, i;
662 	u32 num_dma_symbol, len_mac_pdu, num_dma_byte, len_phy_packet, num_byte_pad;
663 	u32 rate_signal_value,rate_hw_value,ack_flag;
664 	u32 pkt_need_ack, addr1_low32=0, addr2_low32=0, addr3_low32=0, queue_idx=2, dma_reg, cts_reg;//, openofdm_state_history;
665 	u16 addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0, cts_duration=0, cts_rate_hw_value = 0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration;
666 	u8 fc_flag,fc_type,fc_subtype,retry_limit_raw,*dma_buf,retry_limit_hw_value,rc_flags;
667 	bool use_rts_cts, use_cts_protect, use_ht_rate=false, use_short_gi, addr_flag, cts_use_traffic_rate=false, force_use_cts_protect=false;
668 	__le16 frame_control,duration_id;
669 	u32 dma_fifo_no_room_flag, hw_queue_len;
670 	enum dma_status status;
671 	// static bool led_status=0;
672 	// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
673 
674 	// if ( (priv->phy_tx_sn&7) ==0 ) {
675 	// 	openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
676 	// 	if (openofdm_state_history!=openofdm_state_history_old){
677 	// 		led_status = (~led_status);
678 	// 		openofdm_state_history_old = openofdm_state_history;
679 	// 		gpiod_set_value(led_dat->gpiod, led_status);
680 	// 	}
681 	// }
682 
683 	if (test_mode==1){
684 		printk("%s openwifi_tx: WARNING test_mode==1\n", sdr_compatible_str);
685 		goto openwifi_tx_early_out;
686 	}
687 
688 	if (skb->data_len>0) {// more data are not in linear data area skb->data
689 		printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str);
690 		goto openwifi_tx_early_out;
691 	}
692 
693 	len_mac_pdu = skb->len;
694 	len_phy_packet = len_mac_pdu + LEN_PHY_HEADER;
695 	num_dma_symbol = (len_phy_packet>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_phy_packet&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
696 
697 	// get Linux priority/queue setting info and target mac address
698 	prio = skb_get_queue_mapping(skb);
699 	addr1_low32  = *((u32*)(hdr->addr1+2));
700 	ring = &(priv->tx_ring[prio]);
701 
702 	// -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" -----------
703 	if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config
704 		queue_idx = prio;
705 	} else {// customized prio to queue_idx mapping
706 		//if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only
707 		// check current packet belonging to which slice/hw-queue
708 			for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
709 				if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
710 					break;
711 				}
712 			}
713 		//}
714 		queue_idx = (i>=MAX_NUM_HW_QUEUE?2:i); // if no address is hit, use FPGA queue 2. because the queue 2 is the longest.
715 	}
716 	// -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------
717 
718 	// check whether the packet is bigger than DMA buffer size
719 	num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
720 	if (num_dma_byte > TX_BD_BUF_SIZE) {
721 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING num_dma_byte > TX_BD_BUF_SIZE\n");
722 		printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx);
723 		goto openwifi_tx_early_out;
724 	}
725 	num_byte_pad = num_dma_byte-len_phy_packet;
726 
727 	// get other info from packet header
728 	addr1_high16 = *((u16*)(hdr->addr1));
729 	if (len_mac_pdu>=20) {
730 		addr2_low32  = *((u32*)(hdr->addr2+2));
731 		addr2_high16 = *((u16*)(hdr->addr2));
732 	}
733 	if (len_mac_pdu>=26) {
734 		addr3_low32  = *((u32*)(hdr->addr3+2));
735 		addr3_high16 = *((u16*)(hdr->addr3));
736 	}
737 
738 	duration_id = hdr->duration_id;
739 	frame_control=hdr->frame_control;
740 	ack_flag = (info->flags&IEEE80211_TX_CTL_NO_ACK);
741 	fc_type = ((frame_control)>>2)&3;
742 	fc_subtype = ((frame_control)>>4)&0xf;
743 	fc_flag = ( fc_type==2 || fc_type==0 || (fc_type==1 && (fc_subtype==8 || fc_subtype==9 || fc_subtype==10) ) );
744 	//if it is broadcasting or multicasting addr
745 	addr_flag = ( (addr1_low32==0 && addr1_high16==0) ||
746 	              (addr1_low32==0xFFFFFFFF && addr1_high16==0xFFFF) ||
747 				  (addr1_high16==0x3333) ||
748 				  (addr1_high16==0x0001 && hdr->addr1[2]==0x5E)  );
749 	if ( fc_flag && ( !addr_flag ) && (!ack_flag) ) { // unicast data frame
750 		pkt_need_ack = 1; //FPGA need to wait ACK after this pkt sent
751 	} else {
752 		pkt_need_ack = 0;
753 	}
754 
755 	// get Linux rate (MCS) setting
756 	rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
757 	//rate_hw_value = 10; //4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M
758 	if (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0 && fc_type==2 && (!addr_flag)) //rate override command
759 		rate_hw_value = priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE];
760 
761 	retry_limit_raw = info->control.rates[0].count;
762 
763 	rc_flags = info->control.rates[0].flags;
764 	use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
765 	use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
766 	use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0);
767 	use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0);
768 
769 	if (use_rts_cts)
770 		printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx);
771 
772 	if (use_cts_protect) {
773 		cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
774 		cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mac_pdu,info));
775 	} else if (force_use_cts_protect) { // could override mac80211 setting here.
776 		cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
777 		sifs = (priv->actual_rx_lo<2500?10:16);
778 		if (pkt_need_ack)
779 			ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
780 		traffic_pkt_duration = 20 + 4*(((22+len_mac_pdu*8)/wifi_n_dbps_table[rate_hw_value])+1);
781 		cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
782 	}
783 
784 // this is 11b stuff
785 //	if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
786 //		printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
787 
788 	if (len_mac_pdu>=28) {
789 		if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
790 			if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
791 				priv->seqno += 0x10;
792 			hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
793 			hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
794 		}
795 		sc = hdr->seq_ctrl;
796 	}
797 
798 	if ( (!addr_flag) && (priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&2) )
799 		printk("%s openwifi_tx: %4dbytes ht%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str,
800 			len_mac_pdu, (use_ht_rate == false ? 0 : 1), (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id,
801 			reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
802 			sc, info->flags, retry_limit_raw, pkt_need_ack, prio, queue_idx,
803 			// use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
804 			ring->bd_wr_idx,ring->bd_rd_idx);
805 
806 		// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
807 		// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
808 		// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
809 		// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
810 		// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
811 
812 	// -----------end of preprocess some info from header and skb----------------
813 
814 	// /* HW will perform RTS-CTS when only RTS flags is set.
815 	//  * HW will perform CTS-to-self when both RTS and CTS flags are set.
816 	//  * RTS rate and RTS duration will be used also for CTS-to-self.
817 	//  */
818 	// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
819 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
820 	// 	rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
821 	// 					len_mac_pdu, info);
822 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
823 	// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
824 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
825 	// 	rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
826 	// 					len_mac_pdu, info);
827 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
828 	// }
829 
830 	// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
831 	if (skb_headroom(skb)<LEN_PHY_HEADER) {
832 		struct sk_buff *skb_new; // in case original skb headroom is not enough to host phy header needed by FPGA IP core
833 		printk("%s openwifi_tx: WARNING sn %d skb_headroom(skb)<LEN_PHY_HEADER\n", sdr_compatible_str, ring->bd_wr_idx);
834 		if ((skb_new = skb_realloc_headroom(skb, LEN_PHY_HEADER)) == NULL) {
835 			printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx);
836 			goto openwifi_tx_early_out;
837 		}
838 		if (skb->sk != NULL)
839 			skb_set_owner_w(skb_new, skb->sk);
840 		dev_kfree_skb(skb);
841 		skb = skb_new;
842 	}
843 
844 	skb_push( skb, LEN_PHY_HEADER );
845 	rate_signal_value = calc_phy_header(rate_hw_value, use_ht_rate, use_short_gi, len_mac_pdu+LEN_PHY_CRC, skb->data); //fill the phy header
846 
847 	//make sure dma length is integer times of DDC_NUM_BYTE_PER_DMA_SYMBOL
848 	if (skb_tailroom(skb)<num_byte_pad) {
849 		printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx);
850 		// skb_pull(skb, LEN_PHY_HEADER);
851 		goto openwifi_tx_early_out;
852 	}
853 	skb_put( skb, num_byte_pad );
854 
855 	retry_limit_hw_value = (retry_limit_raw - 1)&0xF;
856 	dma_buf = skb->data;
857 
858 	cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
859 	cts_reg = (((use_cts_protect|force_use_cts_protect)<<31)|(cts_use_traffic_rate<<30)|(cts_duration<<8)|(cts_rate_signal_value<<4)|rate_signal_value);
860 	dma_reg = ( (( ((prio<<(NUM_BIT_MAX_NUM_HW_QUEUE+NUM_BIT_MAX_PHY_TX_SN))|(ring->bd_wr_idx<<NUM_BIT_MAX_NUM_HW_QUEUE)|queue_idx) )<<18)|(retry_limit_hw_value<<14)|(pkt_need_ack<<13)|num_dma_symbol );
861 
862 	/* We must be sure that tx_flags is written last because the HW
863 	 * looks at it to check if the rest of data is valid or not
864 	 */
865 	//wmb();
866 	// entry->flags = cpu_to_le32(tx_flags);
867 	/* We must be sure this has been written before following HW
868 	 * register write, because this write will make the HW attempts
869 	 * to DMA the just-written data
870 	 */
871 	//wmb();
872 
873 	spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt
874 
875 	// -------------check whether FPGA dma fifo and queue (queue_idx) has enough room-------------
876 	dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
877 	hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
878 	if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<RING_ROOM_THRESHOLD)  || ring->stop_flag==1 ) {
879 		ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
880 		printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d\n", sdr_compatible_str,
881 		prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx);
882 		ring->stop_flag = 1;
883 		goto openwifi_tx_early_out_after_lock;
884 	}
885 	// --------end of check whether FPGA fifo (queue_idx) has enough room------------
886 
887 	status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
888 	if (status!=DMA_COMPLETE) {
889 		printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str);
890 		goto openwifi_tx_early_out_after_lock;
891 	}
892 
893 	if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) ) {
894 		printk("%s openwifi_tx: WARNING 1 %d %08x %08x %08x %08x\n", sdr_compatible_str, num_byte_pad, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
895 		goto openwifi_tx_early_out_after_lock;
896 	}
897 
898 //-------------------------fire skb DMA to hardware----------------------------------
899 	dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
900 				 num_dma_byte, DMA_MEM_TO_DEV);
901 
902 	if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
903 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n");
904 		printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx);
905 		goto openwifi_tx_early_out_after_lock;
906 	}
907 
908 	sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start
909 	sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
910 	sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
911 
912 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
913 	tx_intf_api->TX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write(dma_reg);
914 	priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
915 	if (!(priv->txd)) {
916 		printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd));
917 		goto openwifi_tx_after_dma_mapping;
918 	}
919 
920 	priv->tx_cookie = priv->txd->tx_submit(priv->txd);
921 
922 	if (dma_submit_error(priv->tx_cookie)) {
923 		printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie));
924 		goto openwifi_tx_after_dma_mapping;
925 	}
926 
927 	// seems everything is ok. let's mark this pkt in bd descriptor ring
928 	ring->bds[ring->bd_wr_idx].skb_linked = skb;
929 	ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
930 
931 	ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
932 
933 	dma_async_issue_pending(priv->tx_chan);
934 
935 	if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) )
936 		printk("%s openwifi_tx: WARNING 2 %08x %08x %08x %08x\n", sdr_compatible_str, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
937 
938 	spin_unlock_irqrestore(&priv->lock, flags);
939 
940 	return;
941 
942 openwifi_tx_after_dma_mapping:
943 	dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
944 
945 openwifi_tx_early_out_after_lock:
946 	// skb_pull(skb, LEN_PHY_HEADER);
947 	dev_kfree_skb(skb);
948 	spin_unlock_irqrestore(&priv->lock, flags);
949 	// printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
950 	return;
951 
952 openwifi_tx_early_out:
953 	dev_kfree_skb(skb);
954 	// printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
955 }
956 
957 static int openwifi_start(struct ieee80211_hw *dev)
958 {
959 	struct openwifi_priv *priv = dev->priv;
960 	int ret, i, rssi_half_db_offset, agc_gain_delay;//rssi_half_db_th,
961 	u32 reg;
962 
963 	for (i=0; i<MAX_NUM_VIF; i++) {
964 		priv->vif[i] = NULL;
965 	}
966 
967 	memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val));
968 	memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val));
969 	memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val));
970 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;
971 
972 	//turn on radio
973 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
974 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
975 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
976 	} else {
977 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
978 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
979 	}
980 	if (reg == AD9361_RADIO_ON_TX_ATT) {
981 		priv->rfkill_off = 1;// 0 off, 1 on
982 		printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
983 	}
984 	else
985 		printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
986 
987 	if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
988 		priv->ctrl_out.index=0x16;
989 	else
990 		priv->ctrl_out.index=0x17;
991 
992 	ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
993 	if (ret < 0) {
994 		printk("%s openwifi_start: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, ret);
995 	} else {
996 		printk("%s openwifi_start: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
997 	}
998 
999 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1000 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1001 
1002 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
1003 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
1004 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
1005 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
1006 	xpu_api->hw_init(priv->xpu_cfg);
1007 
1008 	agc_gain_delay = 50; //samples
1009 	rssi_half_db_offset = 150; // to be consistent
1010 	xpu_api->XPU_REG_RSSI_DB_CFG_write(0x80000000|((rssi_half_db_offset<<16)|agc_gain_delay) );
1011 	xpu_api->XPU_REG_RSSI_DB_CFG_write((~0x80000000)&((rssi_half_db_offset<<16)|agc_gain_delay) );
1012 
1013 	openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write(0);
1014 	// rssi_half_db_th = 87<<1; // -62dBm // will setup in runtime in _rf_set_channel
1015 	// xpu_api->XPU_REG_LBT_TH_write(rssi_half_db_th); // set IQ rssi th step .5dB to xxx and enable it
1016 	reg=xpu_api->XPU_REG_LBT_TH_read();
1017 	xpu_api->XPU_REG_LBT_TH_write((reg & 0xFF00FFFF) | (75 << 16) ); // bit 23:16 of LBT TH reg is set to control the duration to force ch_idle after decoding a packet due to imperfection of agc and signals
1018 	// xpu_api->XPU_REG_CSMA_CFG_write(3); // cw_min -- already set in xpu.c
1019 
1020 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((40)<<16)|0 );//high 16bit 5GHz; low 16 bit 2.4GHz (Attention, current tx core has around 1.19us starting delay that makes the ack fall behind 10us SIFS in 2.4GHz! Need to improve TX in 2.4GHz!)
1021 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51)<<16)|0 );//now our tx send out I/Q immediately
1022 	xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51+23)<<16)|(0+23) );//we have more time when we use FIR in AD9361
1023 
1024 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP0_write( (1<<31) | (((45+2+2)*10 + 15)<<16) | 10 );//2.4GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
1025 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP1_write( (1<<31) | (((51+2+2)*10 + 15)<<16) | 10 );//5GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
1026 
1027 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write( ((16*10)<<16)|(10*10) );//high 16bit 5GHz; low 16 bit 2.4GHz. counter speed 10MHz is assumed
1028 
1029 	// //xpu_api->XPU_REG_BB_RF_DELAY_write(51); // fine tuned value at 0.005us. old: dac-->ant port: 0.6us, 57 taps fir at 40MHz: 1.425us; round trip: 2*(0.6+1.425)=4.05us; 4.05*10=41
1030 	// xpu_api->XPU_REG_BB_RF_DELAY_write(47);//add .5us for slightly longer fir -- already in xpu.c
1031 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
1032 
1033 	// setup time schedule of 4 slices
1034 	// slice 0
1035 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write(50000-1); // total 50ms
1036 	xpu_api->XPU_REG_SLICE_COUNT_START_write(0); //start 0ms
1037 	xpu_api->XPU_REG_SLICE_COUNT_END_write(50000-1); //end 50ms
1038 
1039 	// slice 1
1040 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((1<<20)|(50000-1)); // total 50ms
1041 	xpu_api->XPU_REG_SLICE_COUNT_START_write((1<<20)|(0)); //start 0ms
1042 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(20000-1)); //end 20ms
1043 	xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(50000-1)); //end 20ms
1044 
1045 	// slice 2
1046 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((2<<20)|(50000-1)); // total 50ms
1047 	//xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(20000)); //start 20ms
1048 	xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(0)); //start 20ms
1049 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(40000-1)); //end 20ms
1050 	xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(50000-1)); //end 20ms
1051 
1052 	// slice 3
1053 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((3<<20)|(50000-1)); // total 50ms
1054 	//xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(40000)); //start 40ms
1055 	xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(0)); //start 40ms
1056 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
1057 	xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
1058 
1059 	// all slice sync rest
1060 	xpu_api->XPU_REG_MULTI_RST_write(1<<7); //bit7 reset the counter for all queues at the same time
1061 	xpu_api->XPU_REG_MULTI_RST_write(0<<7);
1062 
1063 	//xpu_api->XPU_REG_MAC_ADDR_HIGH_write( (*( (u16*)(priv->mac_addr + 4) )) );
1064 	printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1065 	printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1066 
1067 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1068 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
1069 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1070 
1071 	if (test_mode==1) {
1072 		printk("%s openwifi_start: test_mode==1\n",sdr_compatible_str);
1073 		goto normal_out;
1074 	}
1075 
1076 	priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
1077 	if (IS_ERR(priv->rx_chan)) {
1078 		ret = PTR_ERR(priv->rx_chan);
1079 		pr_err("%s openwifi_start: No Rx channel %d\n",sdr_compatible_str,ret);
1080 		goto err_dma;
1081 	}
1082 
1083 	priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
1084 	if (IS_ERR(priv->tx_chan)) {
1085 		ret = PTR_ERR(priv->tx_chan);
1086 		pr_err("%s openwifi_start: No Tx channel %d\n",sdr_compatible_str,ret);
1087 		goto err_dma;
1088 	}
1089 	printk("%s openwifi_start: DMA channel setup successfully.\n",sdr_compatible_str);
1090 
1091 	ret = openwifi_init_rx_ring(priv);
1092 	if (ret) {
1093 		printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
1094 		goto err_free_rings;
1095 	}
1096 
1097 	priv->seqno=0;
1098 	for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
1099 		if ((ret = openwifi_init_tx_ring(priv, i))) {
1100 			printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret);
1101 			goto err_free_rings;
1102 		}
1103 	}
1104 
1105 	if ( (ret = rx_dma_setup(dev)) ) {
1106 		printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
1107 		goto err_free_rings;
1108 	}
1109 
1110 	priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
1111 	ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
1112 			IRQF_SHARED, "sdr,rx_pkt_intr", dev);
1113 	if (ret) {
1114 		wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
1115 		goto err_free_rings;
1116 	} else {
1117 		printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
1118 	}
1119 
1120 	priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
1121 	ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
1122 			IRQF_SHARED, "sdr,tx_itrpt1", dev);
1123 	if (ret) {
1124 		wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
1125 		goto err_free_rings;
1126 	} else {
1127 		printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
1128 	}
1129 
1130 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
1131 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt
1132 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
1133 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
1134 
1135 	//ieee80211_wake_queue(dev, 0);
1136 
1137 normal_out:
1138 	printk("%s openwifi_start: normal end\n", sdr_compatible_str);
1139 	return 0;
1140 
1141 err_free_rings:
1142 	openwifi_free_rx_ring(priv);
1143 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1144 		openwifi_free_tx_ring(priv, i);
1145 
1146 err_dma:
1147 	ret = -1;
1148 	printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
1149 	return ret;
1150 }
1151 
1152 static void openwifi_stop(struct ieee80211_hw *dev)
1153 {
1154 	struct openwifi_priv *priv = dev->priv;
1155 	u32 reg, reg1;
1156 	int i;
1157 
1158 	if (test_mode==1){
1159 		pr_info("%s openwifi_stop: test_mode==1\n", sdr_compatible_str);
1160 		goto normal_out;
1161 	}
1162 
1163 	//turn off radio
1164 	#if 1
1165 	ad9361_tx_mute(priv->ad9361_phy, 1);
1166 	reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1167 	reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1168 	if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1169 		priv->rfkill_off = 0;// 0 off, 1 on
1170 		printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
1171 	}
1172 	else
1173 		printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1174 	#endif
1175 
1176 	//ieee80211_stop_queue(dev, 0);
1177 
1178 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1179 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
1180 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1181 
1182 	for (i=0; i<MAX_NUM_VIF; i++) {
1183 		priv->vif[i] = NULL;
1184 	}
1185 
1186 	openwifi_free_rx_ring(priv);
1187 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1188 		openwifi_free_tx_ring(priv, i);
1189 
1190 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
1191 	dmaengine_terminate_all(priv->rx_chan);
1192 	dma_release_channel(priv->rx_chan);
1193 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
1194 	dmaengine_terminate_all(priv->tx_chan);
1195 	dma_release_channel(priv->tx_chan);
1196 
1197 	//priv->rf->stop(dev);
1198 
1199 	free_irq(priv->irq_rx, dev);
1200 	free_irq(priv->irq_tx, dev);
1201 
1202 normal_out:
1203 	printk("%s openwifi_stop\n", sdr_compatible_str);
1204 }
1205 
1206 static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
1207 			   struct ieee80211_vif *vif)
1208 {
1209 	u32 tsft_low, tsft_high;
1210 
1211 	tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
1212 	tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
1213 	//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1214 	return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
1215 }
1216 
1217 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
1218 {
1219 	u32 tsft_high = ((tsf >> 32)&0xffffffff);
1220 	u32 tsft_low  = (tsf&0xffffffff);
1221 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1222 	printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1223 }
1224 
1225 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1226 {
1227 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
1228 	printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
1229 }
1230 
1231 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
1232 {
1233 	printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
1234 	return(0);
1235 }
1236 
1237 static void openwifi_beacon_work(struct work_struct *work)
1238 {
1239 	struct openwifi_vif *vif_priv =
1240 		container_of(work, struct openwifi_vif, beacon_work.work);
1241 	struct ieee80211_vif *vif =
1242 		container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
1243 	struct ieee80211_hw *dev = vif_priv->dev;
1244 	struct ieee80211_mgmt *mgmt;
1245 	struct sk_buff *skb;
1246 
1247 	/* don't overflow the tx ring */
1248 	if (ieee80211_queue_stopped(dev, 0))
1249 		goto resched;
1250 
1251 	/* grab a fresh beacon */
1252 	skb = ieee80211_beacon_get(dev, vif);
1253 	if (!skb)
1254 		goto resched;
1255 
1256 	/*
1257 	 * update beacon timestamp w/ TSF value
1258 	 * TODO: make hardware update beacon timestamp
1259 	 */
1260 	mgmt = (struct ieee80211_mgmt *)skb->data;
1261 	mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
1262 
1263 	/* TODO: use actual beacon queue */
1264 	skb_set_queue_mapping(skb, 0);
1265 	openwifi_tx(dev, NULL, skb);
1266 
1267 resched:
1268 	/*
1269 	 * schedule next beacon
1270 	 * TODO: use hardware support for beacon timing
1271 	 */
1272 	schedule_delayed_work(&vif_priv->beacon_work,
1273 			usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
1274 }
1275 
1276 static int openwifi_add_interface(struct ieee80211_hw *dev,
1277 				 struct ieee80211_vif *vif)
1278 {
1279 	int i;
1280 	struct openwifi_priv *priv = dev->priv;
1281 	struct openwifi_vif *vif_priv;
1282 
1283 	switch (vif->type) {
1284 	case NL80211_IFTYPE_AP:
1285 	case NL80211_IFTYPE_STATION:
1286 	case NL80211_IFTYPE_ADHOC:
1287 	case NL80211_IFTYPE_MONITOR:
1288 	case NL80211_IFTYPE_MESH_POINT:
1289 		break;
1290 	default:
1291 		return -EOPNOTSUPP;
1292 	}
1293 	// let's support more than 1 interface
1294 	for (i=0; i<MAX_NUM_VIF; i++) {
1295 		if (priv->vif[i] == NULL)
1296 			break;
1297 	}
1298 
1299 	printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
1300 
1301 	if (i==MAX_NUM_VIF)
1302 		return -EBUSY;
1303 
1304 	priv->vif[i] = vif;
1305 
1306 	/* Initialize driver private area */
1307 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1308 	vif_priv->idx = i;
1309 
1310 	vif_priv->dev = dev;
1311 	INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
1312 	vif_priv->enable_beacon = false;
1313 
1314 	printk("%s openwifi_add_interface end with vif idx %d\n", sdr_compatible_str,vif_priv->idx);
1315 
1316 	return 0;
1317 }
1318 
1319 static void openwifi_remove_interface(struct ieee80211_hw *dev,
1320 				     struct ieee80211_vif *vif)
1321 {
1322 	struct openwifi_vif *vif_priv;
1323 	struct openwifi_priv *priv = dev->priv;
1324 
1325 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1326 	priv->vif[vif_priv->idx] = NULL;
1327 	printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
1328 }
1329 
1330 static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
1331 {
1332 	struct openwifi_priv *priv = dev->priv;
1333 	struct ieee80211_conf *conf = &dev->conf;
1334 
1335 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL)
1336 		priv->rf->set_chan(dev, conf);
1337 	else
1338 		printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
1339 
1340 	return 0;
1341 }
1342 
1343 static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
1344 				     struct ieee80211_vif *vif,
1345 				     struct ieee80211_bss_conf *info,
1346 				     u32 changed)
1347 {
1348 	struct openwifi_priv *priv = dev->priv;
1349 	struct openwifi_vif *vif_priv;
1350 	u32 bssid_low, bssid_high;
1351 
1352 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1353 
1354 	//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
1355 	//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
1356 	if (changed & BSS_CHANGED_BSSID) {
1357 		printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
1358 		// write new bssid to our HW, and do not change bssid filter
1359 		//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
1360 		bssid_low = ( *( (u32*)(info->bssid) ) );
1361 		bssid_high = ( *( (u16*)(info->bssid+4) ) );
1362 
1363 		//bssid_filter_high = (bssid_filter_high&0x80000000);
1364 		//bssid_high = (bssid_high|bssid_filter_high);
1365 		xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
1366 		xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
1367 	}
1368 
1369 	if (changed & BSS_CHANGED_BEACON_INT) {
1370 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
1371 	}
1372 
1373 	if (changed & BSS_CHANGED_TXPOWER)
1374 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
1375 
1376 	if (changed & BSS_CHANGED_ERP_CTS_PROT)
1377 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
1378 
1379 	if (changed & BSS_CHANGED_BASIC_RATES)
1380 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
1381 
1382 	if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
1383 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
1384 		changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
1385 		if (info->use_short_slot && priv->use_short_slot==false) {
1386 			priv->use_short_slot=true;
1387 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1388 		} else if ((!info->use_short_slot) && priv->use_short_slot==true) {
1389 			priv->use_short_slot=false;
1390 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1391 		}
1392 	}
1393 
1394 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
1395 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
1396 		vif_priv->enable_beacon = info->enable_beacon;
1397 	}
1398 
1399 	if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
1400 		cancel_delayed_work_sync(&vif_priv->beacon_work);
1401 		if (vif_priv->enable_beacon)
1402 			schedule_work(&vif_priv->beacon_work.work);
1403 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
1404 		changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
1405 	}
1406 }
1407 // helper function
1408 u32 log2val(u32 val){
1409 	u32 ret_val = 0 ;
1410 	while(val>1){
1411 		val = val >> 1 ;
1412 		ret_val ++ ;
1413 	}
1414 	return ret_val ;
1415 }
1416 
1417 static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
1418 	      const struct ieee80211_tx_queue_params *params)
1419 {
1420 	u32 reg19_val, reg8_val, cw_min_exp, cw_max_exp;
1421 
1422 	printk("%s openwifi_conf_tx: WARNING [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n",
1423 		  sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
1424 
1425 	reg19_val=xpu_api->XPU_REG_CSMA_CFG_read();
1426 	reg8_val=xpu_api->XPU_REG_LBT_TH_read();
1427 	cw_min_exp = (log2val(params->cw_min + 1) & 0x0F);
1428 	cw_max_exp = (log2val(params->cw_max + 1) & 0x0F);
1429 	switch(queue){
1430 		case 0: reg19_val = (reg19_val & 0xFFFFFF00) | cw_min_exp | (cw_max_exp << 4); break ;
1431 		case 1: reg19_val = (reg19_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8); break ;
1432 		case 2: reg19_val = (reg19_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16); break ;
1433 		case 3: reg8_val = (reg8_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24); break ;
1434 		default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0);
1435 	}
1436 	reg19_val = reg19_val | 0x10000000 ; // enable dynamic contention window.
1437 	xpu_api->XPU_REG_LBT_TH_write(reg8_val);
1438 	xpu_api->XPU_REG_CSMA_CFG_write(reg19_val);
1439 	//printk("reg19 val target val %08x, reg8 target val %08x", reg19_val, reg8_val);
1440 	//reg19_val=xpu_api->XPU_REG_CSMA_CFG_read();
1441 	//reg8_val=xpu_api->XPU_REG_LBT_TH_read();
1442 	//printk("reg19 val read back %08x, reg8 read back %08x", reg19_val, reg8_val);
1443 	return(0);
1444 }
1445 
1446 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
1447 				     struct netdev_hw_addr_list *mc_list)
1448 {
1449 	printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
1450 	return netdev_hw_addr_list_count(mc_list);
1451 }
1452 
1453 static void openwifi_configure_filter(struct ieee80211_hw *dev,
1454 				     unsigned int changed_flags,
1455 				     unsigned int *total_flags,
1456 				     u64 multicast)
1457 {
1458 	u32 filter_flag;
1459 
1460 	(*total_flags) &= SDR_SUPPORTED_FILTERS;
1461 	(*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer
1462 
1463 	filter_flag = (*total_flags);
1464 
1465 	filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
1466 	//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
1467 
1468 	//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
1469 	if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
1470 		filter_flag = (filter_flag|MONITOR_ALL);
1471 	else
1472 		filter_flag = (filter_flag&(~MONITOR_ALL));
1473 
1474 	if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
1475 		filter_flag = (filter_flag|MY_BEACON);
1476 
1477 	filter_flag = (filter_flag|FIF_PSPOLL);
1478 
1479 	xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
1480 	//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
1481 
1482 	printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
1483 	(filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
1484 }
1485 
1486 static int openwifi_testmode_cmd(struct ieee80211_hw *hw, struct ieee80211_vif *vif, void *data, int len)
1487 {
1488 	struct openwifi_priv *priv = hw->priv;
1489 	struct nlattr *tb[OPENWIFI_ATTR_MAX + 1];
1490 	struct sk_buff *skb;
1491 	int err;
1492 	u32 tmp=-1, reg_cat, reg_addr, reg_val, reg_addr_idx, tsft_high, tsft_low;
1493 
1494 	err = nla_parse(tb, OPENWIFI_ATTR_MAX, data, len, openwifi_testmode_policy, NULL);
1495 	if (err)
1496 		return err;
1497 
1498 	if (!tb[OPENWIFI_ATTR_CMD])
1499 		return -EINVAL;
1500 
1501 	switch (nla_get_u32(tb[OPENWIFI_ATTR_CMD])) {
1502 	case OPENWIFI_CMD_SET_GAP:
1503 		if (!tb[OPENWIFI_ATTR_GAP])
1504 			return -EINVAL;
1505 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_GAP]);
1506 		printk("%s openwifi radio inter frame gap set to %d usec\n", sdr_compatible_str, tmp);
1507 		xpu_api->XPU_REG_CSMA_CFG_write(tmp); // unit us
1508 		return 0;
1509 	case OPENWIFI_CMD_GET_GAP:
1510 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1511 		if (!skb)
1512 			return -ENOMEM;
1513 		tmp = xpu_api->XPU_REG_CSMA_CFG_read();
1514 		if (nla_put_u32(skb, OPENWIFI_ATTR_GAP, tmp))
1515 			goto nla_put_failure;
1516 		return cfg80211_testmode_reply(skb);
1517 	case OPENWIFI_CMD_SET_SLICE_IDX:
1518 		if (!tb[OPENWIFI_ATTR_SLICE_IDX])
1519 			return -EINVAL;
1520 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_IDX]);
1521 		printk("%s set openwifi slice_idx in hex: %08x\n", sdr_compatible_str, tmp);
1522 		if (tmp == MAX_NUM_HW_QUEUE) {
1523 			printk("%s set openwifi slice_idx reset all queue counter.\n", sdr_compatible_str);
1524 			xpu_api->XPU_REG_MULTI_RST_write(1<<7); //bit7 reset the counter for all queues at the same time
1525 			xpu_api->XPU_REG_MULTI_RST_write(0<<7);
1526 		} else {
1527 			priv->slice_idx = tmp;
1528 		}
1529 		return 0;
1530 	case OPENWIFI_CMD_GET_SLICE_IDX:
1531 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1532 		if (!skb)
1533 			return -ENOMEM;
1534 		tmp = priv->slice_idx;
1535 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_IDX, tmp))
1536 			goto nla_put_failure;
1537 		printk("%s get openwifi slice_idx in hex: %08x\n", sdr_compatible_str, tmp);
1538 		return cfg80211_testmode_reply(skb);
1539 	case OPENWIFI_CMD_SET_ADDR:
1540 		if (!tb[OPENWIFI_ATTR_ADDR])
1541 			return -EINVAL;
1542 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_ADDR]);
1543 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1544 			printk("%s set openwifi slice_target_mac_addr(low32) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1545 		} else {
1546 			printk("%s set openwifi slice_target_mac_addr(low32) in hex: %08x to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1547 			priv->dest_mac_addr_queue_map[priv->slice_idx] = reverse32(tmp);
1548 		}
1549 		return 0;
1550 	case OPENWIFI_CMD_GET_ADDR:
1551 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1552 		if (!skb)
1553 			return -ENOMEM;
1554 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1555 			tmp = -1;
1556 		} else {
1557 			tmp = reverse32(priv->dest_mac_addr_queue_map[priv->slice_idx]);
1558 		}
1559 		if (nla_put_u32(skb, OPENWIFI_ATTR_ADDR, tmp))
1560 			goto nla_put_failure;
1561 		printk("%s get openwifi slice_target_mac_addr(low32) in hex: %08x of slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1562 		return cfg80211_testmode_reply(skb);
1563 
1564 	case OPENWIFI_CMD_SET_SLICE_TOTAL:
1565 		if (!tb[OPENWIFI_ATTR_SLICE_TOTAL])
1566 			return -EINVAL;
1567 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL]);
1568 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1569 			printk("%s set SLICE_TOTAL(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1570 		} else {
1571 			printk("%s set SLICE_TOTAL(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1572 			xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((priv->slice_idx<<20)|tmp);
1573 		}
1574 		return 0;
1575 	case OPENWIFI_CMD_GET_SLICE_TOTAL:
1576 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1577 		if (!skb)
1578 			return -ENOMEM;
1579 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL_read());
1580 		printk("%s get SLICE_TOTAL(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1581 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL, tmp))
1582 			goto nla_put_failure;
1583 		return cfg80211_testmode_reply(skb);
1584 
1585 	case OPENWIFI_CMD_SET_SLICE_START:
1586 		if (!tb[OPENWIFI_ATTR_SLICE_START])
1587 			return -EINVAL;
1588 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START]);
1589 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1590 			printk("%s set SLICE_START(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1591 		} else {
1592 			printk("%s set SLICE_START(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1593 			xpu_api->XPU_REG_SLICE_COUNT_START_write((priv->slice_idx<<20)|tmp);
1594 		}
1595 		return 0;
1596 	case OPENWIFI_CMD_GET_SLICE_START:
1597 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1598 		if (!skb)
1599 			return -ENOMEM;
1600 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_START_read());
1601 		printk("%s get SLICE_START(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1602 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START, tmp))
1603 			goto nla_put_failure;
1604 		return cfg80211_testmode_reply(skb);
1605 
1606 	case OPENWIFI_CMD_SET_SLICE_END:
1607 		if (!tb[OPENWIFI_ATTR_SLICE_END])
1608 			return -EINVAL;
1609 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END]);
1610 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1611 			printk("%s set SLICE_END(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1612 		} else {
1613 			printk("%s set SLICE_END(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1614 			xpu_api->XPU_REG_SLICE_COUNT_END_write((priv->slice_idx<<20)|tmp);
1615 		}
1616 		return 0;
1617 	case OPENWIFI_CMD_GET_SLICE_END:
1618 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1619 		if (!skb)
1620 			return -ENOMEM;
1621 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_END_read());
1622 		printk("%s get SLICE_END(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1623 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END, tmp))
1624 			goto nla_put_failure;
1625 		return cfg80211_testmode_reply(skb);
1626 
1627 	// case OPENWIFI_CMD_SET_SLICE_TOTAL1:
1628 	// 	if (!tb[OPENWIFI_ATTR_SLICE_TOTAL1])
1629 	// 		return -EINVAL;
1630 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL1]);
1631 	// 	printk("%s set SLICE_TOTAL1(duration) to %d usec\n", sdr_compatible_str, tmp);
1632 	// 	// xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_write(tmp);
1633 	// 	return 0;
1634 	// case OPENWIFI_CMD_GET_SLICE_TOTAL1:
1635 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1636 	// 	if (!skb)
1637 	// 		return -ENOMEM;
1638 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_read());
1639 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL1, tmp))
1640 	// 		goto nla_put_failure;
1641 	// 	return cfg80211_testmode_reply(skb);
1642 
1643 	// case OPENWIFI_CMD_SET_SLICE_START1:
1644 	// 	if (!tb[OPENWIFI_ATTR_SLICE_START1])
1645 	// 		return -EINVAL;
1646 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START1]);
1647 	// 	printk("%s set SLICE_START1(duration) to %d usec\n", sdr_compatible_str, tmp);
1648 	// 	// xpu_api->XPU_REG_SLICE_COUNT_START1_write(tmp);
1649 	// 	return 0;
1650 	// case OPENWIFI_CMD_GET_SLICE_START1:
1651 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1652 	// 	if (!skb)
1653 	// 		return -ENOMEM;
1654 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_START1_read());
1655 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START1, tmp))
1656 	// 		goto nla_put_failure;
1657 	// 	return cfg80211_testmode_reply(skb);
1658 
1659 	// case OPENWIFI_CMD_SET_SLICE_END1:
1660 	// 	if (!tb[OPENWIFI_ATTR_SLICE_END1])
1661 	// 		return -EINVAL;
1662 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END1]);
1663 	// 	printk("%s set SLICE_END1(duration) to %d usec\n", sdr_compatible_str, tmp);
1664 	// 	// xpu_api->XPU_REG_SLICE_COUNT_END1_write(tmp);
1665 	// 	return 0;
1666 	// case OPENWIFI_CMD_GET_SLICE_END1:
1667 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1668 	// 	if (!skb)
1669 	// 		return -ENOMEM;
1670 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_END1_read());
1671 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END1, tmp))
1672 	// 		goto nla_put_failure;
1673 	// 	return cfg80211_testmode_reply(skb);
1674 
1675 	case OPENWIFI_CMD_SET_RSSI_TH:
1676 		if (!tb[OPENWIFI_ATTR_RSSI_TH])
1677 			return -EINVAL;
1678 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_RSSI_TH]);
1679 		printk("%s set RSSI_TH to %d\n", sdr_compatible_str, tmp);
1680 		tmp = (tmp | (xpu_api->XPU_REG_LBT_TH_read() & 0xFFFF0000));
1681 		xpu_api->XPU_REG_LBT_TH_write(tmp);
1682 		return 0;
1683 	case OPENWIFI_CMD_GET_RSSI_TH:
1684 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1685 		if (!skb)
1686 			return -ENOMEM;
1687 		tmp = xpu_api->XPU_REG_LBT_TH_read();
1688 		if (nla_put_u32(skb, OPENWIFI_ATTR_RSSI_TH, tmp))
1689 			goto nla_put_failure;
1690 		return cfg80211_testmode_reply(skb);
1691 
1692 	case OPENWIFI_CMD_SET_TSF:
1693 		printk("openwifi_set_tsf_1");
1694 		if ( (!tb[OPENWIFI_ATTR_HIGH_TSF]) || (!tb[OPENWIFI_ATTR_LOW_TSF]) )
1695 				return -EINVAL;
1696 		printk("openwifi_set_tsf_2");
1697 		tsft_high = nla_get_u32(tb[OPENWIFI_ATTR_HIGH_TSF]);
1698 		tsft_low  = nla_get_u32(tb[OPENWIFI_ATTR_LOW_TSF]);
1699 		xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1700 		printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1701 		return 0;
1702 
1703 	case REG_CMD_SET:
1704 		if ( (!tb[REG_ATTR_ADDR]) || (!tb[REG_ATTR_VAL]) )
1705 			return -EINVAL;
1706 		reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]);
1707 		reg_val  = nla_get_u32(tb[REG_ATTR_VAL]);
1708 		reg_cat = ((reg_addr>>16)&0xFFFF);
1709 		reg_addr = (reg_addr&0xFFFF);
1710 		reg_addr_idx = (reg_addr>>2);
1711 		printk("%s recv set cmd reg cat %d addr %08x val %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_val, reg_addr_idx);
1712 		if (reg_cat==1)
1713 			printk("%s reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str);
1714 		else if (reg_cat==2)
1715 			rx_intf_api->reg_write(reg_addr,reg_val);
1716 		else if (reg_cat==3)
1717 			tx_intf_api->reg_write(reg_addr,reg_val);
1718 		else if (reg_cat==4)
1719 			openofdm_rx_api->reg_write(reg_addr,reg_val);
1720 		else if (reg_cat==5)
1721 			openofdm_tx_api->reg_write(reg_addr,reg_val);
1722 		else if (reg_cat==6)
1723 			xpu_api->reg_write(reg_addr,reg_val);
1724 		else if (reg_cat==7) {
1725 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1726 				priv->drv_rx_reg_val[reg_addr_idx]=reg_val;
1727 				if (reg_addr_idx==DRV_RX_REG_IDX_FREQ_BW_CFG) {
1728 					if (reg_val==0)
1729 						priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
1730 					else
1731 						priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
1732 
1733 					priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1734 					//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1735 				}
1736 			} else
1737 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1738 		}
1739 		else if (reg_cat==8) {
1740 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1741 				priv->drv_tx_reg_val[reg_addr_idx]=reg_val;
1742 				if (reg_addr_idx==DRV_TX_REG_IDX_FREQ_BW_CFG) {
1743 					if (reg_val==0) {
1744 						priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
1745 						ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true);
1746 					} else {
1747 						priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1;
1748 						ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true);
1749 					}
1750 
1751 					//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1752 					priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1753 				}
1754 			} else
1755 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1756 		}
1757 		else if (reg_cat==9) {
1758 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG)
1759 				priv->drv_xpu_reg_val[reg_addr_idx]=reg_val;
1760 			else
1761 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1762 		}
1763 		else
1764 			printk("%s reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat);
1765 
1766 		return 0;
1767 	case REG_CMD_GET:
1768 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1769 		if (!skb)
1770 			return -ENOMEM;
1771 		reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]);
1772 		reg_cat = ((reg_addr>>16)&0xFFFF);
1773 		reg_addr = (reg_addr&0xFFFF);
1774 		reg_addr_idx = (reg_addr>>2);
1775 		printk("%s recv get cmd reg cat %d addr %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_addr_idx);
1776 		if (reg_cat==1) {
1777 			printk("%s reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str);
1778 			tmp = 0xFFFFFFFF;
1779 		}
1780 		else if (reg_cat==2)
1781 			tmp = rx_intf_api->reg_read(reg_addr);
1782 		else if (reg_cat==3)
1783 			tmp = tx_intf_api->reg_read(reg_addr);
1784 		else if (reg_cat==4)
1785 			tmp = openofdm_rx_api->reg_read(reg_addr);
1786 		else if (reg_cat==5)
1787 			tmp = openofdm_tx_api->reg_read(reg_addr);
1788 		else if (reg_cat==6)
1789 			tmp = xpu_api->reg_read(reg_addr);
1790 		else if (reg_cat==7) {
1791 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1792 				if (reg_addr_idx==DRV_RX_REG_IDX_FREQ_BW_CFG) {
1793 					priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1794 					//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1795 
1796 					if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
1797 						priv->drv_rx_reg_val[reg_addr_idx]=0;
1798 					else if	(priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT1)
1799 						priv->drv_rx_reg_val[reg_addr_idx]=1;
1800 				}
1801 				tmp = priv->drv_rx_reg_val[reg_addr_idx];
1802 			} else
1803 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1804 		}
1805 		else if (reg_cat==8) {
1806 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1807 				if (reg_addr_idx==DRV_TX_REG_IDX_FREQ_BW_CFG) {
1808 					//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1809 					priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1810 					if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)
1811 						priv->drv_tx_reg_val[reg_addr_idx]=0;
1812 					else if	(priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
1813 						priv->drv_tx_reg_val[reg_addr_idx]=1;
1814 				}
1815 				tmp = priv->drv_tx_reg_val[reg_addr_idx];
1816 			} else
1817 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1818 		}
1819 		else if (reg_cat==9) {
1820 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG)
1821 				tmp = priv->drv_xpu_reg_val[reg_addr_idx];
1822 			else
1823 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1824 		}
1825 		else
1826 			printk("%s reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat);
1827 
1828 		if (nla_put_u32(skb, REG_ATTR_VAL, tmp))
1829 			goto nla_put_failure;
1830 		return cfg80211_testmode_reply(skb);
1831 
1832 	default:
1833 		return -EOPNOTSUPP;
1834 	}
1835 
1836  nla_put_failure:
1837 	dev_kfree_skb(skb);
1838 	return -ENOBUFS;
1839 }
1840 
1841 static const struct ieee80211_ops openwifi_ops = {
1842 	.tx			       = openwifi_tx,
1843 	.start			   = openwifi_start,
1844 	.stop			   = openwifi_stop,
1845 	.add_interface	   = openwifi_add_interface,
1846 	.remove_interface  = openwifi_remove_interface,
1847 	.config			   = openwifi_config,
1848 	.bss_info_changed  = openwifi_bss_info_changed,
1849 	.conf_tx		   = openwifi_conf_tx,
1850 	.prepare_multicast = openwifi_prepare_multicast,
1851 	.configure_filter  = openwifi_configure_filter,
1852 	.rfkill_poll	   = openwifi_rfkill_poll,
1853 	.get_tsf		   = openwifi_get_tsf,
1854 	.set_tsf		   = openwifi_set_tsf,
1855 	.reset_tsf		   = openwifi_reset_tsf,
1856 	.set_rts_threshold = openwifi_set_rts_threshold,
1857 	.testmode_cmd	   = openwifi_testmode_cmd,
1858 };
1859 
1860 static const struct of_device_id openwifi_dev_of_ids[] = {
1861 	{ .compatible = "sdr,sdr", },
1862 	{}
1863 };
1864 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
1865 
1866 static int custom_match_spi_dev(struct device *dev, void *data)
1867 {
1868     const char *name = data;
1869 
1870 	bool ret = sysfs_streq(name, dev->of_node->name);
1871 	printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
1872 	return ret;
1873 }
1874 
1875 static int custom_match_platform_dev(struct device *dev, void *data)
1876 {
1877 	struct platform_device *plat_dev = to_platform_device(dev);
1878 	const char *name = data;
1879 	char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
1880 	bool match_flag = (name_in_sys_bus_platform_devices != NULL);
1881 
1882 	if (match_flag) {
1883 		printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
1884 	}
1885 	return(match_flag);
1886 }
1887 
1888 static int openwifi_dev_probe(struct platform_device *pdev)
1889 {
1890 	struct ieee80211_hw *dev;
1891 	struct openwifi_priv *priv;
1892 	int err=1, rand_val;
1893 	const char *chip_name, *fpga_model;
1894 	u32 reg;//, reg1;
1895 
1896 	struct device_node *np = pdev->dev.of_node;
1897 
1898 	struct device *tmp_dev;
1899 	struct platform_device *tmp_pdev;
1900 	struct iio_dev *tmp_indio_dev;
1901 	// struct gpio_leds_priv *tmp_led_priv;
1902 
1903 	printk("\n");
1904 
1905 	if (np) {
1906 		const struct of_device_id *match;
1907 
1908 		match = of_match_node(openwifi_dev_of_ids, np);
1909 		if (match) {
1910 			printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
1911 			err = 0;
1912 		}
1913 	}
1914 
1915 	if (err)
1916 		return err;
1917 
1918 	dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
1919 	if (!dev) {
1920 		printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
1921 		err = -ENOMEM;
1922 		goto err_free_dev;
1923 	}
1924 
1925 	priv = dev->priv;
1926 	priv->pdev = pdev;
1927 
1928 	err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model);
1929 	if(err < 0) {
1930 		printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err);
1931 		priv->fpga_type = SMALL_FPGA;
1932 	} else {
1933 		// LARGE FPGAs (i.e. ZCU102, Z7035, ZC706)
1934 		if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL)
1935 			priv->fpga_type = LARGE_FPGA;
1936 		// SMALL FPGA: (i.e. ZED, ZC702, Z7020)
1937 		else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL)
1938 			priv->fpga_type = SMALL_FPGA;
1939 	}
1940 
1941 	// //-------------find ad9361-phy driver for lo/channel control---------------
1942 	priv->actual_rx_lo = 0;
1943 	tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
1944 	if (tmp_dev == NULL) {
1945 		printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
1946 		err = -ENOMEM;
1947 		goto err_free_dev;
1948 	}
1949 	printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data));
1950 	if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) {
1951 		printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str);
1952 		err = -ENOMEM;
1953 		goto err_free_dev;
1954 	}
1955 
1956 	priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
1957 	if (!(priv->ad9361_phy)) {
1958 		printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
1959 		err = -ENOMEM;
1960 		goto err_free_dev;
1961 	}
1962 	printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias);
1963 
1964 	priv->ctrl_out.en_mask=0xFF;
1965 	priv->ctrl_out.index=0x16;
1966 	err = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
1967 	if (err < 0) {
1968 		printk("%s openwifi_dev_probe: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, err);
1969 	} else {
1970 		printk("%s openwifi_dev_probe: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
1971 	}
1972 
1973 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
1974 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
1975 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
1976 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
1977 
1978 	// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
1979 	tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
1980 	if (!tmp_dev) {
1981 		printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
1982 		err = -ENOMEM;
1983 		goto err_free_dev;
1984 	}
1985 
1986 	tmp_pdev = to_platform_device(tmp_dev);
1987 	if (!tmp_pdev) {
1988 		printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
1989 		err = -ENOMEM;
1990 		goto err_free_dev;
1991 	}
1992 
1993 	tmp_indio_dev = platform_get_drvdata(tmp_pdev);
1994 	if (!tmp_indio_dev) {
1995 		printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
1996 		err = -ENOMEM;
1997 		goto err_free_dev;
1998 	}
1999 
2000 	priv->dds_st = iio_priv(tmp_indio_dev);
2001 	if (!(priv->dds_st)) {
2002 		printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
2003 		err = -ENOMEM;
2004 		goto err_free_dev;
2005 	}
2006 	printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
2007 	cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
2008 	printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
2009 
2010 	// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
2011 	// turn off radio by muting tx
2012 	// ad9361_tx_mute(priv->ad9361_phy, 1);
2013 	// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
2014 	// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
2015 	// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
2016 	// 	priv->rfkill_off = 0;// 0 off, 1 on
2017 	// 	printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
2018 	// }
2019 	// else
2020 	// 	printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
2021 
2022 	priv->rssi_correction = 43;//this will be set in real-time by _rf_set_channel()
2023 
2024 	//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
2025 	priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
2026 
2027 	priv->xpu_cfg = XPU_NORMAL;
2028 
2029 	priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
2030 	priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
2031 
2032 	printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
2033 	if (priv->rf_bw == 20000000) {
2034 		priv->rx_intf_cfg = RX_INTF_BYPASS;
2035 		priv->tx_intf_cfg = TX_INTF_BYPASS;
2036 		//priv->rx_freq_offset_to_lo_MHz = 0;
2037 		//priv->tx_freq_offset_to_lo_MHz = 0;
2038 	} else if (priv->rf_bw == 40000000) {
2039 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
2040 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
2041 
2042 		// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
2043 		priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
2044 		priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
2045 		// // try another antenna option
2046 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
2047 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
2048 
2049 		#if 0
2050 		if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
2051 			priv->rx_freq_offset_to_lo_MHz = -10;
2052 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
2053 			priv->rx_freq_offset_to_lo_MHz = 10;
2054 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
2055 			priv->rx_freq_offset_to_lo_MHz = 0;
2056 		} else {
2057 			printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
2058 		}
2059 		#endif
2060 	} else {
2061 		printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
2062 	}
2063 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
2064 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
2065 	printk("%s openwifi_dev_probe: test_mode %d\n", sdr_compatible_str, test_mode);
2066 
2067 	//let's by default turn radio on when probing
2068 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
2069 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
2070 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
2071 	} else {
2072 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
2073 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
2074 	}
2075 	if (reg == AD9361_RADIO_ON_TX_ATT) {
2076 		priv->rfkill_off = 1;// 0 off, 1 on
2077 		printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
2078 	}
2079 	else
2080 		printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
2081 
2082 	memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
2083 	memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
2084 	memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
2085 
2086 	// //set ad9361 in certain mode
2087 	#if 0
2088 	err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
2089 	printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2090 	err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
2091 	printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2092 
2093 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
2094 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
2095 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
2096 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
2097 	printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
2098 	printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
2099 	#endif
2100 
2101 	dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
2102 
2103 	SET_IEEE80211_DEV(dev, &pdev->dev);
2104 	platform_set_drvdata(pdev, dev);
2105 
2106 	BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
2107 	BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
2108 	BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
2109 	BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
2110 
2111 	memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
2112 	memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
2113 	memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
2114 	memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
2115 
2116 	priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
2117 	priv->channel = 44;  //currently useless. this can be changed by band _rf_set_channel()
2118 	priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
2119 
2120 	priv->band_2GHz.band = NL80211_BAND_2GHZ;
2121 	priv->band_2GHz.channels = priv->channels_2GHz;
2122 	priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
2123 	priv->band_2GHz.bitrates = priv->rates_2GHz;
2124 	priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
2125 	priv->band_2GHz.ht_cap.ht_supported = true;
2126 	priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20;
2127 	memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs));
2128 	priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2129 	priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2130 	dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
2131 
2132 	priv->band_5GHz.band = NL80211_BAND_5GHZ;
2133 	priv->band_5GHz.channels = priv->channels_5GHz;
2134 	priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
2135 	priv->band_5GHz.bitrates = priv->rates_5GHz;
2136 	priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
2137 	priv->band_5GHz.ht_cap.ht_supported = true;
2138 	priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20;
2139 	memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs));
2140 	priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2141 	priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2142 	dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
2143 
2144 	printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
2145 	priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
2146 
2147 	ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING);
2148 	ieee80211_hw_set(dev, RX_INCLUDES_FCS);
2149 	ieee80211_hw_set(dev, BEACON_TX_STATUS);
2150 
2151 	dev->vif_data_size = sizeof(struct openwifi_vif);
2152 	dev->wiphy->interface_modes =
2153 			BIT(NL80211_IFTYPE_MONITOR)|
2154 			BIT(NL80211_IFTYPE_P2P_GO) |
2155 			BIT(NL80211_IFTYPE_P2P_CLIENT) |
2156 			BIT(NL80211_IFTYPE_AP) |
2157 			BIT(NL80211_IFTYPE_STATION) |
2158 			BIT(NL80211_IFTYPE_ADHOC) |
2159 			BIT(NL80211_IFTYPE_MESH_POINT) |
2160 			BIT(NL80211_IFTYPE_OCB);
2161 	dev->wiphy->iface_combinations = &openwifi_if_comb;
2162 	dev->wiphy->n_iface_combinations = 1;
2163 
2164 	dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
2165 	//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
2166 	wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
2167 
2168 	chip_name = "ZYNQ";
2169 
2170 	/* we declare to MAC80211 all the queues except for beacon queue
2171 	 * that will be eventually handled by DRV.
2172 	 * TX rings are arranged in such a way that lower is the IDX,
2173 	 * higher is the priority, in order to achieve direct mapping
2174 	 * with mac80211, however the beacon queue is an exception and it
2175 	 * is mapped on the highst tx ring IDX.
2176 	 */
2177 	dev->queues = MAX_NUM_HW_QUEUE;
2178 	//dev->queues = 1;
2179 
2180 	ieee80211_hw_set(dev, SIGNAL_DBM);
2181 
2182 	wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2183 
2184 	priv->rf = &ad9361_rf_ops;
2185 
2186 	memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
2187 	priv->slice_idx = 0xFFFFFFFF;
2188 
2189 	sg_init_table(&(priv->tx_sg), 1);
2190 
2191 	get_random_bytes(&rand_val, sizeof(rand_val));
2192     rand_val%=250;
2193 	priv->mac_addr[0]=0x66;	priv->mac_addr[1]=0x55;	priv->mac_addr[2]=0x44;	priv->mac_addr[3]=0x33;	priv->mac_addr[4]=0x22;
2194 	priv->mac_addr[5]=rand_val+1;
2195 	//priv->mac_addr[5]=0x11;
2196 	if (!is_valid_ether_addr(priv->mac_addr)) {
2197 		printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
2198 		eth_random_addr(priv->mac_addr);
2199 	} else {
2200 		printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
2201 	}
2202 	SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
2203 
2204 	spin_lock_init(&priv->lock);
2205 
2206 	err = ieee80211_register_hw(dev);
2207 	if (err) {
2208 		pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
2209 		goto err_free_dev;
2210 	} else {
2211 		printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
2212 	}
2213 
2214 	// // //--------------------hook leds (not complete yet)--------------------------------
2215 	// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field
2216 	// if (!tmp_dev) {
2217 	// 	printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
2218 	// 	err = -ENOMEM;
2219 	// 	goto err_free_dev;
2220 	// }
2221 
2222 	// tmp_pdev = to_platform_device(tmp_dev);
2223 	// if (!tmp_pdev) {
2224 	// 	printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
2225 	// 	err = -ENOMEM;
2226 	// 	goto err_free_dev;
2227 	// }
2228 
2229 	// tmp_led_priv = platform_get_drvdata(tmp_pdev);
2230 	// if (!tmp_led_priv) {
2231 	// 	printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
2232 	// 	err = -ENOMEM;
2233 	// 	goto err_free_dev;
2234 	// }
2235 	// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
2236 	// if (tmp_led_priv->num_leds!=4){
2237 	// 	printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
2238 	// 	err = -ENOMEM;
2239 	// 	goto err_free_dev;
2240 	// }
2241 	// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
2242 	// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
2243 	// priv->num_led = tmp_led_priv->num_leds;
2244 	// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
2245 	// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
2246 	// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
2247 	// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
2248 
2249 	// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
2250 	// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
2251 	// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
2252 	// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
2253 
2254 	wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
2255 		   priv->mac_addr, chip_name, priv->rf->name);
2256 
2257 	openwifi_rfkill_init(dev);
2258 	return 0;
2259 
2260  err_free_dev:
2261 	ieee80211_free_hw(dev);
2262 
2263 	return err;
2264 }
2265 
2266 static int openwifi_dev_remove(struct platform_device *pdev)
2267 {
2268 	struct ieee80211_hw *dev = platform_get_drvdata(pdev);
2269 
2270 	if (!dev) {
2271 		pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev);
2272 		return(-1);
2273 	}
2274 
2275 	openwifi_rfkill_exit(dev);
2276 	ieee80211_unregister_hw(dev);
2277 	ieee80211_free_hw(dev);
2278 	return(0);
2279 }
2280 
2281 static struct platform_driver openwifi_dev_driver = {
2282 	.driver = {
2283 		.name = "sdr,sdr",
2284 		.owner = THIS_MODULE,
2285 		.of_match_table = openwifi_dev_of_ids,
2286 	},
2287 	.probe = openwifi_dev_probe,
2288 	.remove = openwifi_dev_remove,
2289 };
2290 
2291 module_platform_driver(openwifi_dev_driver);
2292