1 use super::log1pf; 2 3 /* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */ 4 /// Inverse hyperbolic tangent (f32) 5 /// 6 /// Calculates the inverse hyperbolic tangent of `x`. 7 /// Is defined as `log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2`. 8 #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] atanhf(mut x: f32) -> f329pub fn atanhf(mut x: f32) -> f32 { 10 let mut u = x.to_bits(); 11 let sign = (u >> 31) != 0; 12 13 /* |x| */ 14 u &= 0x7fffffff; 15 x = f32::from_bits(u); 16 17 if u < 0x3f800000 - (1 << 23) { 18 if u < 0x3f800000 - (32 << 23) { 19 /* handle underflow */ 20 if u < (1 << 23) { 21 force_eval!((x * x) as f32); 22 } 23 } else { 24 /* |x| < 0.5, up to 1.7ulp error */ 25 x = 0.5 * log1pf(2.0 * x + 2.0 * x * x / (1.0 - x)); 26 } 27 } else { 28 /* avoid overflow */ 29 x = 0.5 * log1pf(2.0 * (x / (1.0 - x))); 30 } 31 32 if sign { 33 -x 34 } else { 35 x 36 } 37 } 38