Name |
Date |
Size |
#Lines |
LOC |
||
---|---|---|---|---|---|---|
.. | - | - | ||||
CMakeLists.txt | H A D | 25-Apr-2025 | 3 KiB | 81 | 75 | |
README.md | H A D | 25-Apr-2025 | 1 KiB | 36 | 24 | |
any.cpp | H A D | 25-Apr-2025 | 13.6 KiB | 458 | 387 | |
autograd.cpp | H A D | 25-Apr-2025 | 51.3 KiB | 1,682 | 1,367 | |
dataloader.cpp | H A D | 25-Apr-2025 | 76.1 KiB | 2,323 | 1,817 | |
dispatch.cpp | H A D | 25-Apr-2025 | 1.8 KiB | 63 | 57 | |
enum.cpp | H A D | 25-Apr-2025 | 3 KiB | 89 | 83 | |
expanding-array.cpp | H A D | 25-Apr-2025 | 1.6 KiB | 61 | 50 | |
fft.cpp | H A D | 25-Apr-2025 | 4.3 KiB | 131 | 102 | |
functional.cpp | H A D | 25-Apr-2025 | 117.3 KiB | 3,294 | 2,883 | |
grad_mode.cpp | H A D | 25-Apr-2025 | 2.4 KiB | 79 | 65 | |
inference_mode.cpp | H A D | 25-Apr-2025 | 21.3 KiB | 658 | 518 | |
init.cpp | H A D | 25-Apr-2025 | 4.2 KiB | 132 | 106 | |
init_baseline.h | H A D | 25-Apr-2025 | 42.6 KiB | 1,622 | 1,612 | |
init_baseline.py | H A D | 25-Apr-2025 | 2 KiB | 76 | 51 | |
integration.cpp | H A D | 25-Apr-2025 | 9.4 KiB | 325 | 260 | |
ivalue.cpp | H A D | 25-Apr-2025 | 2.3 KiB | 64 | 48 | |
jit.cpp | H A D | 25-Apr-2025 | 3.8 KiB | 127 | 100 | |
memory.cpp | H A D | 25-Apr-2025 | 978 | 36 | 27 | |
meta_tensor.cpp | H A D | 25-Apr-2025 | 1.2 KiB | 36 | 26 | |
misc.cpp | H A D | 25-Apr-2025 | 2.4 KiB | 105 | 80 | |
module.cpp | H A D | 25-Apr-2025 | 33.9 KiB | 1,058 | 892 | |
moduledict.cpp | H A D | 25-Apr-2025 | 9.9 KiB | 310 | 262 | |
modulelist.cpp | H A D | 25-Apr-2025 | 8.9 KiB | 309 | 250 | |
modules.cpp | H A D | 25-Apr-2025 | 189 KiB | 5,570 | 4,882 | |
namespace.cpp | H A D | 25-Apr-2025 | 695 | 21 | 7 | |
nested.cpp | H A D | 25-Apr-2025 | 394 | 16 | 10 | |
nested_int.cpp | H A D | 25-Apr-2025 | 3.2 KiB | 106 | 74 | |
nn_utils.cpp | H A D | 25-Apr-2025 | 32.2 KiB | 894 | 746 | |
operations.cpp | H A D | 25-Apr-2025 | 3 KiB | 91 | 73 | |
optim.cpp | H A D | 25-Apr-2025 | 18.5 KiB | 576 | 453 | |
optim_baseline.h | H A D | 25-Apr-2025 | 105.9 KiB | 3,061 | 3,036 | |
optim_baseline.py | H A D | 25-Apr-2025 | 4.5 KiB | 144 | 113 | |
ordered_dict.cpp | H A D | 25-Apr-2025 | 6.8 KiB | 235 | 203 | |
parallel.cpp | H A D | 25-Apr-2025 | 9.3 KiB | 295 | 235 | |
parallel_benchmark.cpp | H A D | 25-Apr-2025 | 2.1 KiB | 89 | 83 | |
parameterdict.cpp | H A D | 25-Apr-2025 | 5.1 KiB | 145 | 131 | |
parameterlist.cpp | H A D | 25-Apr-2025 | 5.7 KiB | 164 | 140 | |
rnn.cpp | H A D | 25-Apr-2025 | 26.7 KiB | 813 | 627 | |
sequential.cpp | H A D | 25-Apr-2025 | 22.7 KiB | 674 | 592 | |
serialize.cpp | H A D | 25-Apr-2025 | 37.1 KiB | 1,095 | 868 | |
special.cpp | H A D | 25-Apr-2025 | 316 | 14 | 8 | |
static.cpp | H A D | 25-Apr-2025 | 2.3 KiB | 92 | 74 | |
support.cpp | H A D | 25-Apr-2025 | 167 | 10 | 6 | |
support.h | H A D | 25-Apr-2025 | 5.6 KiB | 197 | 149 | |
tensor.cpp | H A D | 25-Apr-2025 | 43.2 KiB | 1,261 | 1,092 | |
tensor_cuda.cpp | H A D | 25-Apr-2025 | 5 KiB | 127 | 95 | |
tensor_flatten.cpp | H A D | 25-Apr-2025 | 1.8 KiB | 44 | 30 | |
tensor_indexing.cpp | H A D | 25-Apr-2025 | 35 KiB | 1,004 | 774 | |
tensor_options.cpp | H A D | 25-Apr-2025 | 4.9 KiB | 162 | 122 | |
tensor_options_cuda.cpp | H A D | 25-Apr-2025 | 2.9 KiB | 83 | 59 | |
torch_include.cpp | H A D | 25-Apr-2025 | 401 | 15 | 9 | |
transformer.cpp | H A D | 25-Apr-2025 | 58.9 KiB | 1,524 | 1,355 |
README.md
1# C++ Frontend Tests 2 3In this folder live the tests for PyTorch's C++ Frontend. They use the 4[GoogleTest](https://github.com/google/googletest) test framework. 5 6## CUDA Tests 7 8To make a test runnable only on platforms with CUDA, you should suffix your 9test with `_CUDA`, e.g. 10 11```cpp 12TEST(MyTestSuite, MyTestCase_CUDA) { } 13``` 14 15To make it runnable only on platforms with at least two CUDA machines, suffix 16it with `_MultiCUDA` instead of `_CUDA`, e.g. 17 18```cpp 19TEST(MyTestSuite, MyTestCase_MultiCUDA) { } 20``` 21 22There is logic in `main.cpp` that detects the availability and number of CUDA 23devices and supplies the appropriate negative filters to GoogleTest. 24 25## Integration Tests 26 27Integration tests use the MNIST dataset. You must download it by running the 28following command from the PyTorch root folder: 29 30```sh 31$ python tools/download_mnist.py -d test/cpp/api/mnist 32``` 33 34The required paths will be referenced as `test/cpp/api/mnist/...` in the test 35code, so you *must* run the integration tests from the PyTorch root folder. 36