1*10465441SEvalZero /*
2*10465441SEvalZero * Copyright (c) 2006-2018, RT-Thread Development Team
3*10465441SEvalZero *
4*10465441SEvalZero * SPDX-License-Identifier: Apache-2.0
5*10465441SEvalZero *
6*10465441SEvalZero * Change Logs:
7*10465441SEvalZero * Date Author Notes
8*10465441SEvalZero * 2009-01-05 Bernard first version
9*10465441SEvalZero * 2011-02-14 onelife Modify for EFM32
10*10465441SEvalZero * 2011-06-17 onelife Merge all of the C source code into cpuport.c
11*10465441SEvalZero * 2012-12-23 aozima stack addr align to 8byte.
12*10465441SEvalZero * 2012-12-29 Bernard Add exception hook.
13*10465441SEvalZero * 2013-07-09 aozima enhancement hard fault exception handler.
14*10465441SEvalZero */
15*10465441SEvalZero
16*10465441SEvalZero #include <rtthread.h>
17*10465441SEvalZero
18*10465441SEvalZero struct exception_stack_frame
19*10465441SEvalZero {
20*10465441SEvalZero rt_uint32_t r0;
21*10465441SEvalZero rt_uint32_t r1;
22*10465441SEvalZero rt_uint32_t r2;
23*10465441SEvalZero rt_uint32_t r3;
24*10465441SEvalZero rt_uint32_t r12;
25*10465441SEvalZero rt_uint32_t lr;
26*10465441SEvalZero rt_uint32_t pc;
27*10465441SEvalZero rt_uint32_t psr;
28*10465441SEvalZero };
29*10465441SEvalZero
30*10465441SEvalZero struct stack_frame
31*10465441SEvalZero {
32*10465441SEvalZero /* r4 ~ r11 register */
33*10465441SEvalZero rt_uint32_t r4;
34*10465441SEvalZero rt_uint32_t r5;
35*10465441SEvalZero rt_uint32_t r6;
36*10465441SEvalZero rt_uint32_t r7;
37*10465441SEvalZero rt_uint32_t r8;
38*10465441SEvalZero rt_uint32_t r9;
39*10465441SEvalZero rt_uint32_t r10;
40*10465441SEvalZero rt_uint32_t r11;
41*10465441SEvalZero
42*10465441SEvalZero struct exception_stack_frame exception_stack_frame;
43*10465441SEvalZero };
44*10465441SEvalZero
45*10465441SEvalZero /* flag in interrupt handling */
46*10465441SEvalZero rt_uint32_t rt_interrupt_from_thread, rt_interrupt_to_thread;
47*10465441SEvalZero rt_uint32_t rt_thread_switch_interrupt_flag;
48*10465441SEvalZero /* exception hook */
49*10465441SEvalZero static rt_err_t (*rt_exception_hook)(void *context) = RT_NULL;
50*10465441SEvalZero
51*10465441SEvalZero /**
52*10465441SEvalZero * This function will initialize thread stack
53*10465441SEvalZero *
54*10465441SEvalZero * @param tentry the entry of thread
55*10465441SEvalZero * @param parameter the parameter of entry
56*10465441SEvalZero * @param stack_addr the beginning stack address
57*10465441SEvalZero * @param texit the function will be called when thread exit
58*10465441SEvalZero *
59*10465441SEvalZero * @return stack address
60*10465441SEvalZero */
rt_hw_stack_init(void * tentry,void * parameter,rt_uint8_t * stack_addr,void * texit)61*10465441SEvalZero rt_uint8_t *rt_hw_stack_init(void *tentry,
62*10465441SEvalZero void *parameter,
63*10465441SEvalZero rt_uint8_t *stack_addr,
64*10465441SEvalZero void *texit)
65*10465441SEvalZero {
66*10465441SEvalZero struct stack_frame *stack_frame;
67*10465441SEvalZero rt_uint8_t *stk;
68*10465441SEvalZero unsigned long i;
69*10465441SEvalZero
70*10465441SEvalZero stk = stack_addr + sizeof(rt_uint32_t);
71*10465441SEvalZero stk = (rt_uint8_t *)RT_ALIGN_DOWN((rt_uint32_t)stk, 8);
72*10465441SEvalZero stk -= sizeof(struct stack_frame);
73*10465441SEvalZero
74*10465441SEvalZero stack_frame = (struct stack_frame *)stk;
75*10465441SEvalZero
76*10465441SEvalZero /* init all register */
77*10465441SEvalZero for (i = 0; i < sizeof(struct stack_frame) / sizeof(rt_uint32_t); i ++)
78*10465441SEvalZero {
79*10465441SEvalZero ((rt_uint32_t *)stack_frame)[i] = 0xdeadbeef;
80*10465441SEvalZero }
81*10465441SEvalZero
82*10465441SEvalZero stack_frame->exception_stack_frame.r0 = (unsigned long)parameter; /* r0 : argument */
83*10465441SEvalZero stack_frame->exception_stack_frame.r1 = 0; /* r1 */
84*10465441SEvalZero stack_frame->exception_stack_frame.r2 = 0; /* r2 */
85*10465441SEvalZero stack_frame->exception_stack_frame.r3 = 0; /* r3 */
86*10465441SEvalZero stack_frame->exception_stack_frame.r12 = 0; /* r12 */
87*10465441SEvalZero stack_frame->exception_stack_frame.lr = (unsigned long)texit; /* lr */
88*10465441SEvalZero stack_frame->exception_stack_frame.pc = (unsigned long)tentry; /* entry point, pc */
89*10465441SEvalZero stack_frame->exception_stack_frame.psr = 0x01000000L; /* PSR */
90*10465441SEvalZero
91*10465441SEvalZero /* return task's current stack address */
92*10465441SEvalZero return stk;
93*10465441SEvalZero }
94*10465441SEvalZero
95*10465441SEvalZero /**
96*10465441SEvalZero * This function set the hook, which is invoked on fault exception handling.
97*10465441SEvalZero *
98*10465441SEvalZero * @param exception_handle the exception handling hook function.
99*10465441SEvalZero */
rt_hw_exception_install(rt_err_t (* exception_handle)(void * context))100*10465441SEvalZero void rt_hw_exception_install(rt_err_t (*exception_handle)(void* context))
101*10465441SEvalZero {
102*10465441SEvalZero rt_exception_hook = exception_handle;
103*10465441SEvalZero }
104*10465441SEvalZero
105*10465441SEvalZero #define SCB_CFSR (*(volatile const unsigned *)0xE000ED28) /* Configurable Fault Status Register */
106*10465441SEvalZero #define SCB_HFSR (*(volatile const unsigned *)0xE000ED2C) /* HardFault Status Register */
107*10465441SEvalZero #define SCB_MMAR (*(volatile const unsigned *)0xE000ED34) /* MemManage Fault Address register */
108*10465441SEvalZero #define SCB_BFAR (*(volatile const unsigned *)0xE000ED38) /* Bus Fault Address Register */
109*10465441SEvalZero #define SCB_AIRCR (*(volatile unsigned long *)0xE000ED0C) /* Reset control Address Register */
110*10465441SEvalZero #define SCB_RESET_VALUE 0x05FA0004 /* Reset value, write to SCB_AIRCR can reset cpu */
111*10465441SEvalZero
112*10465441SEvalZero #define SCB_CFSR_MFSR (*(volatile const unsigned char*)0xE000ED28) /* Memory-management Fault Status Register */
113*10465441SEvalZero #define SCB_CFSR_BFSR (*(volatile const unsigned char*)0xE000ED29) /* Bus Fault Status Register */
114*10465441SEvalZero #define SCB_CFSR_UFSR (*(volatile const unsigned short*)0xE000ED2A) /* Usage Fault Status Register */
115*10465441SEvalZero
116*10465441SEvalZero #ifdef RT_USING_FINSH
usage_fault_track(void)117*10465441SEvalZero static void usage_fault_track(void)
118*10465441SEvalZero {
119*10465441SEvalZero rt_kprintf("usage fault:\n");
120*10465441SEvalZero rt_kprintf("SCB_CFSR_UFSR:0x%02X ", SCB_CFSR_UFSR);
121*10465441SEvalZero
122*10465441SEvalZero if(SCB_CFSR_UFSR & (1<<0))
123*10465441SEvalZero {
124*10465441SEvalZero /* [0]:UNDEFINSTR */
125*10465441SEvalZero rt_kprintf("UNDEFINSTR ");
126*10465441SEvalZero }
127*10465441SEvalZero
128*10465441SEvalZero if(SCB_CFSR_UFSR & (1<<1))
129*10465441SEvalZero {
130*10465441SEvalZero /* [1]:INVSTATE */
131*10465441SEvalZero rt_kprintf("INVSTATE ");
132*10465441SEvalZero }
133*10465441SEvalZero
134*10465441SEvalZero if(SCB_CFSR_UFSR & (1<<2))
135*10465441SEvalZero {
136*10465441SEvalZero /* [2]:INVPC */
137*10465441SEvalZero rt_kprintf("INVPC ");
138*10465441SEvalZero }
139*10465441SEvalZero
140*10465441SEvalZero if(SCB_CFSR_UFSR & (1<<3))
141*10465441SEvalZero {
142*10465441SEvalZero /* [3]:NOCP */
143*10465441SEvalZero rt_kprintf("NOCP ");
144*10465441SEvalZero }
145*10465441SEvalZero
146*10465441SEvalZero if(SCB_CFSR_UFSR & (1<<8))
147*10465441SEvalZero {
148*10465441SEvalZero /* [8]:UNALIGNED */
149*10465441SEvalZero rt_kprintf("UNALIGNED ");
150*10465441SEvalZero }
151*10465441SEvalZero
152*10465441SEvalZero if(SCB_CFSR_UFSR & (1<<9))
153*10465441SEvalZero {
154*10465441SEvalZero /* [9]:DIVBYZERO */
155*10465441SEvalZero rt_kprintf("DIVBYZERO ");
156*10465441SEvalZero }
157*10465441SEvalZero
158*10465441SEvalZero rt_kprintf("\n");
159*10465441SEvalZero }
160*10465441SEvalZero
bus_fault_track(void)161*10465441SEvalZero static void bus_fault_track(void)
162*10465441SEvalZero {
163*10465441SEvalZero rt_kprintf("bus fault:\n");
164*10465441SEvalZero rt_kprintf("SCB_CFSR_BFSR:0x%02X ", SCB_CFSR_BFSR);
165*10465441SEvalZero
166*10465441SEvalZero if(SCB_CFSR_BFSR & (1<<0))
167*10465441SEvalZero {
168*10465441SEvalZero /* [0]:IBUSERR */
169*10465441SEvalZero rt_kprintf("IBUSERR ");
170*10465441SEvalZero }
171*10465441SEvalZero
172*10465441SEvalZero if(SCB_CFSR_BFSR & (1<<1))
173*10465441SEvalZero {
174*10465441SEvalZero /* [1]:PRECISERR */
175*10465441SEvalZero rt_kprintf("PRECISERR ");
176*10465441SEvalZero }
177*10465441SEvalZero
178*10465441SEvalZero if(SCB_CFSR_BFSR & (1<<2))
179*10465441SEvalZero {
180*10465441SEvalZero /* [2]:IMPRECISERR */
181*10465441SEvalZero rt_kprintf("IMPRECISERR ");
182*10465441SEvalZero }
183*10465441SEvalZero
184*10465441SEvalZero if(SCB_CFSR_BFSR & (1<<3))
185*10465441SEvalZero {
186*10465441SEvalZero /* [3]:UNSTKERR */
187*10465441SEvalZero rt_kprintf("UNSTKERR ");
188*10465441SEvalZero }
189*10465441SEvalZero
190*10465441SEvalZero if(SCB_CFSR_BFSR & (1<<4))
191*10465441SEvalZero {
192*10465441SEvalZero /* [4]:STKERR */
193*10465441SEvalZero rt_kprintf("STKERR ");
194*10465441SEvalZero }
195*10465441SEvalZero
196*10465441SEvalZero if(SCB_CFSR_BFSR & (1<<7))
197*10465441SEvalZero {
198*10465441SEvalZero rt_kprintf("SCB->BFAR:%08X\n", SCB_BFAR);
199*10465441SEvalZero }
200*10465441SEvalZero else
201*10465441SEvalZero {
202*10465441SEvalZero rt_kprintf("\n");
203*10465441SEvalZero }
204*10465441SEvalZero }
205*10465441SEvalZero
mem_manage_fault_track(void)206*10465441SEvalZero static void mem_manage_fault_track(void)
207*10465441SEvalZero {
208*10465441SEvalZero rt_kprintf("mem manage fault:\n");
209*10465441SEvalZero rt_kprintf("SCB_CFSR_MFSR:0x%02X ", SCB_CFSR_MFSR);
210*10465441SEvalZero
211*10465441SEvalZero if(SCB_CFSR_MFSR & (1<<0))
212*10465441SEvalZero {
213*10465441SEvalZero /* [0]:IACCVIOL */
214*10465441SEvalZero rt_kprintf("IACCVIOL ");
215*10465441SEvalZero }
216*10465441SEvalZero
217*10465441SEvalZero if(SCB_CFSR_MFSR & (1<<1))
218*10465441SEvalZero {
219*10465441SEvalZero /* [1]:DACCVIOL */
220*10465441SEvalZero rt_kprintf("DACCVIOL ");
221*10465441SEvalZero }
222*10465441SEvalZero
223*10465441SEvalZero if(SCB_CFSR_MFSR & (1<<3))
224*10465441SEvalZero {
225*10465441SEvalZero /* [3]:MUNSTKERR */
226*10465441SEvalZero rt_kprintf("MUNSTKERR ");
227*10465441SEvalZero }
228*10465441SEvalZero
229*10465441SEvalZero if(SCB_CFSR_MFSR & (1<<4))
230*10465441SEvalZero {
231*10465441SEvalZero /* [4]:MSTKERR */
232*10465441SEvalZero rt_kprintf("MSTKERR ");
233*10465441SEvalZero }
234*10465441SEvalZero
235*10465441SEvalZero if(SCB_CFSR_MFSR & (1<<7))
236*10465441SEvalZero {
237*10465441SEvalZero /* [7]:MMARVALID */
238*10465441SEvalZero rt_kprintf("SCB->MMAR:%08X\n", SCB_MMAR);
239*10465441SEvalZero }
240*10465441SEvalZero else
241*10465441SEvalZero {
242*10465441SEvalZero rt_kprintf("\n");
243*10465441SEvalZero }
244*10465441SEvalZero }
245*10465441SEvalZero
hard_fault_track(void)246*10465441SEvalZero static void hard_fault_track(void)
247*10465441SEvalZero {
248*10465441SEvalZero if(SCB_HFSR & (1UL<<1))
249*10465441SEvalZero {
250*10465441SEvalZero /* [1]:VECTBL, Indicates hard fault is caused by failed vector fetch. */
251*10465441SEvalZero rt_kprintf("failed vector fetch\n");
252*10465441SEvalZero }
253*10465441SEvalZero
254*10465441SEvalZero if(SCB_HFSR & (1UL<<30))
255*10465441SEvalZero {
256*10465441SEvalZero /* [30]:FORCED, Indicates hard fault is taken because of bus fault,
257*10465441SEvalZero memory management fault, or usage fault. */
258*10465441SEvalZero if(SCB_CFSR_BFSR)
259*10465441SEvalZero {
260*10465441SEvalZero bus_fault_track();
261*10465441SEvalZero }
262*10465441SEvalZero
263*10465441SEvalZero if(SCB_CFSR_MFSR)
264*10465441SEvalZero {
265*10465441SEvalZero mem_manage_fault_track();
266*10465441SEvalZero }
267*10465441SEvalZero
268*10465441SEvalZero if(SCB_CFSR_UFSR)
269*10465441SEvalZero {
270*10465441SEvalZero usage_fault_track();
271*10465441SEvalZero }
272*10465441SEvalZero }
273*10465441SEvalZero
274*10465441SEvalZero if(SCB_HFSR & (1UL<<31))
275*10465441SEvalZero {
276*10465441SEvalZero /* [31]:DEBUGEVT, Indicates hard fault is triggered by debug event. */
277*10465441SEvalZero rt_kprintf("debug event\n");
278*10465441SEvalZero }
279*10465441SEvalZero }
280*10465441SEvalZero #endif /* RT_USING_FINSH */
281*10465441SEvalZero
282*10465441SEvalZero struct exception_info
283*10465441SEvalZero {
284*10465441SEvalZero rt_uint32_t exc_return;
285*10465441SEvalZero struct stack_frame stack_frame;
286*10465441SEvalZero };
287*10465441SEvalZero
288*10465441SEvalZero /*
289*10465441SEvalZero * fault exception handler
290*10465441SEvalZero */
rt_hw_hard_fault_exception(struct exception_info * exception_info)291*10465441SEvalZero void rt_hw_hard_fault_exception(struct exception_info * exception_info)
292*10465441SEvalZero {
293*10465441SEvalZero extern long list_thread(void);
294*10465441SEvalZero struct stack_frame* context = &exception_info->stack_frame;
295*10465441SEvalZero
296*10465441SEvalZero if (rt_exception_hook != RT_NULL)
297*10465441SEvalZero {
298*10465441SEvalZero rt_err_t result;
299*10465441SEvalZero
300*10465441SEvalZero result = rt_exception_hook(exception_info);
301*10465441SEvalZero if (result == RT_EOK)
302*10465441SEvalZero return;
303*10465441SEvalZero }
304*10465441SEvalZero
305*10465441SEvalZero rt_kprintf("psr: 0x%08x\n", context->exception_stack_frame.psr);
306*10465441SEvalZero
307*10465441SEvalZero rt_kprintf("r00: 0x%08x\n", context->exception_stack_frame.r0);
308*10465441SEvalZero rt_kprintf("r01: 0x%08x\n", context->exception_stack_frame.r1);
309*10465441SEvalZero rt_kprintf("r02: 0x%08x\n", context->exception_stack_frame.r2);
310*10465441SEvalZero rt_kprintf("r03: 0x%08x\n", context->exception_stack_frame.r3);
311*10465441SEvalZero rt_kprintf("r04: 0x%08x\n", context->r4);
312*10465441SEvalZero rt_kprintf("r05: 0x%08x\n", context->r5);
313*10465441SEvalZero rt_kprintf("r06: 0x%08x\n", context->r6);
314*10465441SEvalZero rt_kprintf("r07: 0x%08x\n", context->r7);
315*10465441SEvalZero rt_kprintf("r08: 0x%08x\n", context->r8);
316*10465441SEvalZero rt_kprintf("r09: 0x%08x\n", context->r9);
317*10465441SEvalZero rt_kprintf("r10: 0x%08x\n", context->r10);
318*10465441SEvalZero rt_kprintf("r11: 0x%08x\n", context->r11);
319*10465441SEvalZero rt_kprintf("r12: 0x%08x\n", context->exception_stack_frame.r12);
320*10465441SEvalZero rt_kprintf(" lr: 0x%08x\n", context->exception_stack_frame.lr);
321*10465441SEvalZero rt_kprintf(" pc: 0x%08x\n", context->exception_stack_frame.pc);
322*10465441SEvalZero
323*10465441SEvalZero if(exception_info->exc_return & (1 << 2) )
324*10465441SEvalZero {
325*10465441SEvalZero rt_kprintf("hard fault on thread: %s\r\n\r\n", rt_thread_self()->name);
326*10465441SEvalZero
327*10465441SEvalZero #ifdef RT_USING_FINSH
328*10465441SEvalZero list_thread();
329*10465441SEvalZero #endif /* RT_USING_FINSH */
330*10465441SEvalZero }
331*10465441SEvalZero else
332*10465441SEvalZero {
333*10465441SEvalZero rt_kprintf("hard fault on handler\r\n\r\n");
334*10465441SEvalZero }
335*10465441SEvalZero
336*10465441SEvalZero #ifdef RT_USING_FINSH
337*10465441SEvalZero hard_fault_track();
338*10465441SEvalZero #endif /* RT_USING_FINSH */
339*10465441SEvalZero
340*10465441SEvalZero while (1);
341*10465441SEvalZero }
342*10465441SEvalZero
343*10465441SEvalZero /**
344*10465441SEvalZero * shutdown CPU
345*10465441SEvalZero */
rt_hw_cpu_shutdown(void)346*10465441SEvalZero void rt_hw_cpu_shutdown(void)
347*10465441SEvalZero {
348*10465441SEvalZero rt_kprintf("shutdown...\n");
349*10465441SEvalZero
350*10465441SEvalZero RT_ASSERT(0);
351*10465441SEvalZero }
352*10465441SEvalZero
353*10465441SEvalZero /**
354*10465441SEvalZero * reset CPU
355*10465441SEvalZero */
rt_hw_cpu_reset(void)356*10465441SEvalZero RT_WEAK void rt_hw_cpu_reset(void)
357*10465441SEvalZero {
358*10465441SEvalZero SCB_AIRCR = SCB_RESET_VALUE;
359*10465441SEvalZero }
360*10465441SEvalZero
361*10465441SEvalZero #ifdef RT_USING_CPU_FFS
362*10465441SEvalZero /**
363*10465441SEvalZero * This function finds the first bit set (beginning with the least significant bit)
364*10465441SEvalZero * in value and return the index of that bit.
365*10465441SEvalZero *
366*10465441SEvalZero * Bits are numbered starting at 1 (the least significant bit). A return value of
367*10465441SEvalZero * zero from any of these functions means that the argument was zero.
368*10465441SEvalZero *
369*10465441SEvalZero * @return return the index of the first bit set. If value is 0, then this function
370*10465441SEvalZero * shall return 0.
371*10465441SEvalZero */
372*10465441SEvalZero #if defined(__CC_ARM)
__rt_ffs(int value)373*10465441SEvalZero __asm int __rt_ffs(int value)
374*10465441SEvalZero {
375*10465441SEvalZero CMP r0, #0x00
376*10465441SEvalZero BEQ exit
377*10465441SEvalZero
378*10465441SEvalZero RBIT r0, r0
379*10465441SEvalZero CLZ r0, r0
380*10465441SEvalZero ADDS r0, r0, #0x01
381*10465441SEvalZero
382*10465441SEvalZero exit
383*10465441SEvalZero BX lr
384*10465441SEvalZero }
385*10465441SEvalZero #elif defined(__IAR_SYSTEMS_ICC__)
__rt_ffs(int value)386*10465441SEvalZero int __rt_ffs(int value)
387*10465441SEvalZero {
388*10465441SEvalZero if (value == 0) return value;
389*10465441SEvalZero
390*10465441SEvalZero asm("RBIT %0, %1" : "=r"(value) : "r"(value));
391*10465441SEvalZero asm("CLZ %0, %1" : "=r"(value) : "r"(value));
392*10465441SEvalZero asm("ADDS %0, %1, #0x01" : "=r"(value) : "r"(value));
393*10465441SEvalZero
394*10465441SEvalZero return value;
395*10465441SEvalZero }
396*10465441SEvalZero #elif defined(__GNUC__)
__rt_ffs(int value)397*10465441SEvalZero int __rt_ffs(int value)
398*10465441SEvalZero {
399*10465441SEvalZero return __builtin_ffs(value);
400*10465441SEvalZero }
401*10465441SEvalZero #endif
402*10465441SEvalZero
403*10465441SEvalZero #endif
404