1*da0073e9SAndroid Build Coastguard Worker# mypy: allow-untyped-decorators 2*da0073e9SAndroid Build Coastguard Worker# mypy: allow-untyped-defs 3*da0073e9SAndroid Build Coastguard Workerr"""Implementation for the RMSprop algorithm.""" 4*da0073e9SAndroid Build Coastguard Workerfrom typing import cast, List, Optional, Union 5*da0073e9SAndroid Build Coastguard Worker 6*da0073e9SAndroid Build Coastguard Workerimport torch 7*da0073e9SAndroid Build Coastguard Workerfrom torch import Tensor 8*da0073e9SAndroid Build Coastguard Worker 9*da0073e9SAndroid Build Coastguard Workerfrom .optimizer import ( 10*da0073e9SAndroid Build Coastguard Worker _capturable_doc, 11*da0073e9SAndroid Build Coastguard Worker _default_to_fused_or_foreach, 12*da0073e9SAndroid Build Coastguard Worker _differentiable_doc, 13*da0073e9SAndroid Build Coastguard Worker _disable_dynamo_if_unsupported, 14*da0073e9SAndroid Build Coastguard Worker _foreach_doc, 15*da0073e9SAndroid Build Coastguard Worker _get_capturable_supported_devices, 16*da0073e9SAndroid Build Coastguard Worker _get_scalar_dtype, 17*da0073e9SAndroid Build Coastguard Worker _maximize_doc, 18*da0073e9SAndroid Build Coastguard Worker _use_grad_for_differentiable, 19*da0073e9SAndroid Build Coastguard Worker _view_as_real, 20*da0073e9SAndroid Build Coastguard Worker Optimizer, 21*da0073e9SAndroid Build Coastguard Worker ParamsT, 22*da0073e9SAndroid Build Coastguard Worker) 23*da0073e9SAndroid Build Coastguard Worker 24*da0073e9SAndroid Build Coastguard Worker 25*da0073e9SAndroid Build Coastguard Worker__all__ = ["RMSprop", "rmsprop"] 26*da0073e9SAndroid Build Coastguard Worker 27*da0073e9SAndroid Build Coastguard Worker 28*da0073e9SAndroid Build Coastguard Workerclass RMSprop(Optimizer): # noqa: D101 29*da0073e9SAndroid Build Coastguard Worker def __init__( 30*da0073e9SAndroid Build Coastguard Worker self, 31*da0073e9SAndroid Build Coastguard Worker params: ParamsT, 32*da0073e9SAndroid Build Coastguard Worker lr: Union[float, Tensor] = 1e-2, 33*da0073e9SAndroid Build Coastguard Worker alpha: float = 0.99, 34*da0073e9SAndroid Build Coastguard Worker eps: float = 1e-8, 35*da0073e9SAndroid Build Coastguard Worker weight_decay: float = 0, 36*da0073e9SAndroid Build Coastguard Worker momentum: float = 0, 37*da0073e9SAndroid Build Coastguard Worker centered=False, 38*da0073e9SAndroid Build Coastguard Worker capturable=False, 39*da0073e9SAndroid Build Coastguard Worker foreach: Optional[bool] = None, 40*da0073e9SAndroid Build Coastguard Worker maximize: bool = False, 41*da0073e9SAndroid Build Coastguard Worker differentiable: bool = False, 42*da0073e9SAndroid Build Coastguard Worker ): # noqa: D107 43*da0073e9SAndroid Build Coastguard Worker if isinstance(lr, Tensor) and lr.numel() != 1: 44*da0073e9SAndroid Build Coastguard Worker raise ValueError("Tensor lr must be 1-element") 45*da0073e9SAndroid Build Coastguard Worker if not 0.0 <= lr: 46*da0073e9SAndroid Build Coastguard Worker raise ValueError(f"Invalid learning rate: {lr}") 47*da0073e9SAndroid Build Coastguard Worker if not 0.0 <= eps: 48*da0073e9SAndroid Build Coastguard Worker raise ValueError(f"Invalid epsilon value: {eps}") 49*da0073e9SAndroid Build Coastguard Worker if not 0.0 <= momentum: 50*da0073e9SAndroid Build Coastguard Worker raise ValueError(f"Invalid momentum value: {momentum}") 51*da0073e9SAndroid Build Coastguard Worker if not 0.0 <= weight_decay: 52*da0073e9SAndroid Build Coastguard Worker raise ValueError(f"Invalid weight_decay value: {weight_decay}") 53*da0073e9SAndroid Build Coastguard Worker if not 0.0 <= alpha: 54*da0073e9SAndroid Build Coastguard Worker raise ValueError(f"Invalid alpha value: {alpha}") 55*da0073e9SAndroid Build Coastguard Worker 56*da0073e9SAndroid Build Coastguard Worker defaults = dict( 57*da0073e9SAndroid Build Coastguard Worker lr=lr, 58*da0073e9SAndroid Build Coastguard Worker momentum=momentum, 59*da0073e9SAndroid Build Coastguard Worker alpha=alpha, 60*da0073e9SAndroid Build Coastguard Worker eps=eps, 61*da0073e9SAndroid Build Coastguard Worker centered=centered, 62*da0073e9SAndroid Build Coastguard Worker weight_decay=weight_decay, 63*da0073e9SAndroid Build Coastguard Worker capturable=capturable, 64*da0073e9SAndroid Build Coastguard Worker foreach=foreach, 65*da0073e9SAndroid Build Coastguard Worker maximize=maximize, 66*da0073e9SAndroid Build Coastguard Worker differentiable=differentiable, 67*da0073e9SAndroid Build Coastguard Worker ) 68*da0073e9SAndroid Build Coastguard Worker super().__init__(params, defaults) 69*da0073e9SAndroid Build Coastguard Worker 70*da0073e9SAndroid Build Coastguard Worker def __setstate__(self, state): # noqa: D105 71*da0073e9SAndroid Build Coastguard Worker super().__setstate__(state) 72*da0073e9SAndroid Build Coastguard Worker for group in self.param_groups: 73*da0073e9SAndroid Build Coastguard Worker group.setdefault("momentum", 0) 74*da0073e9SAndroid Build Coastguard Worker group.setdefault("centered", False) 75*da0073e9SAndroid Build Coastguard Worker group.setdefault("foreach", None) 76*da0073e9SAndroid Build Coastguard Worker group.setdefault("maximize", False) 77*da0073e9SAndroid Build Coastguard Worker group.setdefault("differentiable", False) 78*da0073e9SAndroid Build Coastguard Worker group.setdefault("capturable", False) 79*da0073e9SAndroid Build Coastguard Worker for p in group["params"]: 80*da0073e9SAndroid Build Coastguard Worker p_state = self.state.get(p, []) 81*da0073e9SAndroid Build Coastguard Worker if len(p_state) != 0 and not torch.is_tensor(p_state["step"]): 82*da0073e9SAndroid Build Coastguard Worker step_val = float(p_state["step"]) 83*da0073e9SAndroid Build Coastguard Worker p_state["step"] = ( 84*da0073e9SAndroid Build Coastguard Worker torch.tensor( 85*da0073e9SAndroid Build Coastguard Worker step_val, dtype=_get_scalar_dtype(), device=p.device 86*da0073e9SAndroid Build Coastguard Worker ) 87*da0073e9SAndroid Build Coastguard Worker if group["capturable"] 88*da0073e9SAndroid Build Coastguard Worker else torch.tensor(step_val, dtype=_get_scalar_dtype()) 89*da0073e9SAndroid Build Coastguard Worker ) 90*da0073e9SAndroid Build Coastguard Worker 91*da0073e9SAndroid Build Coastguard Worker def _init_group( 92*da0073e9SAndroid Build Coastguard Worker self, 93*da0073e9SAndroid Build Coastguard Worker group, 94*da0073e9SAndroid Build Coastguard Worker params_with_grad, 95*da0073e9SAndroid Build Coastguard Worker grads, 96*da0073e9SAndroid Build Coastguard Worker square_avgs, 97*da0073e9SAndroid Build Coastguard Worker momentum_buffer_list, 98*da0073e9SAndroid Build Coastguard Worker grad_avgs, 99*da0073e9SAndroid Build Coastguard Worker state_steps, 100*da0073e9SAndroid Build Coastguard Worker ): 101*da0073e9SAndroid Build Coastguard Worker has_complex = False 102*da0073e9SAndroid Build Coastguard Worker for p in group["params"]: 103*da0073e9SAndroid Build Coastguard Worker if p.grad is None: 104*da0073e9SAndroid Build Coastguard Worker continue 105*da0073e9SAndroid Build Coastguard Worker has_complex |= torch.is_complex(p) 106*da0073e9SAndroid Build Coastguard Worker params_with_grad.append(p) 107*da0073e9SAndroid Build Coastguard Worker 108*da0073e9SAndroid Build Coastguard Worker if p.grad.is_sparse: 109*da0073e9SAndroid Build Coastguard Worker raise RuntimeError("RMSprop does not support sparse gradients") 110*da0073e9SAndroid Build Coastguard Worker grads.append(p.grad) 111*da0073e9SAndroid Build Coastguard Worker 112*da0073e9SAndroid Build Coastguard Worker state = self.state[p] 113*da0073e9SAndroid Build Coastguard Worker 114*da0073e9SAndroid Build Coastguard Worker # State initialization 115*da0073e9SAndroid Build Coastguard Worker if len(state) == 0: 116*da0073e9SAndroid Build Coastguard Worker state["step"] = ( 117*da0073e9SAndroid Build Coastguard Worker torch.zeros((), dtype=_get_scalar_dtype(), device=p.device) 118*da0073e9SAndroid Build Coastguard Worker if group["capturable"] 119*da0073e9SAndroid Build Coastguard Worker else torch.zeros((), dtype=_get_scalar_dtype()) 120*da0073e9SAndroid Build Coastguard Worker ) 121*da0073e9SAndroid Build Coastguard Worker state["square_avg"] = torch.zeros_like( 122*da0073e9SAndroid Build Coastguard Worker p, memory_format=torch.preserve_format 123*da0073e9SAndroid Build Coastguard Worker ) 124*da0073e9SAndroid Build Coastguard Worker if group["momentum"] > 0: 125*da0073e9SAndroid Build Coastguard Worker state["momentum_buffer"] = torch.zeros_like( 126*da0073e9SAndroid Build Coastguard Worker p, memory_format=torch.preserve_format 127*da0073e9SAndroid Build Coastguard Worker ) 128*da0073e9SAndroid Build Coastguard Worker if group["centered"]: 129*da0073e9SAndroid Build Coastguard Worker state["grad_avg"] = torch.zeros_like( 130*da0073e9SAndroid Build Coastguard Worker p, memory_format=torch.preserve_format 131*da0073e9SAndroid Build Coastguard Worker ) 132*da0073e9SAndroid Build Coastguard Worker square_avgs.append(state["square_avg"]) 133*da0073e9SAndroid Build Coastguard Worker state_steps.append(state["step"]) 134*da0073e9SAndroid Build Coastguard Worker 135*da0073e9SAndroid Build Coastguard Worker if group["momentum"] > 0: 136*da0073e9SAndroid Build Coastguard Worker momentum_buffer_list.append(state["momentum_buffer"]) 137*da0073e9SAndroid Build Coastguard Worker if group["centered"]: 138*da0073e9SAndroid Build Coastguard Worker grad_avgs.append(state["grad_avg"]) 139*da0073e9SAndroid Build Coastguard Worker 140*da0073e9SAndroid Build Coastguard Worker return has_complex 141*da0073e9SAndroid Build Coastguard Worker 142*da0073e9SAndroid Build Coastguard Worker @_use_grad_for_differentiable 143*da0073e9SAndroid Build Coastguard Worker def step(self, closure=None): 144*da0073e9SAndroid Build Coastguard Worker """Perform a single optimization step. 145*da0073e9SAndroid Build Coastguard Worker 146*da0073e9SAndroid Build Coastguard Worker Args: 147*da0073e9SAndroid Build Coastguard Worker closure (Callable, optional): A closure that reevaluates the model 148*da0073e9SAndroid Build Coastguard Worker and returns the loss. 149*da0073e9SAndroid Build Coastguard Worker """ 150*da0073e9SAndroid Build Coastguard Worker self._cuda_graph_capture_health_check() 151*da0073e9SAndroid Build Coastguard Worker 152*da0073e9SAndroid Build Coastguard Worker loss = None 153*da0073e9SAndroid Build Coastguard Worker if closure is not None: 154*da0073e9SAndroid Build Coastguard Worker with torch.enable_grad(): 155*da0073e9SAndroid Build Coastguard Worker loss = closure() 156*da0073e9SAndroid Build Coastguard Worker 157*da0073e9SAndroid Build Coastguard Worker for group in self.param_groups: 158*da0073e9SAndroid Build Coastguard Worker params_with_grad: List[Tensor] = [] 159*da0073e9SAndroid Build Coastguard Worker grads: List[Tensor] = [] 160*da0073e9SAndroid Build Coastguard Worker square_avgs: List[Tensor] = [] 161*da0073e9SAndroid Build Coastguard Worker grad_avgs: List[Tensor] = [] 162*da0073e9SAndroid Build Coastguard Worker momentum_buffer_list: List[Tensor] = [] 163*da0073e9SAndroid Build Coastguard Worker state_steps: List[Tensor] = [] 164*da0073e9SAndroid Build Coastguard Worker 165*da0073e9SAndroid Build Coastguard Worker has_complex = self._init_group( 166*da0073e9SAndroid Build Coastguard Worker group, 167*da0073e9SAndroid Build Coastguard Worker params_with_grad, 168*da0073e9SAndroid Build Coastguard Worker grads, 169*da0073e9SAndroid Build Coastguard Worker square_avgs, 170*da0073e9SAndroid Build Coastguard Worker momentum_buffer_list, 171*da0073e9SAndroid Build Coastguard Worker grad_avgs, 172*da0073e9SAndroid Build Coastguard Worker state_steps, 173*da0073e9SAndroid Build Coastguard Worker ) 174*da0073e9SAndroid Build Coastguard Worker 175*da0073e9SAndroid Build Coastguard Worker rmsprop( 176*da0073e9SAndroid Build Coastguard Worker params_with_grad, 177*da0073e9SAndroid Build Coastguard Worker grads, 178*da0073e9SAndroid Build Coastguard Worker square_avgs, 179*da0073e9SAndroid Build Coastguard Worker grad_avgs, 180*da0073e9SAndroid Build Coastguard Worker momentum_buffer_list, 181*da0073e9SAndroid Build Coastguard Worker state_steps, 182*da0073e9SAndroid Build Coastguard Worker lr=group["lr"], 183*da0073e9SAndroid Build Coastguard Worker alpha=group["alpha"], 184*da0073e9SAndroid Build Coastguard Worker eps=group["eps"], 185*da0073e9SAndroid Build Coastguard Worker weight_decay=group["weight_decay"], 186*da0073e9SAndroid Build Coastguard Worker momentum=group["momentum"], 187*da0073e9SAndroid Build Coastguard Worker centered=group["centered"], 188*da0073e9SAndroid Build Coastguard Worker foreach=group["foreach"], 189*da0073e9SAndroid Build Coastguard Worker maximize=group["maximize"], 190*da0073e9SAndroid Build Coastguard Worker differentiable=group["differentiable"], 191*da0073e9SAndroid Build Coastguard Worker capturable=group["capturable"], 192*da0073e9SAndroid Build Coastguard Worker has_complex=has_complex, 193*da0073e9SAndroid Build Coastguard Worker ) 194*da0073e9SAndroid Build Coastguard Worker 195*da0073e9SAndroid Build Coastguard Worker return loss 196*da0073e9SAndroid Build Coastguard Worker 197*da0073e9SAndroid Build Coastguard Worker 198*da0073e9SAndroid Build Coastguard WorkerRMSprop.__doc__ = ( 199*da0073e9SAndroid Build Coastguard Worker r"""Implements RMSprop algorithm. 200*da0073e9SAndroid Build Coastguard Worker 201*da0073e9SAndroid Build Coastguard Worker .. math:: 202*da0073e9SAndroid Build Coastguard Worker \begin{aligned} 203*da0073e9SAndroid Build Coastguard Worker &\rule{110mm}{0.4pt} \\ 204*da0073e9SAndroid Build Coastguard Worker &\textbf{input} : \alpha \text{ (alpha)},\: \gamma \text{ (lr)}, 205*da0073e9SAndroid Build Coastguard Worker \: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)} \\ 206*da0073e9SAndroid Build Coastguard Worker &\hspace{13mm} \lambda \text{ (weight decay)},\: \mu \text{ (momentum)},\: centered\\ 207*da0073e9SAndroid Build Coastguard Worker &\textbf{initialize} : v_0 \leftarrow 0 \text{ (square average)}, \: 208*da0073e9SAndroid Build Coastguard Worker \textbf{b}_0 \leftarrow 0 \text{ (buffer)}, \: g^{ave}_0 \leftarrow 0 \\[-1.ex] 209*da0073e9SAndroid Build Coastguard Worker &\rule{110mm}{0.4pt} \\ 210*da0073e9SAndroid Build Coastguard Worker &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ 211*da0073e9SAndroid Build Coastguard Worker &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ 212*da0073e9SAndroid Build Coastguard Worker &\hspace{5mm}if \: \lambda \neq 0 \\ 213*da0073e9SAndroid Build Coastguard Worker &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ 214*da0073e9SAndroid Build Coastguard Worker &\hspace{5mm}v_t \leftarrow \alpha v_{t-1} + (1 - \alpha) g^2_t 215*da0073e9SAndroid Build Coastguard Worker \hspace{8mm} \\ 216*da0073e9SAndroid Build Coastguard Worker &\hspace{5mm} \tilde{v_t} \leftarrow v_t \\ 217*da0073e9SAndroid Build Coastguard Worker &\hspace{5mm}if \: centered \\ 218*da0073e9SAndroid Build Coastguard Worker &\hspace{10mm} g^{ave}_t \leftarrow g^{ave}_{t-1} \alpha + (1-\alpha) g_t \\ 219*da0073e9SAndroid Build Coastguard Worker &\hspace{10mm} \tilde{v_t} \leftarrow \tilde{v_t} - \big(g^{ave}_{t} \big)^2 \\ 220*da0073e9SAndroid Build Coastguard Worker &\hspace{5mm}if \: \mu > 0 \\ 221*da0073e9SAndroid Build Coastguard Worker &\hspace{10mm} \textbf{b}_t\leftarrow \mu \textbf{b}_{t-1} + 222*da0073e9SAndroid Build Coastguard Worker g_t/ \big(\sqrt{\tilde{v_t}} + \epsilon \big) \\ 223*da0073e9SAndroid Build Coastguard Worker &\hspace{10mm} \theta_t \leftarrow \theta_{t-1} - \gamma \textbf{b}_t \\ 224*da0073e9SAndroid Build Coastguard Worker &\hspace{5mm} else \\ 225*da0073e9SAndroid Build Coastguard Worker &\hspace{10mm}\theta_t \leftarrow \theta_{t-1} - 226*da0073e9SAndroid Build Coastguard Worker \gamma g_t/ \big(\sqrt{\tilde{v_t}} + \epsilon \big) \hspace{3mm} \\ 227*da0073e9SAndroid Build Coastguard Worker &\rule{110mm}{0.4pt} \\[-1.ex] 228*da0073e9SAndroid Build Coastguard Worker &\bf{return} \: \theta_t \\[-1.ex] 229*da0073e9SAndroid Build Coastguard Worker &\rule{110mm}{0.4pt} \\[-1.ex] 230*da0073e9SAndroid Build Coastguard Worker \end{aligned} 231*da0073e9SAndroid Build Coastguard Worker 232*da0073e9SAndroid Build Coastguard Worker For further details regarding the algorithm we refer to 233*da0073e9SAndroid Build Coastguard Worker `lecture notes <https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_ by G. Hinton. 234*da0073e9SAndroid Build Coastguard Worker and centered version `Generating Sequences 235*da0073e9SAndroid Build Coastguard Worker With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_. 236*da0073e9SAndroid Build Coastguard Worker The implementation here takes the square root of the gradient average before 237*da0073e9SAndroid Build Coastguard Worker adding epsilon (note that TensorFlow interchanges these two operations). The effective 238*da0073e9SAndroid Build Coastguard Worker learning rate is thus :math:`\gamma/(\sqrt{v} + \epsilon)` where :math:`\gamma` 239*da0073e9SAndroid Build Coastguard Worker is the scheduled learning rate and :math:`v` is the weighted moving average 240*da0073e9SAndroid Build Coastguard Worker of the squared gradient. 241*da0073e9SAndroid Build Coastguard Worker """ 242*da0073e9SAndroid Build Coastguard Worker + rf""" 243*da0073e9SAndroid Build Coastguard Worker Args: 244*da0073e9SAndroid Build Coastguard Worker params (iterable): iterable of parameters to optimize or dicts defining 245*da0073e9SAndroid Build Coastguard Worker parameter groups 246*da0073e9SAndroid Build Coastguard Worker lr (float, Tensor, optional): learning rate (default: 1e-2) 247*da0073e9SAndroid Build Coastguard Worker momentum (float, optional): momentum factor (default: 0) 248*da0073e9SAndroid Build Coastguard Worker alpha (float, optional): smoothing constant (default: 0.99) 249*da0073e9SAndroid Build Coastguard Worker eps (float, optional): term added to the denominator to improve 250*da0073e9SAndroid Build Coastguard Worker numerical stability (default: 1e-8) 251*da0073e9SAndroid Build Coastguard Worker centered (bool, optional) : if ``True``, compute the centered RMSProp, 252*da0073e9SAndroid Build Coastguard Worker the gradient is normalized by an estimation of its variance 253*da0073e9SAndroid Build Coastguard Worker weight_decay (float, optional): weight decay (L2 penalty) (default: 0) 254*da0073e9SAndroid Build Coastguard Worker {_foreach_doc} 255*da0073e9SAndroid Build Coastguard Worker {_maximize_doc} 256*da0073e9SAndroid Build Coastguard Worker {_capturable_doc} 257*da0073e9SAndroid Build Coastguard Worker {_differentiable_doc} 258*da0073e9SAndroid Build Coastguard Worker 259*da0073e9SAndroid Build Coastguard Worker """ 260*da0073e9SAndroid Build Coastguard Worker) 261*da0073e9SAndroid Build Coastguard Worker 262*da0073e9SAndroid Build Coastguard Worker 263*da0073e9SAndroid Build Coastguard Workerdef _single_tensor_rmsprop( 264*da0073e9SAndroid Build Coastguard Worker params: List[Tensor], 265*da0073e9SAndroid Build Coastguard Worker grads: List[Tensor], 266*da0073e9SAndroid Build Coastguard Worker square_avgs: List[Tensor], 267*da0073e9SAndroid Build Coastguard Worker grad_avgs: List[Tensor], 268*da0073e9SAndroid Build Coastguard Worker momentum_buffer_list: List[Tensor], 269*da0073e9SAndroid Build Coastguard Worker state_steps: List[Tensor], 270*da0073e9SAndroid Build Coastguard Worker *, 271*da0073e9SAndroid Build Coastguard Worker lr: float, 272*da0073e9SAndroid Build Coastguard Worker alpha: float, 273*da0073e9SAndroid Build Coastguard Worker eps: float, 274*da0073e9SAndroid Build Coastguard Worker weight_decay: float, 275*da0073e9SAndroid Build Coastguard Worker momentum: float, 276*da0073e9SAndroid Build Coastguard Worker centered: bool, 277*da0073e9SAndroid Build Coastguard Worker maximize: bool, 278*da0073e9SAndroid Build Coastguard Worker differentiable: bool, 279*da0073e9SAndroid Build Coastguard Worker capturable: bool, 280*da0073e9SAndroid Build Coastguard Worker has_complex: bool, 281*da0073e9SAndroid Build Coastguard Worker): 282*da0073e9SAndroid Build Coastguard Worker for i, param in enumerate(params): 283*da0073e9SAndroid Build Coastguard Worker step = state_steps[i] 284*da0073e9SAndroid Build Coastguard Worker 285*da0073e9SAndroid Build Coastguard Worker # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] 286*da0073e9SAndroid Build Coastguard Worker if not torch._utils.is_compiling() and capturable: 287*da0073e9SAndroid Build Coastguard Worker capturable_supported_devices = _get_capturable_supported_devices() 288*da0073e9SAndroid Build Coastguard Worker assert ( 289*da0073e9SAndroid Build Coastguard Worker param.device.type == step.device.type 290*da0073e9SAndroid Build Coastguard Worker and param.device.type in capturable_supported_devices 291*da0073e9SAndroid Build Coastguard Worker ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." 292*da0073e9SAndroid Build Coastguard Worker 293*da0073e9SAndroid Build Coastguard Worker grad = grads[i] 294*da0073e9SAndroid Build Coastguard Worker grad = grad if not maximize else -grad 295*da0073e9SAndroid Build Coastguard Worker square_avg = square_avgs[i] 296*da0073e9SAndroid Build Coastguard Worker 297*da0073e9SAndroid Build Coastguard Worker step += 1 298*da0073e9SAndroid Build Coastguard Worker 299*da0073e9SAndroid Build Coastguard Worker if weight_decay != 0: 300*da0073e9SAndroid Build Coastguard Worker grad = grad.add(param, alpha=weight_decay) 301*da0073e9SAndroid Build Coastguard Worker 302*da0073e9SAndroid Build Coastguard Worker is_complex_param = torch.is_complex(param) 303*da0073e9SAndroid Build Coastguard Worker if is_complex_param: 304*da0073e9SAndroid Build Coastguard Worker param = torch.view_as_real(param) 305*da0073e9SAndroid Build Coastguard Worker grad = torch.view_as_real(grad) 306*da0073e9SAndroid Build Coastguard Worker square_avg = torch.view_as_real(square_avg) 307*da0073e9SAndroid Build Coastguard Worker 308*da0073e9SAndroid Build Coastguard Worker square_avg.mul_(alpha).addcmul_(grad, grad, value=1 - alpha) 309*da0073e9SAndroid Build Coastguard Worker 310*da0073e9SAndroid Build Coastguard Worker if centered: 311*da0073e9SAndroid Build Coastguard Worker grad_avg = grad_avgs[i] 312*da0073e9SAndroid Build Coastguard Worker if is_complex_param: 313*da0073e9SAndroid Build Coastguard Worker grad_avg = torch.view_as_real(grad_avg) 314*da0073e9SAndroid Build Coastguard Worker grad_avg.lerp_(grad, 1 - alpha) 315*da0073e9SAndroid Build Coastguard Worker avg = square_avg.addcmul(grad_avg, grad_avg, value=-1).sqrt_() 316*da0073e9SAndroid Build Coastguard Worker else: 317*da0073e9SAndroid Build Coastguard Worker avg = square_avg.sqrt() 318*da0073e9SAndroid Build Coastguard Worker 319*da0073e9SAndroid Build Coastguard Worker if differentiable: 320*da0073e9SAndroid Build Coastguard Worker avg = avg.add(eps) 321*da0073e9SAndroid Build Coastguard Worker else: 322*da0073e9SAndroid Build Coastguard Worker avg = avg.add_(eps) 323*da0073e9SAndroid Build Coastguard Worker 324*da0073e9SAndroid Build Coastguard Worker if momentum > 0: 325*da0073e9SAndroid Build Coastguard Worker buf = momentum_buffer_list[i] 326*da0073e9SAndroid Build Coastguard Worker if is_complex_param: 327*da0073e9SAndroid Build Coastguard Worker buf = torch.view_as_real(buf) 328*da0073e9SAndroid Build Coastguard Worker buf.mul_(momentum).addcdiv_(grad, avg) 329*da0073e9SAndroid Build Coastguard Worker param.add_(buf, alpha=-lr) 330*da0073e9SAndroid Build Coastguard Worker else: 331*da0073e9SAndroid Build Coastguard Worker param.addcdiv_(grad, avg, value=-lr) 332*da0073e9SAndroid Build Coastguard Worker 333*da0073e9SAndroid Build Coastguard Worker 334*da0073e9SAndroid Build Coastguard Workerdef _multi_tensor_rmsprop( 335*da0073e9SAndroid Build Coastguard Worker params: List[Tensor], 336*da0073e9SAndroid Build Coastguard Worker grads: List[Tensor], 337*da0073e9SAndroid Build Coastguard Worker square_avgs: List[Tensor], 338*da0073e9SAndroid Build Coastguard Worker grad_avgs: List[Tensor], 339*da0073e9SAndroid Build Coastguard Worker momentum_buffer_list: List[Tensor], 340*da0073e9SAndroid Build Coastguard Worker state_steps: List[Tensor], 341*da0073e9SAndroid Build Coastguard Worker *, 342*da0073e9SAndroid Build Coastguard Worker lr: float, 343*da0073e9SAndroid Build Coastguard Worker alpha: float, 344*da0073e9SAndroid Build Coastguard Worker eps: float, 345*da0073e9SAndroid Build Coastguard Worker weight_decay: float, 346*da0073e9SAndroid Build Coastguard Worker momentum: float, 347*da0073e9SAndroid Build Coastguard Worker centered: bool, 348*da0073e9SAndroid Build Coastguard Worker maximize: bool, 349*da0073e9SAndroid Build Coastguard Worker differentiable: bool, 350*da0073e9SAndroid Build Coastguard Worker capturable: bool, 351*da0073e9SAndroid Build Coastguard Worker has_complex: bool, 352*da0073e9SAndroid Build Coastguard Worker): 353*da0073e9SAndroid Build Coastguard Worker if len(params) == 0: 354*da0073e9SAndroid Build Coastguard Worker return 355*da0073e9SAndroid Build Coastguard Worker 356*da0073e9SAndroid Build Coastguard Worker assert not differentiable, "_foreach ops don't support autograd" 357*da0073e9SAndroid Build Coastguard Worker 358*da0073e9SAndroid Build Coastguard Worker # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] 359*da0073e9SAndroid Build Coastguard Worker if not torch._utils.is_compiling() and capturable: 360*da0073e9SAndroid Build Coastguard Worker capturable_supported_devices = _get_capturable_supported_devices() 361*da0073e9SAndroid Build Coastguard Worker assert all( 362*da0073e9SAndroid Build Coastguard Worker p.device.type == step.device.type 363*da0073e9SAndroid Build Coastguard Worker and p.device.type in capturable_supported_devices 364*da0073e9SAndroid Build Coastguard Worker for p, step in zip(params, state_steps) 365*da0073e9SAndroid Build Coastguard Worker ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." 366*da0073e9SAndroid Build Coastguard Worker 367*da0073e9SAndroid Build Coastguard Worker grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( 368*da0073e9SAndroid Build Coastguard Worker [params, grads, square_avgs, grad_avgs, momentum_buffer_list, state_steps] # type: ignore[list-item] 369*da0073e9SAndroid Build Coastguard Worker ) 370*da0073e9SAndroid Build Coastguard Worker for ( 371*da0073e9SAndroid Build Coastguard Worker ( 372*da0073e9SAndroid Build Coastguard Worker grouped_params_, 373*da0073e9SAndroid Build Coastguard Worker grouped_grads_, 374*da0073e9SAndroid Build Coastguard Worker grouped_square_avgs_, 375*da0073e9SAndroid Build Coastguard Worker grouped_grad_avgs_, 376*da0073e9SAndroid Build Coastguard Worker grouped_momentum_buffer_list_, 377*da0073e9SAndroid Build Coastguard Worker grouped_state_steps_, 378*da0073e9SAndroid Build Coastguard Worker ) 379*da0073e9SAndroid Build Coastguard Worker ), _ in grouped_tensors.values(): 380*da0073e9SAndroid Build Coastguard Worker grouped_params = cast(List[Tensor], grouped_params_) 381*da0073e9SAndroid Build Coastguard Worker grouped_grads = cast(List[Tensor], grouped_grads_) 382*da0073e9SAndroid Build Coastguard Worker grouped_square_avgs = cast(List[Tensor], grouped_square_avgs_) 383*da0073e9SAndroid Build Coastguard Worker grouped_state_steps = cast(List[Tensor], grouped_state_steps_) 384*da0073e9SAndroid Build Coastguard Worker 385*da0073e9SAndroid Build Coastguard Worker if has_complex: 386*da0073e9SAndroid Build Coastguard Worker state_and_grads = [grouped_grads, grouped_square_avgs] 387*da0073e9SAndroid Build Coastguard Worker if momentum > 0: 388*da0073e9SAndroid Build Coastguard Worker grouped_momentum_buffer_list = cast( 389*da0073e9SAndroid Build Coastguard Worker List[Tensor], grouped_momentum_buffer_list_ 390*da0073e9SAndroid Build Coastguard Worker ) 391*da0073e9SAndroid Build Coastguard Worker state_and_grads.append(grouped_momentum_buffer_list) 392*da0073e9SAndroid Build Coastguard Worker if centered: 393*da0073e9SAndroid Build Coastguard Worker grouped_grad_avgs = cast(List[Tensor], grouped_grad_avgs_) 394*da0073e9SAndroid Build Coastguard Worker state_and_grads.append(grouped_grad_avgs) 395*da0073e9SAndroid Build Coastguard Worker _view_as_real(grouped_params, *state_and_grads) 396*da0073e9SAndroid Build Coastguard Worker 397*da0073e9SAndroid Build Coastguard Worker if maximize: 398*da0073e9SAndroid Build Coastguard Worker grouped_grads = torch._foreach_neg(grouped_grads) # type: ignore[assignment] 399*da0073e9SAndroid Build Coastguard Worker 400*da0073e9SAndroid Build Coastguard Worker # Update steps 401*da0073e9SAndroid Build Coastguard Worker # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over 402*da0073e9SAndroid Build Coastguard Worker # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just 403*da0073e9SAndroid Build Coastguard Worker # wrapped it once now. The alpha is required to assure we go to the right overload. 404*da0073e9SAndroid Build Coastguard Worker if not torch._utils.is_compiling() and grouped_state_steps[0].is_cpu: 405*da0073e9SAndroid Build Coastguard Worker torch._foreach_add_( 406*da0073e9SAndroid Build Coastguard Worker grouped_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0 407*da0073e9SAndroid Build Coastguard Worker ) 408*da0073e9SAndroid Build Coastguard Worker else: 409*da0073e9SAndroid Build Coastguard Worker torch._foreach_add_(grouped_state_steps, 1) 410*da0073e9SAndroid Build Coastguard Worker 411*da0073e9SAndroid Build Coastguard Worker if weight_decay != 0: 412*da0073e9SAndroid Build Coastguard Worker # Re-use the intermediate memory (grouped_grads) already allocated for maximize 413*da0073e9SAndroid Build Coastguard Worker if maximize: 414*da0073e9SAndroid Build Coastguard Worker torch._foreach_add_(grouped_grads, grouped_params, alpha=weight_decay) 415*da0073e9SAndroid Build Coastguard Worker else: 416*da0073e9SAndroid Build Coastguard Worker grouped_grads = torch._foreach_add( # type: ignore[assignment] 417*da0073e9SAndroid Build Coastguard Worker grouped_grads, grouped_params, alpha=weight_decay 418*da0073e9SAndroid Build Coastguard Worker ) 419*da0073e9SAndroid Build Coastguard Worker 420*da0073e9SAndroid Build Coastguard Worker torch._foreach_mul_(grouped_square_avgs, alpha) 421*da0073e9SAndroid Build Coastguard Worker torch._foreach_addcmul_( 422*da0073e9SAndroid Build Coastguard Worker grouped_square_avgs, grouped_grads, grouped_grads, value=1 - alpha 423*da0073e9SAndroid Build Coastguard Worker ) 424*da0073e9SAndroid Build Coastguard Worker 425*da0073e9SAndroid Build Coastguard Worker if centered: 426*da0073e9SAndroid Build Coastguard Worker grouped_grad_avgs = cast(List[Tensor], grouped_grad_avgs_) 427*da0073e9SAndroid Build Coastguard Worker torch._foreach_lerp_(grouped_grad_avgs, grouped_grads, 1 - alpha) 428*da0073e9SAndroid Build Coastguard Worker avg = torch._foreach_addcmul( 429*da0073e9SAndroid Build Coastguard Worker grouped_square_avgs, grouped_grad_avgs, grouped_grad_avgs, value=-1 430*da0073e9SAndroid Build Coastguard Worker ) 431*da0073e9SAndroid Build Coastguard Worker torch._foreach_sqrt_(avg) 432*da0073e9SAndroid Build Coastguard Worker torch._foreach_add_(avg, eps) 433*da0073e9SAndroid Build Coastguard Worker else: 434*da0073e9SAndroid Build Coastguard Worker avg = torch._foreach_sqrt(grouped_square_avgs) 435*da0073e9SAndroid Build Coastguard Worker torch._foreach_add_(avg, eps) 436*da0073e9SAndroid Build Coastguard Worker 437*da0073e9SAndroid Build Coastguard Worker if momentum > 0: 438*da0073e9SAndroid Build Coastguard Worker grouped_momentum_buffer_list = cast( 439*da0073e9SAndroid Build Coastguard Worker List[Tensor], grouped_momentum_buffer_list_ 440*da0073e9SAndroid Build Coastguard Worker ) 441*da0073e9SAndroid Build Coastguard Worker torch._foreach_mul_(grouped_momentum_buffer_list, momentum) 442*da0073e9SAndroid Build Coastguard Worker torch._foreach_addcdiv_(grouped_momentum_buffer_list, grouped_grads, avg) 443*da0073e9SAndroid Build Coastguard Worker # If LR is a tensor, the else branch will internally call item() 444*da0073e9SAndroid Build Coastguard Worker # which will cause silent incorrectness if we are capturing 445*da0073e9SAndroid Build Coastguard Worker if capturable and isinstance(lr, torch.Tensor): 446*da0073e9SAndroid Build Coastguard Worker momentum_lr = torch._foreach_mul(grouped_momentum_buffer_list, -lr) 447*da0073e9SAndroid Build Coastguard Worker torch._foreach_add_(grouped_params, momentum_lr) 448*da0073e9SAndroid Build Coastguard Worker else: 449*da0073e9SAndroid Build Coastguard Worker torch._foreach_add_( 450*da0073e9SAndroid Build Coastguard Worker grouped_params, grouped_momentum_buffer_list, alpha=-lr 451*da0073e9SAndroid Build Coastguard Worker ) 452*da0073e9SAndroid Build Coastguard Worker else: 453*da0073e9SAndroid Build Coastguard Worker # If LR is a tensor, the else branch will internally call item() 454*da0073e9SAndroid Build Coastguard Worker # which will cause silent incorrectness if we are capturing 455*da0073e9SAndroid Build Coastguard Worker if capturable and isinstance(lr, torch.Tensor): 456*da0073e9SAndroid Build Coastguard Worker torch._foreach_div_(avg, -lr) 457*da0073e9SAndroid Build Coastguard Worker torch._foreach_addcdiv_(grouped_params, grouped_grads, avg) 458*da0073e9SAndroid Build Coastguard Worker else: 459*da0073e9SAndroid Build Coastguard Worker torch._foreach_addcdiv_(grouped_params, grouped_grads, avg, value=-lr) 460*da0073e9SAndroid Build Coastguard Worker 461*da0073e9SAndroid Build Coastguard Worker 462*da0073e9SAndroid Build Coastguard Worker@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_rmsprop) 463*da0073e9SAndroid Build Coastguard Workerdef rmsprop( 464*da0073e9SAndroid Build Coastguard Worker params: List[Tensor], 465*da0073e9SAndroid Build Coastguard Worker grads: List[Tensor], 466*da0073e9SAndroid Build Coastguard Worker square_avgs: List[Tensor], 467*da0073e9SAndroid Build Coastguard Worker grad_avgs: List[Tensor], 468*da0073e9SAndroid Build Coastguard Worker momentum_buffer_list: List[Tensor], 469*da0073e9SAndroid Build Coastguard Worker state_steps: List[Tensor], 470*da0073e9SAndroid Build Coastguard Worker # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 471*da0073e9SAndroid Build Coastguard Worker # setting this as kwarg for now as functional API is compiled by torch/distributed/optim 472*da0073e9SAndroid Build Coastguard Worker foreach: Optional[bool] = None, 473*da0073e9SAndroid Build Coastguard Worker maximize: bool = False, 474*da0073e9SAndroid Build Coastguard Worker differentiable: bool = False, 475*da0073e9SAndroid Build Coastguard Worker capturable: bool = False, 476*da0073e9SAndroid Build Coastguard Worker has_complex: bool = False, 477*da0073e9SAndroid Build Coastguard Worker *, 478*da0073e9SAndroid Build Coastguard Worker lr: float, 479*da0073e9SAndroid Build Coastguard Worker alpha: float, 480*da0073e9SAndroid Build Coastguard Worker eps: float, 481*da0073e9SAndroid Build Coastguard Worker weight_decay: float, 482*da0073e9SAndroid Build Coastguard Worker momentum: float, 483*da0073e9SAndroid Build Coastguard Worker centered: bool, 484*da0073e9SAndroid Build Coastguard Worker): 485*da0073e9SAndroid Build Coastguard Worker r"""Functional API that performs rmsprop algorithm computation. 486*da0073e9SAndroid Build Coastguard Worker 487*da0073e9SAndroid Build Coastguard Worker See :class:`~torch.optim.RMSProp` for details. 488*da0073e9SAndroid Build Coastguard Worker """ 489*da0073e9SAndroid Build Coastguard Worker # this check is slow during compilation, so we skip it 490*da0073e9SAndroid Build Coastguard Worker # if it's strictly needed we can add this check back in dynamo 491*da0073e9SAndroid Build Coastguard Worker if not torch._utils.is_compiling() and not all( 492*da0073e9SAndroid Build Coastguard Worker isinstance(t, torch.Tensor) for t in state_steps 493*da0073e9SAndroid Build Coastguard Worker ): 494*da0073e9SAndroid Build Coastguard Worker raise RuntimeError( 495*da0073e9SAndroid Build Coastguard Worker "API has changed, `state_steps` argument must contain a list of singleton tensors" 496*da0073e9SAndroid Build Coastguard Worker ) 497*da0073e9SAndroid Build Coastguard Worker 498*da0073e9SAndroid Build Coastguard Worker if foreach is None: 499*da0073e9SAndroid Build Coastguard Worker _, foreach = _default_to_fused_or_foreach( 500*da0073e9SAndroid Build Coastguard Worker params, differentiable, use_fused=False 501*da0073e9SAndroid Build Coastguard Worker ) 502*da0073e9SAndroid Build Coastguard Worker 503*da0073e9SAndroid Build Coastguard Worker if foreach and torch.jit.is_scripting(): 504*da0073e9SAndroid Build Coastguard Worker raise RuntimeError("torch.jit.script not supported with foreach optimizers") 505*da0073e9SAndroid Build Coastguard Worker 506*da0073e9SAndroid Build Coastguard Worker if foreach and not torch.jit.is_scripting(): 507*da0073e9SAndroid Build Coastguard Worker func = _multi_tensor_rmsprop 508*da0073e9SAndroid Build Coastguard Worker else: 509*da0073e9SAndroid Build Coastguard Worker func = _single_tensor_rmsprop 510*da0073e9SAndroid Build Coastguard Worker 511*da0073e9SAndroid Build Coastguard Worker func( 512*da0073e9SAndroid Build Coastguard Worker params, 513*da0073e9SAndroid Build Coastguard Worker grads, 514*da0073e9SAndroid Build Coastguard Worker square_avgs, 515*da0073e9SAndroid Build Coastguard Worker grad_avgs, 516*da0073e9SAndroid Build Coastguard Worker momentum_buffer_list, 517*da0073e9SAndroid Build Coastguard Worker state_steps, 518*da0073e9SAndroid Build Coastguard Worker lr=lr, 519*da0073e9SAndroid Build Coastguard Worker alpha=alpha, 520*da0073e9SAndroid Build Coastguard Worker eps=eps, 521*da0073e9SAndroid Build Coastguard Worker weight_decay=weight_decay, 522*da0073e9SAndroid Build Coastguard Worker momentum=momentum, 523*da0073e9SAndroid Build Coastguard Worker centered=centered, 524*da0073e9SAndroid Build Coastguard Worker maximize=maximize, 525*da0073e9SAndroid Build Coastguard Worker capturable=capturable, 526*da0073e9SAndroid Build Coastguard Worker differentiable=differentiable, 527*da0073e9SAndroid Build Coastguard Worker has_complex=has_complex, 528*da0073e9SAndroid Build Coastguard Worker ) 529