1*a58d3d2aSXin Li#!/usr/bin/python3 2*a58d3d2aSXin Li'''Copyright (c) 2018 Mozilla 3*a58d3d2aSXin Li 4*a58d3d2aSXin Li Redistribution and use in source and binary forms, with or without 5*a58d3d2aSXin Li modification, are permitted provided that the following conditions 6*a58d3d2aSXin Li are met: 7*a58d3d2aSXin Li 8*a58d3d2aSXin Li - Redistributions of source code must retain the above copyright 9*a58d3d2aSXin Li notice, this list of conditions and the following disclaimer. 10*a58d3d2aSXin Li 11*a58d3d2aSXin Li - Redistributions in binary form must reproduce the above copyright 12*a58d3d2aSXin Li notice, this list of conditions and the following disclaimer in the 13*a58d3d2aSXin Li documentation and/or other materials provided with the distribution. 14*a58d3d2aSXin Li 15*a58d3d2aSXin Li THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 16*a58d3d2aSXin Li ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 17*a58d3d2aSXin Li LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 18*a58d3d2aSXin Li A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR 19*a58d3d2aSXin Li CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 20*a58d3d2aSXin Li EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21*a58d3d2aSXin Li PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 22*a58d3d2aSXin Li PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 23*a58d3d2aSXin Li LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 24*a58d3d2aSXin Li NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 25*a58d3d2aSXin Li SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26*a58d3d2aSXin Li''' 27*a58d3d2aSXin Li 28*a58d3d2aSXin Li# Train an LPCNet model 29*a58d3d2aSXin Li 30*a58d3d2aSXin Liimport argparse 31*a58d3d2aSXin Liimport os 32*a58d3d2aSXin Li 33*a58d3d2aSXin Lifrom dataloader import LPCNetLoader 34*a58d3d2aSXin Li 35*a58d3d2aSXin Liparser = argparse.ArgumentParser(description='Train an LPCNet model') 36*a58d3d2aSXin Li 37*a58d3d2aSXin Liparser.add_argument('features', metavar='<features file>', help='binary features file (float32)') 38*a58d3d2aSXin Liparser.add_argument('data', metavar='<audio data file>', help='binary audio data file (uint8)') 39*a58d3d2aSXin Liparser.add_argument('output', metavar='<output>', help='trained model file (.h5)') 40*a58d3d2aSXin Liparser.add_argument('--model', metavar='<model>', default='lpcnet', help='LPCNet model python definition (without .py)') 41*a58d3d2aSXin Ligroup1 = parser.add_mutually_exclusive_group() 42*a58d3d2aSXin Ligroup1.add_argument('--quantize', metavar='<input weights>', help='quantize model') 43*a58d3d2aSXin Ligroup1.add_argument('--retrain', metavar='<input weights>', help='continue training model') 44*a58d3d2aSXin Liparser.add_argument('--density', metavar='<global density>', type=float, help='average density of the recurrent weights (default 0.1)') 45*a58d3d2aSXin Liparser.add_argument('--density-split', nargs=3, metavar=('<update>', '<reset>', '<state>'), type=float, help='density of each recurrent gate (default 0.05, 0.05, 0.2)') 46*a58d3d2aSXin Liparser.add_argument('--grub-density', metavar='<global GRU B density>', type=float, help='average density of the recurrent weights (default 1.0)') 47*a58d3d2aSXin Liparser.add_argument('--grub-density-split', nargs=3, metavar=('<update>', '<reset>', '<state>'), type=float, help='density of each GRU B input gate (default 1.0, 1.0, 1.0)') 48*a58d3d2aSXin Liparser.add_argument('--grua-size', metavar='<units>', default=384, type=int, help='number of units in GRU A (default 384)') 49*a58d3d2aSXin Liparser.add_argument('--grub-size', metavar='<units>', default=16, type=int, help='number of units in GRU B (default 16)') 50*a58d3d2aSXin Liparser.add_argument('--cond-size', metavar='<units>', default=128, type=int, help='number of units in conditioning network, aka frame rate network (default 128)') 51*a58d3d2aSXin Liparser.add_argument('--epochs', metavar='<epochs>', default=120, type=int, help='number of epochs to train for (default 120)') 52*a58d3d2aSXin Liparser.add_argument('--batch-size', metavar='<batch size>', default=128, type=int, help='batch size to use (default 128)') 53*a58d3d2aSXin Liparser.add_argument('--end2end', dest='flag_e2e', action='store_true', help='Enable end-to-end training (with differentiable LPC computation') 54*a58d3d2aSXin Liparser.add_argument('--lr', metavar='<learning rate>', type=float, help='learning rate') 55*a58d3d2aSXin Liparser.add_argument('--decay', metavar='<decay>', type=float, help='learning rate decay') 56*a58d3d2aSXin Liparser.add_argument('--gamma', metavar='<gamma>', type=float, help='adjust u-law compensation (default 2.0, should not be less than 1.0)') 57*a58d3d2aSXin Liparser.add_argument('--lookahead', metavar='<nb frames>', default=2, type=int, help='Number of look-ahead frames (default 2)') 58*a58d3d2aSXin Liparser.add_argument('--logdir', metavar='<log dir>', help='directory for tensorboard log files') 59*a58d3d2aSXin Liparser.add_argument('--lpc-gamma', type=float, default=1, help='gamma for LPC weighting') 60*a58d3d2aSXin Liparser.add_argument('--cuda-devices', metavar='<cuda devices>', type=str, default=None, help='string with comma separated cuda device ids') 61*a58d3d2aSXin Li 62*a58d3d2aSXin Liargs = parser.parse_args() 63*a58d3d2aSXin Li 64*a58d3d2aSXin Li# set visible cuda devices 65*a58d3d2aSXin Liif args.cuda_devices != None: 66*a58d3d2aSXin Li os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda_devices 67*a58d3d2aSXin Li 68*a58d3d2aSXin Lidensity = (0.05, 0.05, 0.2) 69*a58d3d2aSXin Liif args.density_split is not None: 70*a58d3d2aSXin Li density = args.density_split 71*a58d3d2aSXin Lielif args.density is not None: 72*a58d3d2aSXin Li density = [0.5*args.density, 0.5*args.density, 2.0*args.density]; 73*a58d3d2aSXin Li 74*a58d3d2aSXin Ligrub_density = (1., 1., 1.) 75*a58d3d2aSXin Liif args.grub_density_split is not None: 76*a58d3d2aSXin Li grub_density = args.grub_density_split 77*a58d3d2aSXin Lielif args.grub_density is not None: 78*a58d3d2aSXin Li grub_density = [0.5*args.grub_density, 0.5*args.grub_density, 2.0*args.grub_density]; 79*a58d3d2aSXin Li 80*a58d3d2aSXin Ligamma = 2.0 if args.gamma is None else args.gamma 81*a58d3d2aSXin Li 82*a58d3d2aSXin Liimport importlib 83*a58d3d2aSXin Lilpcnet = importlib.import_module(args.model) 84*a58d3d2aSXin Li 85*a58d3d2aSXin Liimport sys 86*a58d3d2aSXin Liimport numpy as np 87*a58d3d2aSXin Lifrom tensorflow.keras.optimizers import Adam 88*a58d3d2aSXin Lifrom tensorflow.keras.callbacks import ModelCheckpoint, CSVLogger 89*a58d3d2aSXin Lifrom ulaw import ulaw2lin, lin2ulaw 90*a58d3d2aSXin Liimport tensorflow.keras.backend as K 91*a58d3d2aSXin Liimport h5py 92*a58d3d2aSXin Li 93*a58d3d2aSXin Liimport tensorflow as tf 94*a58d3d2aSXin Lifrom tf_funcs import * 95*a58d3d2aSXin Lifrom lossfuncs import * 96*a58d3d2aSXin Li#gpus = tf.config.experimental.list_physical_devices('GPU') 97*a58d3d2aSXin Li#if gpus: 98*a58d3d2aSXin Li# try: 99*a58d3d2aSXin Li# tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=5120)]) 100*a58d3d2aSXin Li# except RuntimeError as e: 101*a58d3d2aSXin Li# print(e) 102*a58d3d2aSXin Li 103*a58d3d2aSXin Linb_epochs = args.epochs 104*a58d3d2aSXin Li 105*a58d3d2aSXin Li# Try reducing batch_size if you run out of memory on your GPU 106*a58d3d2aSXin Libatch_size = args.batch_size 107*a58d3d2aSXin Li 108*a58d3d2aSXin Liquantize = args.quantize is not None 109*a58d3d2aSXin Liretrain = args.retrain is not None 110*a58d3d2aSXin Li 111*a58d3d2aSXin Lilpc_order = 16 112*a58d3d2aSXin Li 113*a58d3d2aSXin Liif quantize: 114*a58d3d2aSXin Li lr = 0.00003 115*a58d3d2aSXin Li decay = 0 116*a58d3d2aSXin Li input_model = args.quantize 117*a58d3d2aSXin Lielse: 118*a58d3d2aSXin Li lr = 0.001 119*a58d3d2aSXin Li decay = 5e-5 120*a58d3d2aSXin Li 121*a58d3d2aSXin Liif args.lr is not None: 122*a58d3d2aSXin Li lr = args.lr 123*a58d3d2aSXin Li 124*a58d3d2aSXin Liif args.decay is not None: 125*a58d3d2aSXin Li decay = args.decay 126*a58d3d2aSXin Li 127*a58d3d2aSXin Liif retrain: 128*a58d3d2aSXin Li input_model = args.retrain 129*a58d3d2aSXin Li 130*a58d3d2aSXin Liflag_e2e = args.flag_e2e 131*a58d3d2aSXin Li 132*a58d3d2aSXin Liopt = Adam(lr, decay=decay, beta_1=0.5, beta_2=0.8) 133*a58d3d2aSXin Listrategy = tf.distribute.experimental.MultiWorkerMirroredStrategy() 134*a58d3d2aSXin Li 135*a58d3d2aSXin Liwith strategy.scope(): 136*a58d3d2aSXin Li model, _, _ = lpcnet.new_lpcnet_model(rnn_units1=args.grua_size, 137*a58d3d2aSXin Li rnn_units2=args.grub_size, 138*a58d3d2aSXin Li batch_size=batch_size, training=True, 139*a58d3d2aSXin Li quantize=quantize, 140*a58d3d2aSXin Li flag_e2e=flag_e2e, 141*a58d3d2aSXin Li cond_size=args.cond_size, 142*a58d3d2aSXin Li lpc_gamma=args.lpc_gamma, 143*a58d3d2aSXin Li lookahead=args.lookahead 144*a58d3d2aSXin Li ) 145*a58d3d2aSXin Li if not flag_e2e: 146*a58d3d2aSXin Li model.compile(optimizer=opt, loss=metric_cel, metrics=metric_cel) 147*a58d3d2aSXin Li else: 148*a58d3d2aSXin Li model.compile(optimizer=opt, loss = [interp_mulaw(gamma=gamma), loss_matchlar()], loss_weights = [1.0, 2.0], metrics={'pdf':[metric_cel,metric_icel,metric_exc_sd,metric_oginterploss]}) 149*a58d3d2aSXin Li model.summary() 150*a58d3d2aSXin Li 151*a58d3d2aSXin Lifeature_file = args.features 152*a58d3d2aSXin Lipcm_file = args.data # 16 bit unsigned short PCM samples 153*a58d3d2aSXin Liframe_size = model.frame_size 154*a58d3d2aSXin Linb_features = model.nb_used_features + lpc_order 155*a58d3d2aSXin Linb_used_features = model.nb_used_features 156*a58d3d2aSXin Lifeature_chunk_size = 15 157*a58d3d2aSXin Lipcm_chunk_size = frame_size*feature_chunk_size 158*a58d3d2aSXin Li 159*a58d3d2aSXin Li# u for unquantised, load 16 bit PCM samples and convert to mu-law 160*a58d3d2aSXin Li 161*a58d3d2aSXin Lidata = np.memmap(pcm_file, dtype='int16', mode='r') 162*a58d3d2aSXin Linb_frames = (len(data)//(2*pcm_chunk_size)-1)//batch_size*batch_size 163*a58d3d2aSXin Li 164*a58d3d2aSXin Lifeatures = np.memmap(feature_file, dtype='float32', mode='r') 165*a58d3d2aSXin Li 166*a58d3d2aSXin Li# limit to discrete number of frames 167*a58d3d2aSXin Lidata = data[(4-args.lookahead)*2*frame_size:] 168*a58d3d2aSXin Lidata = data[:nb_frames*2*pcm_chunk_size] 169*a58d3d2aSXin Li 170*a58d3d2aSXin Li 171*a58d3d2aSXin Lidata = np.reshape(data, (nb_frames, pcm_chunk_size, 2)) 172*a58d3d2aSXin Li 173*a58d3d2aSXin Li#print("ulaw std = ", np.std(out_exc)) 174*a58d3d2aSXin Li 175*a58d3d2aSXin Lisizeof = features.strides[-1] 176*a58d3d2aSXin Lifeatures = np.lib.stride_tricks.as_strided(features, shape=(nb_frames, feature_chunk_size+4, nb_features), 177*a58d3d2aSXin Li strides=(feature_chunk_size*nb_features*sizeof, nb_features*sizeof, sizeof)) 178*a58d3d2aSXin Li#features = features[:, :, :nb_used_features] 179*a58d3d2aSXin Li 180*a58d3d2aSXin Li 181*a58d3d2aSXin Liperiods = (.1 + 50*features[:,:,nb_used_features-2:nb_used_features-1]+100).astype('int16') 182*a58d3d2aSXin Li#periods = np.minimum(periods, 255) 183*a58d3d2aSXin Li 184*a58d3d2aSXin Li# dump models to disk as we go 185*a58d3d2aSXin Licheckpoint = ModelCheckpoint('{}_{}_{}.h5'.format(args.output, args.grua_size, '{epoch:02d}')) 186*a58d3d2aSXin Li 187*a58d3d2aSXin Liif args.retrain is not None: 188*a58d3d2aSXin Li model.load_weights(args.retrain) 189*a58d3d2aSXin Li 190*a58d3d2aSXin Liif quantize or retrain: 191*a58d3d2aSXin Li #Adapting from an existing model 192*a58d3d2aSXin Li model.load_weights(input_model) 193*a58d3d2aSXin Li if quantize: 194*a58d3d2aSXin Li sparsify = lpcnet.Sparsify(10000, 30000, 100, density, quantize=True) 195*a58d3d2aSXin Li grub_sparsify = lpcnet.SparsifyGRUB(10000, 30000, 100, args.grua_size, grub_density, quantize=True) 196*a58d3d2aSXin Li else: 197*a58d3d2aSXin Li sparsify = lpcnet.Sparsify(0, 0, 1, density) 198*a58d3d2aSXin Li grub_sparsify = lpcnet.SparsifyGRUB(0, 0, 1, args.grua_size, grub_density) 199*a58d3d2aSXin Lielse: 200*a58d3d2aSXin Li #Training from scratch 201*a58d3d2aSXin Li sparsify = lpcnet.Sparsify(2000, 20000, 400, density) 202*a58d3d2aSXin Li grub_sparsify = lpcnet.SparsifyGRUB(2000, 40000, 400, args.grua_size, grub_density) 203*a58d3d2aSXin Li 204*a58d3d2aSXin Limodel.save_weights('{}_{}_initial.h5'.format(args.output, args.grua_size)) 205*a58d3d2aSXin Li 206*a58d3d2aSXin Liloader = LPCNetLoader(data, features, periods, batch_size, e2e=flag_e2e, lookahead=args.lookahead) 207*a58d3d2aSXin Li 208*a58d3d2aSXin Licallbacks = [checkpoint, sparsify, grub_sparsify] 209*a58d3d2aSXin Liif args.logdir is not None: 210*a58d3d2aSXin Li logdir = '{}/{}_{}_logs'.format(args.logdir, args.output, args.grua_size) 211*a58d3d2aSXin Li tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir) 212*a58d3d2aSXin Li callbacks.append(tensorboard_callback) 213*a58d3d2aSXin Li 214*a58d3d2aSXin Limodel.fit(loader, epochs=nb_epochs, validation_split=0.0, callbacks=callbacks) 215