xref: /aosp_15_r20/external/eigen/doc/snippets/Tridiagonalization_diagonal.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1*bf2c3715SXin Li MatrixXcd X = MatrixXcd::Random(4,4);
2*bf2c3715SXin Li MatrixXcd A = X + X.adjoint();
3*bf2c3715SXin Li cout << "Here is a random self-adjoint 4x4 matrix:" << endl << A << endl << endl;
4*bf2c3715SXin Li 
5*bf2c3715SXin Li Tridiagonalization<MatrixXcd> triOfA(A);
6*bf2c3715SXin Li MatrixXd T = triOfA.matrixT();
7*bf2c3715SXin Li cout << "The tridiagonal matrix T is:" << endl << T << endl << endl;
8*bf2c3715SXin Li 
9*bf2c3715SXin Li cout << "We can also extract the diagonals of T directly ..." << endl;
10*bf2c3715SXin Li VectorXd diag = triOfA.diagonal();
11*bf2c3715SXin Li cout << "The diagonal is:" << endl << diag << endl;
12*bf2c3715SXin Li VectorXd subdiag = triOfA.subDiagonal();
13*bf2c3715SXin Li cout << "The subdiagonal is:" << endl << subdiag << endl;
14