1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef _LINUX_MATH_H
3  #define _LINUX_MATH_H
4  
5  #include <linux/types.h>
6  #include <asm/div64.h>
7  #include <uapi/linux/kernel.h>
8  
9  /*
10   * This looks more complex than it should be. But we need to
11   * get the type for the ~ right in round_down (it needs to be
12   * as wide as the result!), and we want to evaluate the macro
13   * arguments just once each.
14   */
15  #define __round_mask(x, y) ((__typeof__(x))((y)-1))
16  
17  /**
18   * round_up - round up to next specified power of 2
19   * @x: the value to round
20   * @y: multiple to round up to (must be a power of 2)
21   *
22   * Rounds @x up to next multiple of @y (which must be a power of 2).
23   * To perform arbitrary rounding up, use roundup() below.
24   */
25  #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
26  
27  /**
28   * round_down - round down to next specified power of 2
29   * @x: the value to round
30   * @y: multiple to round down to (must be a power of 2)
31   *
32   * Rounds @x down to next multiple of @y (which must be a power of 2).
33   * To perform arbitrary rounding down, use rounddown() below.
34   */
35  #define round_down(x, y) ((x) & ~__round_mask(x, y))
36  
37  #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
38  
39  #define DIV_ROUND_DOWN_ULL(ll, d) \
40  	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
41  
42  #define DIV_ROUND_UP_ULL(ll, d) \
43  	DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
44  
45  #if BITS_PER_LONG == 32
46  # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
47  #else
48  # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
49  #endif
50  
51  /**
52   * roundup - round up to the next specified multiple
53   * @x: the value to up
54   * @y: multiple to round up to
55   *
56   * Rounds @x up to next multiple of @y. If @y will always be a power
57   * of 2, consider using the faster round_up().
58   */
59  #define roundup(x, y) (					\
60  {							\
61  	typeof(y) __y = y;				\
62  	(((x) + (__y - 1)) / __y) * __y;		\
63  }							\
64  )
65  /**
66   * rounddown - round down to next specified multiple
67   * @x: the value to round
68   * @y: multiple to round down to
69   *
70   * Rounds @x down to next multiple of @y. If @y will always be a power
71   * of 2, consider using the faster round_down().
72   */
73  #define rounddown(x, y) (				\
74  {							\
75  	typeof(x) __x = (x);				\
76  	__x - (__x % (y));				\
77  }							\
78  )
79  
80  /*
81   * Divide positive or negative dividend by positive or negative divisor
82   * and round to closest integer. Result is undefined for negative
83   * divisors if the dividend variable type is unsigned and for negative
84   * dividends if the divisor variable type is unsigned.
85   */
86  #define DIV_ROUND_CLOSEST(x, divisor)(			\
87  {							\
88  	typeof(x) __x = x;				\
89  	typeof(divisor) __d = divisor;			\
90  	(((typeof(x))-1) > 0 ||				\
91  	 ((typeof(divisor))-1) > 0 ||			\
92  	 (((__x) > 0) == ((__d) > 0))) ?		\
93  		(((__x) + ((__d) / 2)) / (__d)) :	\
94  		(((__x) - ((__d) / 2)) / (__d));	\
95  }							\
96  )
97  /*
98   * Same as above but for u64 dividends. divisor must be a 32-bit
99   * number.
100   */
101  #define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\
102  {							\
103  	typeof(divisor) __d = divisor;			\
104  	unsigned long long _tmp = (x) + (__d) / 2;	\
105  	do_div(_tmp, __d);				\
106  	_tmp;						\
107  }							\
108  )
109  
110  #define __STRUCT_FRACT(type)				\
111  struct type##_fract {					\
112  	__##type numerator;				\
113  	__##type denominator;				\
114  };
115  __STRUCT_FRACT(s8)
__STRUCT_FRACT(u8)116  __STRUCT_FRACT(u8)
117  __STRUCT_FRACT(s16)
118  __STRUCT_FRACT(u16)
119  __STRUCT_FRACT(s32)
120  __STRUCT_FRACT(u32)
121  #undef __STRUCT_FRACT
122  
123  /* Calculate "x * n / d" without unnecessary overflow or loss of precision. */
124  #define mult_frac(x, n, d)	\
125  ({				\
126  	typeof(x) x_ = (x);	\
127  	typeof(n) n_ = (n);	\
128  	typeof(d) d_ = (d);	\
129  				\
130  	typeof(x_) q = x_ / d_;	\
131  	typeof(x_) r = x_ % d_;	\
132  	q * n_ + r * n_ / d_;	\
133  })
134  
135  #define sector_div(a, b) do_div(a, b)
136  
137  /**
138   * abs - return absolute value of an argument
139   * @x: the value.  If it is unsigned type, it is converted to signed type first.
140   *     char is treated as if it was signed (regardless of whether it really is)
141   *     but the macro's return type is preserved as char.
142   *
143   * Return: an absolute value of x.
144   */
145  #define abs(x)	__abs_choose_expr(x, long long,				\
146  		__abs_choose_expr(x, long,				\
147  		__abs_choose_expr(x, int,				\
148  		__abs_choose_expr(x, short,				\
149  		__abs_choose_expr(x, char,				\
150  		__builtin_choose_expr(					\
151  			__builtin_types_compatible_p(typeof(x), char),	\
152  			(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
153  			((void)0)))))))
154  
155  #define __abs_choose_expr(x, type, other) __builtin_choose_expr(	\
156  	__builtin_types_compatible_p(typeof(x),   signed type) ||	\
157  	__builtin_types_compatible_p(typeof(x), unsigned type),		\
158  	({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
159  
160  /**
161   * abs_diff - return absolute value of the difference between the arguments
162   * @a: the first argument
163   * @b: the second argument
164   *
165   * @a and @b have to be of the same type. With this restriction we compare
166   * signed to signed and unsigned to unsigned. The result is the subtraction
167   * the smaller of the two from the bigger, hence result is always a positive
168   * value.
169   *
170   * Return: an absolute value of the difference between the @a and @b.
171   */
172  #define abs_diff(a, b) ({			\
173  	typeof(a) __a = (a);			\
174  	typeof(b) __b = (b);			\
175  	(void)(&__a == &__b);			\
176  	__a > __b ? (__a - __b) : (__b - __a);	\
177  })
178  
179  /**
180   * reciprocal_scale - "scale" a value into range [0, ep_ro)
181   * @val: value
182   * @ep_ro: right open interval endpoint
183   *
184   * Perform a "reciprocal multiplication" in order to "scale" a value into
185   * range [0, @ep_ro), where the upper interval endpoint is right-open.
186   * This is useful, e.g. for accessing a index of an array containing
187   * @ep_ro elements, for example. Think of it as sort of modulus, only that
188   * the result isn't that of modulo. ;) Note that if initial input is a
189   * small value, then result will return 0.
190   *
191   * Return: a result based on @val in interval [0, @ep_ro).
192   */
193  static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
194  {
195  	return (u32)(((u64) val * ep_ro) >> 32);
196  }
197  
198  u64 int_pow(u64 base, unsigned int exp);
199  unsigned long int_sqrt(unsigned long);
200  
201  #if BITS_PER_LONG < 64
202  u32 int_sqrt64(u64 x);
203  #else
int_sqrt64(u64 x)204  static inline u32 int_sqrt64(u64 x)
205  {
206  	return (u32)int_sqrt(x);
207  }
208  #endif
209  
210  #endif	/* _LINUX_MATH_H */
211