xref: /aosp_15_r20/external/compiler-rt/lib/builtins/divsf3.c (revision 7c3d14c8b49c529e04be81a3ce6f5cc23712e4c6)
1*7c3d14c8STreehugger Robot //===-- lib/divsf3.c - Single-precision division ------------------*- C -*-===//
2*7c3d14c8STreehugger Robot //
3*7c3d14c8STreehugger Robot //                     The LLVM Compiler Infrastructure
4*7c3d14c8STreehugger Robot //
5*7c3d14c8STreehugger Robot // This file is dual licensed under the MIT and the University of Illinois Open
6*7c3d14c8STreehugger Robot // Source Licenses. See LICENSE.TXT for details.
7*7c3d14c8STreehugger Robot //
8*7c3d14c8STreehugger Robot //===----------------------------------------------------------------------===//
9*7c3d14c8STreehugger Robot //
10*7c3d14c8STreehugger Robot // This file implements single-precision soft-float division
11*7c3d14c8STreehugger Robot // with the IEEE-754 default rounding (to nearest, ties to even).
12*7c3d14c8STreehugger Robot //
13*7c3d14c8STreehugger Robot // For simplicity, this implementation currently flushes denormals to zero.
14*7c3d14c8STreehugger Robot // It should be a fairly straightforward exercise to implement gradual
15*7c3d14c8STreehugger Robot // underflow with correct rounding.
16*7c3d14c8STreehugger Robot //
17*7c3d14c8STreehugger Robot //===----------------------------------------------------------------------===//
18*7c3d14c8STreehugger Robot 
19*7c3d14c8STreehugger Robot #define SINGLE_PRECISION
20*7c3d14c8STreehugger Robot #include "fp_lib.h"
21*7c3d14c8STreehugger Robot 
ARM_EABI_FNALIAS(fdiv,divsf3)22*7c3d14c8STreehugger Robot ARM_EABI_FNALIAS(fdiv, divsf3)
23*7c3d14c8STreehugger Robot 
24*7c3d14c8STreehugger Robot COMPILER_RT_ABI fp_t
25*7c3d14c8STreehugger Robot __divsf3(fp_t a, fp_t b) {
26*7c3d14c8STreehugger Robot 
27*7c3d14c8STreehugger Robot     const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
28*7c3d14c8STreehugger Robot     const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
29*7c3d14c8STreehugger Robot     const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
30*7c3d14c8STreehugger Robot 
31*7c3d14c8STreehugger Robot     rep_t aSignificand = toRep(a) & significandMask;
32*7c3d14c8STreehugger Robot     rep_t bSignificand = toRep(b) & significandMask;
33*7c3d14c8STreehugger Robot     int scale = 0;
34*7c3d14c8STreehugger Robot 
35*7c3d14c8STreehugger Robot     // Detect if a or b is zero, denormal, infinity, or NaN.
36*7c3d14c8STreehugger Robot     if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
37*7c3d14c8STreehugger Robot 
38*7c3d14c8STreehugger Robot         const rep_t aAbs = toRep(a) & absMask;
39*7c3d14c8STreehugger Robot         const rep_t bAbs = toRep(b) & absMask;
40*7c3d14c8STreehugger Robot 
41*7c3d14c8STreehugger Robot         // NaN / anything = qNaN
42*7c3d14c8STreehugger Robot         if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
43*7c3d14c8STreehugger Robot         // anything / NaN = qNaN
44*7c3d14c8STreehugger Robot         if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
45*7c3d14c8STreehugger Robot 
46*7c3d14c8STreehugger Robot         if (aAbs == infRep) {
47*7c3d14c8STreehugger Robot             // infinity / infinity = NaN
48*7c3d14c8STreehugger Robot             if (bAbs == infRep) return fromRep(qnanRep);
49*7c3d14c8STreehugger Robot             // infinity / anything else = +/- infinity
50*7c3d14c8STreehugger Robot             else return fromRep(aAbs | quotientSign);
51*7c3d14c8STreehugger Robot         }
52*7c3d14c8STreehugger Robot 
53*7c3d14c8STreehugger Robot         // anything else / infinity = +/- 0
54*7c3d14c8STreehugger Robot         if (bAbs == infRep) return fromRep(quotientSign);
55*7c3d14c8STreehugger Robot 
56*7c3d14c8STreehugger Robot         if (!aAbs) {
57*7c3d14c8STreehugger Robot             // zero / zero = NaN
58*7c3d14c8STreehugger Robot             if (!bAbs) return fromRep(qnanRep);
59*7c3d14c8STreehugger Robot             // zero / anything else = +/- zero
60*7c3d14c8STreehugger Robot             else return fromRep(quotientSign);
61*7c3d14c8STreehugger Robot         }
62*7c3d14c8STreehugger Robot         // anything else / zero = +/- infinity
63*7c3d14c8STreehugger Robot         if (!bAbs) return fromRep(infRep | quotientSign);
64*7c3d14c8STreehugger Robot 
65*7c3d14c8STreehugger Robot         // one or both of a or b is denormal, the other (if applicable) is a
66*7c3d14c8STreehugger Robot         // normal number.  Renormalize one or both of a and b, and set scale to
67*7c3d14c8STreehugger Robot         // include the necessary exponent adjustment.
68*7c3d14c8STreehugger Robot         if (aAbs < implicitBit) scale += normalize(&aSignificand);
69*7c3d14c8STreehugger Robot         if (bAbs < implicitBit) scale -= normalize(&bSignificand);
70*7c3d14c8STreehugger Robot     }
71*7c3d14c8STreehugger Robot 
72*7c3d14c8STreehugger Robot     // Or in the implicit significand bit.  (If we fell through from the
73*7c3d14c8STreehugger Robot     // denormal path it was already set by normalize( ), but setting it twice
74*7c3d14c8STreehugger Robot     // won't hurt anything.)
75*7c3d14c8STreehugger Robot     aSignificand |= implicitBit;
76*7c3d14c8STreehugger Robot     bSignificand |= implicitBit;
77*7c3d14c8STreehugger Robot     int quotientExponent = aExponent - bExponent + scale;
78*7c3d14c8STreehugger Robot 
79*7c3d14c8STreehugger Robot     // Align the significand of b as a Q31 fixed-point number in the range
80*7c3d14c8STreehugger Robot     // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
81*7c3d14c8STreehugger Robot     // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This
82*7c3d14c8STreehugger Robot     // is accurate to about 3.5 binary digits.
83*7c3d14c8STreehugger Robot     uint32_t q31b = bSignificand << 8;
84*7c3d14c8STreehugger Robot     uint32_t reciprocal = UINT32_C(0x7504f333) - q31b;
85*7c3d14c8STreehugger Robot 
86*7c3d14c8STreehugger Robot     // Now refine the reciprocal estimate using a Newton-Raphson iteration:
87*7c3d14c8STreehugger Robot     //
88*7c3d14c8STreehugger Robot     //     x1 = x0 * (2 - x0 * b)
89*7c3d14c8STreehugger Robot     //
90*7c3d14c8STreehugger Robot     // This doubles the number of correct binary digits in the approximation
91*7c3d14c8STreehugger Robot     // with each iteration, so after three iterations, we have about 28 binary
92*7c3d14c8STreehugger Robot     // digits of accuracy.
93*7c3d14c8STreehugger Robot     uint32_t correction;
94*7c3d14c8STreehugger Robot     correction = -((uint64_t)reciprocal * q31b >> 32);
95*7c3d14c8STreehugger Robot     reciprocal = (uint64_t)reciprocal * correction >> 31;
96*7c3d14c8STreehugger Robot     correction = -((uint64_t)reciprocal * q31b >> 32);
97*7c3d14c8STreehugger Robot     reciprocal = (uint64_t)reciprocal * correction >> 31;
98*7c3d14c8STreehugger Robot     correction = -((uint64_t)reciprocal * q31b >> 32);
99*7c3d14c8STreehugger Robot     reciprocal = (uint64_t)reciprocal * correction >> 31;
100*7c3d14c8STreehugger Robot 
101*7c3d14c8STreehugger Robot     // Exhaustive testing shows that the error in reciprocal after three steps
102*7c3d14c8STreehugger Robot     // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
103*7c3d14c8STreehugger Robot     // expectations.  We bump the reciprocal by a tiny value to force the error
104*7c3d14c8STreehugger Robot     // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to
105*7c3d14c8STreehugger Robot     // be specific).  This also causes 1/1 to give a sensible approximation
106*7c3d14c8STreehugger Robot     // instead of zero (due to overflow).
107*7c3d14c8STreehugger Robot     reciprocal -= 2;
108*7c3d14c8STreehugger Robot 
109*7c3d14c8STreehugger Robot     // The numerical reciprocal is accurate to within 2^-28, lies in the
110*7c3d14c8STreehugger Robot     // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
111*7c3d14c8STreehugger Robot     // than the true reciprocal of b.  Multiplying a by this reciprocal thus
112*7c3d14c8STreehugger Robot     // gives a numerical q = a/b in Q24 with the following properties:
113*7c3d14c8STreehugger Robot     //
114*7c3d14c8STreehugger Robot     //    1. q < a/b
115*7c3d14c8STreehugger Robot     //    2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
116*7c3d14c8STreehugger Robot     //    3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
117*7c3d14c8STreehugger Robot     //       from the fact that we truncate the product, and the 2^27 term
118*7c3d14c8STreehugger Robot     //       is the error in the reciprocal of b scaled by the maximum
119*7c3d14c8STreehugger Robot     //       possible value of a.  As a consequence of this error bound,
120*7c3d14c8STreehugger Robot     //       either q or nextafter(q) is the correctly rounded
121*7c3d14c8STreehugger Robot     rep_t quotient = (uint64_t)reciprocal*(aSignificand << 1) >> 32;
122*7c3d14c8STreehugger Robot 
123*7c3d14c8STreehugger Robot     // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
124*7c3d14c8STreehugger Robot     // In either case, we are going to compute a residual of the form
125*7c3d14c8STreehugger Robot     //
126*7c3d14c8STreehugger Robot     //     r = a - q*b
127*7c3d14c8STreehugger Robot     //
128*7c3d14c8STreehugger Robot     // We know from the construction of q that r satisfies:
129*7c3d14c8STreehugger Robot     //
130*7c3d14c8STreehugger Robot     //     0 <= r < ulp(q)*b
131*7c3d14c8STreehugger Robot     //
132*7c3d14c8STreehugger Robot     // if r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we
133*7c3d14c8STreehugger Robot     // already have the correct result.  The exact halfway case cannot occur.
134*7c3d14c8STreehugger Robot     // We also take this time to right shift quotient if it falls in the [1,2)
135*7c3d14c8STreehugger Robot     // range and adjust the exponent accordingly.
136*7c3d14c8STreehugger Robot     rep_t residual;
137*7c3d14c8STreehugger Robot     if (quotient < (implicitBit << 1)) {
138*7c3d14c8STreehugger Robot         residual = (aSignificand << 24) - quotient * bSignificand;
139*7c3d14c8STreehugger Robot         quotientExponent--;
140*7c3d14c8STreehugger Robot     } else {
141*7c3d14c8STreehugger Robot         quotient >>= 1;
142*7c3d14c8STreehugger Robot         residual = (aSignificand << 23) - quotient * bSignificand;
143*7c3d14c8STreehugger Robot     }
144*7c3d14c8STreehugger Robot 
145*7c3d14c8STreehugger Robot     const int writtenExponent = quotientExponent + exponentBias;
146*7c3d14c8STreehugger Robot 
147*7c3d14c8STreehugger Robot     if (writtenExponent >= maxExponent) {
148*7c3d14c8STreehugger Robot         // If we have overflowed the exponent, return infinity.
149*7c3d14c8STreehugger Robot         return fromRep(infRep | quotientSign);
150*7c3d14c8STreehugger Robot     }
151*7c3d14c8STreehugger Robot 
152*7c3d14c8STreehugger Robot     else if (writtenExponent < 1) {
153*7c3d14c8STreehugger Robot         // Flush denormals to zero.  In the future, it would be nice to add
154*7c3d14c8STreehugger Robot         // code to round them correctly.
155*7c3d14c8STreehugger Robot         return fromRep(quotientSign);
156*7c3d14c8STreehugger Robot     }
157*7c3d14c8STreehugger Robot 
158*7c3d14c8STreehugger Robot     else {
159*7c3d14c8STreehugger Robot         const bool round = (residual << 1) > bSignificand;
160*7c3d14c8STreehugger Robot         // Clear the implicit bit
161*7c3d14c8STreehugger Robot         rep_t absResult = quotient & significandMask;
162*7c3d14c8STreehugger Robot         // Insert the exponent
163*7c3d14c8STreehugger Robot         absResult |= (rep_t)writtenExponent << significandBits;
164*7c3d14c8STreehugger Robot         // Round
165*7c3d14c8STreehugger Robot         absResult += round;
166*7c3d14c8STreehugger Robot         // Insert the sign and return
167*7c3d14c8STreehugger Robot         return fromRep(absResult | quotientSign);
168*7c3d14c8STreehugger Robot     }
169*7c3d14c8STreehugger Robot }
170