1*67e74705SXin Li //===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===//
2*67e74705SXin Li //
3*67e74705SXin Li // The LLVM Compiler Infrastructure
4*67e74705SXin Li //
5*67e74705SXin Li // This file is distributed under the University of Illinois Open Source
6*67e74705SXin Li // License. See LICENSE.TXT for details.
7*67e74705SXin Li //
8*67e74705SXin Li //===----------------------------------------------------------------------===//
9*67e74705SXin Li //
10*67e74705SXin Li // This file contains the code for emitting atomic operations.
11*67e74705SXin Li //
12*67e74705SXin Li //===----------------------------------------------------------------------===//
13*67e74705SXin Li
14*67e74705SXin Li #include "CodeGenFunction.h"
15*67e74705SXin Li #include "CGCall.h"
16*67e74705SXin Li #include "CGRecordLayout.h"
17*67e74705SXin Li #include "CodeGenModule.h"
18*67e74705SXin Li #include "clang/AST/ASTContext.h"
19*67e74705SXin Li #include "clang/CodeGen/CGFunctionInfo.h"
20*67e74705SXin Li #include "llvm/ADT/StringExtras.h"
21*67e74705SXin Li #include "llvm/IR/DataLayout.h"
22*67e74705SXin Li #include "llvm/IR/Intrinsics.h"
23*67e74705SXin Li #include "llvm/IR/Operator.h"
24*67e74705SXin Li
25*67e74705SXin Li using namespace clang;
26*67e74705SXin Li using namespace CodeGen;
27*67e74705SXin Li
28*67e74705SXin Li namespace {
29*67e74705SXin Li class AtomicInfo {
30*67e74705SXin Li CodeGenFunction &CGF;
31*67e74705SXin Li QualType AtomicTy;
32*67e74705SXin Li QualType ValueTy;
33*67e74705SXin Li uint64_t AtomicSizeInBits;
34*67e74705SXin Li uint64_t ValueSizeInBits;
35*67e74705SXin Li CharUnits AtomicAlign;
36*67e74705SXin Li CharUnits ValueAlign;
37*67e74705SXin Li CharUnits LValueAlign;
38*67e74705SXin Li TypeEvaluationKind EvaluationKind;
39*67e74705SXin Li bool UseLibcall;
40*67e74705SXin Li LValue LVal;
41*67e74705SXin Li CGBitFieldInfo BFI;
42*67e74705SXin Li public:
AtomicInfo(CodeGenFunction & CGF,LValue & lvalue)43*67e74705SXin Li AtomicInfo(CodeGenFunction &CGF, LValue &lvalue)
44*67e74705SXin Li : CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0),
45*67e74705SXin Li EvaluationKind(TEK_Scalar), UseLibcall(true) {
46*67e74705SXin Li assert(!lvalue.isGlobalReg());
47*67e74705SXin Li ASTContext &C = CGF.getContext();
48*67e74705SXin Li if (lvalue.isSimple()) {
49*67e74705SXin Li AtomicTy = lvalue.getType();
50*67e74705SXin Li if (auto *ATy = AtomicTy->getAs<AtomicType>())
51*67e74705SXin Li ValueTy = ATy->getValueType();
52*67e74705SXin Li else
53*67e74705SXin Li ValueTy = AtomicTy;
54*67e74705SXin Li EvaluationKind = CGF.getEvaluationKind(ValueTy);
55*67e74705SXin Li
56*67e74705SXin Li uint64_t ValueAlignInBits;
57*67e74705SXin Li uint64_t AtomicAlignInBits;
58*67e74705SXin Li TypeInfo ValueTI = C.getTypeInfo(ValueTy);
59*67e74705SXin Li ValueSizeInBits = ValueTI.Width;
60*67e74705SXin Li ValueAlignInBits = ValueTI.Align;
61*67e74705SXin Li
62*67e74705SXin Li TypeInfo AtomicTI = C.getTypeInfo(AtomicTy);
63*67e74705SXin Li AtomicSizeInBits = AtomicTI.Width;
64*67e74705SXin Li AtomicAlignInBits = AtomicTI.Align;
65*67e74705SXin Li
66*67e74705SXin Li assert(ValueSizeInBits <= AtomicSizeInBits);
67*67e74705SXin Li assert(ValueAlignInBits <= AtomicAlignInBits);
68*67e74705SXin Li
69*67e74705SXin Li AtomicAlign = C.toCharUnitsFromBits(AtomicAlignInBits);
70*67e74705SXin Li ValueAlign = C.toCharUnitsFromBits(ValueAlignInBits);
71*67e74705SXin Li if (lvalue.getAlignment().isZero())
72*67e74705SXin Li lvalue.setAlignment(AtomicAlign);
73*67e74705SXin Li
74*67e74705SXin Li LVal = lvalue;
75*67e74705SXin Li } else if (lvalue.isBitField()) {
76*67e74705SXin Li ValueTy = lvalue.getType();
77*67e74705SXin Li ValueSizeInBits = C.getTypeSize(ValueTy);
78*67e74705SXin Li auto &OrigBFI = lvalue.getBitFieldInfo();
79*67e74705SXin Li auto Offset = OrigBFI.Offset % C.toBits(lvalue.getAlignment());
80*67e74705SXin Li AtomicSizeInBits = C.toBits(
81*67e74705SXin Li C.toCharUnitsFromBits(Offset + OrigBFI.Size + C.getCharWidth() - 1)
82*67e74705SXin Li .alignTo(lvalue.getAlignment()));
83*67e74705SXin Li auto VoidPtrAddr = CGF.EmitCastToVoidPtr(lvalue.getBitFieldPointer());
84*67e74705SXin Li auto OffsetInChars =
85*67e74705SXin Li (C.toCharUnitsFromBits(OrigBFI.Offset) / lvalue.getAlignment()) *
86*67e74705SXin Li lvalue.getAlignment();
87*67e74705SXin Li VoidPtrAddr = CGF.Builder.CreateConstGEP1_64(
88*67e74705SXin Li VoidPtrAddr, OffsetInChars.getQuantity());
89*67e74705SXin Li auto Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
90*67e74705SXin Li VoidPtrAddr,
91*67e74705SXin Li CGF.Builder.getIntNTy(AtomicSizeInBits)->getPointerTo(),
92*67e74705SXin Li "atomic_bitfield_base");
93*67e74705SXin Li BFI = OrigBFI;
94*67e74705SXin Li BFI.Offset = Offset;
95*67e74705SXin Li BFI.StorageSize = AtomicSizeInBits;
96*67e74705SXin Li BFI.StorageOffset += OffsetInChars;
97*67e74705SXin Li LVal = LValue::MakeBitfield(Address(Addr, lvalue.getAlignment()),
98*67e74705SXin Li BFI, lvalue.getType(),
99*67e74705SXin Li lvalue.getAlignmentSource());
100*67e74705SXin Li LVal.setTBAAInfo(lvalue.getTBAAInfo());
101*67e74705SXin Li AtomicTy = C.getIntTypeForBitwidth(AtomicSizeInBits, OrigBFI.IsSigned);
102*67e74705SXin Li if (AtomicTy.isNull()) {
103*67e74705SXin Li llvm::APInt Size(
104*67e74705SXin Li /*numBits=*/32,
105*67e74705SXin Li C.toCharUnitsFromBits(AtomicSizeInBits).getQuantity());
106*67e74705SXin Li AtomicTy = C.getConstantArrayType(C.CharTy, Size, ArrayType::Normal,
107*67e74705SXin Li /*IndexTypeQuals=*/0);
108*67e74705SXin Li }
109*67e74705SXin Li AtomicAlign = ValueAlign = lvalue.getAlignment();
110*67e74705SXin Li } else if (lvalue.isVectorElt()) {
111*67e74705SXin Li ValueTy = lvalue.getType()->getAs<VectorType>()->getElementType();
112*67e74705SXin Li ValueSizeInBits = C.getTypeSize(ValueTy);
113*67e74705SXin Li AtomicTy = lvalue.getType();
114*67e74705SXin Li AtomicSizeInBits = C.getTypeSize(AtomicTy);
115*67e74705SXin Li AtomicAlign = ValueAlign = lvalue.getAlignment();
116*67e74705SXin Li LVal = lvalue;
117*67e74705SXin Li } else {
118*67e74705SXin Li assert(lvalue.isExtVectorElt());
119*67e74705SXin Li ValueTy = lvalue.getType();
120*67e74705SXin Li ValueSizeInBits = C.getTypeSize(ValueTy);
121*67e74705SXin Li AtomicTy = ValueTy = CGF.getContext().getExtVectorType(
122*67e74705SXin Li lvalue.getType(), lvalue.getExtVectorAddress()
123*67e74705SXin Li .getElementType()->getVectorNumElements());
124*67e74705SXin Li AtomicSizeInBits = C.getTypeSize(AtomicTy);
125*67e74705SXin Li AtomicAlign = ValueAlign = lvalue.getAlignment();
126*67e74705SXin Li LVal = lvalue;
127*67e74705SXin Li }
128*67e74705SXin Li UseLibcall = !C.getTargetInfo().hasBuiltinAtomic(
129*67e74705SXin Li AtomicSizeInBits, C.toBits(lvalue.getAlignment()));
130*67e74705SXin Li }
131*67e74705SXin Li
getAtomicType() const132*67e74705SXin Li QualType getAtomicType() const { return AtomicTy; }
getValueType() const133*67e74705SXin Li QualType getValueType() const { return ValueTy; }
getAtomicAlignment() const134*67e74705SXin Li CharUnits getAtomicAlignment() const { return AtomicAlign; }
getValueAlignment() const135*67e74705SXin Li CharUnits getValueAlignment() const { return ValueAlign; }
getAtomicSizeInBits() const136*67e74705SXin Li uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; }
getValueSizeInBits() const137*67e74705SXin Li uint64_t getValueSizeInBits() const { return ValueSizeInBits; }
getEvaluationKind() const138*67e74705SXin Li TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; }
shouldUseLibcall() const139*67e74705SXin Li bool shouldUseLibcall() const { return UseLibcall; }
getAtomicLValue() const140*67e74705SXin Li const LValue &getAtomicLValue() const { return LVal; }
getAtomicPointer() const141*67e74705SXin Li llvm::Value *getAtomicPointer() const {
142*67e74705SXin Li if (LVal.isSimple())
143*67e74705SXin Li return LVal.getPointer();
144*67e74705SXin Li else if (LVal.isBitField())
145*67e74705SXin Li return LVal.getBitFieldPointer();
146*67e74705SXin Li else if (LVal.isVectorElt())
147*67e74705SXin Li return LVal.getVectorPointer();
148*67e74705SXin Li assert(LVal.isExtVectorElt());
149*67e74705SXin Li return LVal.getExtVectorPointer();
150*67e74705SXin Li }
getAtomicAddress() const151*67e74705SXin Li Address getAtomicAddress() const {
152*67e74705SXin Li return Address(getAtomicPointer(), getAtomicAlignment());
153*67e74705SXin Li }
154*67e74705SXin Li
getAtomicAddressAsAtomicIntPointer() const155*67e74705SXin Li Address getAtomicAddressAsAtomicIntPointer() const {
156*67e74705SXin Li return emitCastToAtomicIntPointer(getAtomicAddress());
157*67e74705SXin Li }
158*67e74705SXin Li
159*67e74705SXin Li /// Is the atomic size larger than the underlying value type?
160*67e74705SXin Li ///
161*67e74705SXin Li /// Note that the absence of padding does not mean that atomic
162*67e74705SXin Li /// objects are completely interchangeable with non-atomic
163*67e74705SXin Li /// objects: we might have promoted the alignment of a type
164*67e74705SXin Li /// without making it bigger.
hasPadding() const165*67e74705SXin Li bool hasPadding() const {
166*67e74705SXin Li return (ValueSizeInBits != AtomicSizeInBits);
167*67e74705SXin Li }
168*67e74705SXin Li
169*67e74705SXin Li bool emitMemSetZeroIfNecessary() const;
170*67e74705SXin Li
getAtomicSizeValue() const171*67e74705SXin Li llvm::Value *getAtomicSizeValue() const {
172*67e74705SXin Li CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits);
173*67e74705SXin Li return CGF.CGM.getSize(size);
174*67e74705SXin Li }
175*67e74705SXin Li
176*67e74705SXin Li /// Cast the given pointer to an integer pointer suitable for atomic
177*67e74705SXin Li /// operations if the source.
178*67e74705SXin Li Address emitCastToAtomicIntPointer(Address Addr) const;
179*67e74705SXin Li
180*67e74705SXin Li /// If Addr is compatible with the iN that will be used for an atomic
181*67e74705SXin Li /// operation, bitcast it. Otherwise, create a temporary that is suitable
182*67e74705SXin Li /// and copy the value across.
183*67e74705SXin Li Address convertToAtomicIntPointer(Address Addr) const;
184*67e74705SXin Li
185*67e74705SXin Li /// Turn an atomic-layout object into an r-value.
186*67e74705SXin Li RValue convertAtomicTempToRValue(Address addr, AggValueSlot resultSlot,
187*67e74705SXin Li SourceLocation loc, bool AsValue) const;
188*67e74705SXin Li
189*67e74705SXin Li /// \brief Converts a rvalue to integer value.
190*67e74705SXin Li llvm::Value *convertRValueToInt(RValue RVal) const;
191*67e74705SXin Li
192*67e74705SXin Li RValue ConvertIntToValueOrAtomic(llvm::Value *IntVal,
193*67e74705SXin Li AggValueSlot ResultSlot,
194*67e74705SXin Li SourceLocation Loc, bool AsValue) const;
195*67e74705SXin Li
196*67e74705SXin Li /// Copy an atomic r-value into atomic-layout memory.
197*67e74705SXin Li void emitCopyIntoMemory(RValue rvalue) const;
198*67e74705SXin Li
199*67e74705SXin Li /// Project an l-value down to the value field.
projectValue() const200*67e74705SXin Li LValue projectValue() const {
201*67e74705SXin Li assert(LVal.isSimple());
202*67e74705SXin Li Address addr = getAtomicAddress();
203*67e74705SXin Li if (hasPadding())
204*67e74705SXin Li addr = CGF.Builder.CreateStructGEP(addr, 0, CharUnits());
205*67e74705SXin Li
206*67e74705SXin Li return LValue::MakeAddr(addr, getValueType(), CGF.getContext(),
207*67e74705SXin Li LVal.getAlignmentSource(), LVal.getTBAAInfo());
208*67e74705SXin Li }
209*67e74705SXin Li
210*67e74705SXin Li /// \brief Emits atomic load.
211*67e74705SXin Li /// \returns Loaded value.
212*67e74705SXin Li RValue EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc,
213*67e74705SXin Li bool AsValue, llvm::AtomicOrdering AO,
214*67e74705SXin Li bool IsVolatile);
215*67e74705SXin Li
216*67e74705SXin Li /// \brief Emits atomic compare-and-exchange sequence.
217*67e74705SXin Li /// \param Expected Expected value.
218*67e74705SXin Li /// \param Desired Desired value.
219*67e74705SXin Li /// \param Success Atomic ordering for success operation.
220*67e74705SXin Li /// \param Failure Atomic ordering for failed operation.
221*67e74705SXin Li /// \param IsWeak true if atomic operation is weak, false otherwise.
222*67e74705SXin Li /// \returns Pair of values: previous value from storage (value type) and
223*67e74705SXin Li /// boolean flag (i1 type) with true if success and false otherwise.
224*67e74705SXin Li std::pair<RValue, llvm::Value *>
225*67e74705SXin Li EmitAtomicCompareExchange(RValue Expected, RValue Desired,
226*67e74705SXin Li llvm::AtomicOrdering Success =
227*67e74705SXin Li llvm::AtomicOrdering::SequentiallyConsistent,
228*67e74705SXin Li llvm::AtomicOrdering Failure =
229*67e74705SXin Li llvm::AtomicOrdering::SequentiallyConsistent,
230*67e74705SXin Li bool IsWeak = false);
231*67e74705SXin Li
232*67e74705SXin Li /// \brief Emits atomic update.
233*67e74705SXin Li /// \param AO Atomic ordering.
234*67e74705SXin Li /// \param UpdateOp Update operation for the current lvalue.
235*67e74705SXin Li void EmitAtomicUpdate(llvm::AtomicOrdering AO,
236*67e74705SXin Li const llvm::function_ref<RValue(RValue)> &UpdateOp,
237*67e74705SXin Li bool IsVolatile);
238*67e74705SXin Li /// \brief Emits atomic update.
239*67e74705SXin Li /// \param AO Atomic ordering.
240*67e74705SXin Li void EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal,
241*67e74705SXin Li bool IsVolatile);
242*67e74705SXin Li
243*67e74705SXin Li /// Materialize an atomic r-value in atomic-layout memory.
244*67e74705SXin Li Address materializeRValue(RValue rvalue) const;
245*67e74705SXin Li
246*67e74705SXin Li /// \brief Creates temp alloca for intermediate operations on atomic value.
247*67e74705SXin Li Address CreateTempAlloca() const;
248*67e74705SXin Li private:
249*67e74705SXin Li bool requiresMemSetZero(llvm::Type *type) const;
250*67e74705SXin Li
251*67e74705SXin Li
252*67e74705SXin Li /// \brief Emits atomic load as a libcall.
253*67e74705SXin Li void EmitAtomicLoadLibcall(llvm::Value *AddForLoaded,
254*67e74705SXin Li llvm::AtomicOrdering AO, bool IsVolatile);
255*67e74705SXin Li /// \brief Emits atomic load as LLVM instruction.
256*67e74705SXin Li llvm::Value *EmitAtomicLoadOp(llvm::AtomicOrdering AO, bool IsVolatile);
257*67e74705SXin Li /// \brief Emits atomic compare-and-exchange op as a libcall.
258*67e74705SXin Li llvm::Value *EmitAtomicCompareExchangeLibcall(
259*67e74705SXin Li llvm::Value *ExpectedAddr, llvm::Value *DesiredAddr,
260*67e74705SXin Li llvm::AtomicOrdering Success =
261*67e74705SXin Li llvm::AtomicOrdering::SequentiallyConsistent,
262*67e74705SXin Li llvm::AtomicOrdering Failure =
263*67e74705SXin Li llvm::AtomicOrdering::SequentiallyConsistent);
264*67e74705SXin Li /// \brief Emits atomic compare-and-exchange op as LLVM instruction.
265*67e74705SXin Li std::pair<llvm::Value *, llvm::Value *> EmitAtomicCompareExchangeOp(
266*67e74705SXin Li llvm::Value *ExpectedVal, llvm::Value *DesiredVal,
267*67e74705SXin Li llvm::AtomicOrdering Success =
268*67e74705SXin Li llvm::AtomicOrdering::SequentiallyConsistent,
269*67e74705SXin Li llvm::AtomicOrdering Failure =
270*67e74705SXin Li llvm::AtomicOrdering::SequentiallyConsistent,
271*67e74705SXin Li bool IsWeak = false);
272*67e74705SXin Li /// \brief Emit atomic update as libcalls.
273*67e74705SXin Li void
274*67e74705SXin Li EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,
275*67e74705SXin Li const llvm::function_ref<RValue(RValue)> &UpdateOp,
276*67e74705SXin Li bool IsVolatile);
277*67e74705SXin Li /// \brief Emit atomic update as LLVM instructions.
278*67e74705SXin Li void EmitAtomicUpdateOp(llvm::AtomicOrdering AO,
279*67e74705SXin Li const llvm::function_ref<RValue(RValue)> &UpdateOp,
280*67e74705SXin Li bool IsVolatile);
281*67e74705SXin Li /// \brief Emit atomic update as libcalls.
282*67e74705SXin Li void EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, RValue UpdateRVal,
283*67e74705SXin Li bool IsVolatile);
284*67e74705SXin Li /// \brief Emit atomic update as LLVM instructions.
285*67e74705SXin Li void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRal,
286*67e74705SXin Li bool IsVolatile);
287*67e74705SXin Li };
288*67e74705SXin Li }
289*67e74705SXin Li
CreateTempAlloca() const290*67e74705SXin Li Address AtomicInfo::CreateTempAlloca() const {
291*67e74705SXin Li Address TempAlloca = CGF.CreateMemTemp(
292*67e74705SXin Li (LVal.isBitField() && ValueSizeInBits > AtomicSizeInBits) ? ValueTy
293*67e74705SXin Li : AtomicTy,
294*67e74705SXin Li getAtomicAlignment(),
295*67e74705SXin Li "atomic-temp");
296*67e74705SXin Li // Cast to pointer to value type for bitfields.
297*67e74705SXin Li if (LVal.isBitField())
298*67e74705SXin Li return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
299*67e74705SXin Li TempAlloca, getAtomicAddress().getType());
300*67e74705SXin Li return TempAlloca;
301*67e74705SXin Li }
302*67e74705SXin Li
emitAtomicLibcall(CodeGenFunction & CGF,StringRef fnName,QualType resultType,CallArgList & args)303*67e74705SXin Li static RValue emitAtomicLibcall(CodeGenFunction &CGF,
304*67e74705SXin Li StringRef fnName,
305*67e74705SXin Li QualType resultType,
306*67e74705SXin Li CallArgList &args) {
307*67e74705SXin Li const CGFunctionInfo &fnInfo =
308*67e74705SXin Li CGF.CGM.getTypes().arrangeBuiltinFunctionCall(resultType, args);
309*67e74705SXin Li llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo);
310*67e74705SXin Li llvm::Constant *fn = CGF.CGM.CreateRuntimeFunction(fnTy, fnName);
311*67e74705SXin Li return CGF.EmitCall(fnInfo, fn, ReturnValueSlot(), args);
312*67e74705SXin Li }
313*67e74705SXin Li
314*67e74705SXin Li /// Does a store of the given IR type modify the full expected width?
isFullSizeType(CodeGenModule & CGM,llvm::Type * type,uint64_t expectedSize)315*67e74705SXin Li static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type,
316*67e74705SXin Li uint64_t expectedSize) {
317*67e74705SXin Li return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize);
318*67e74705SXin Li }
319*67e74705SXin Li
320*67e74705SXin Li /// Does the atomic type require memsetting to zero before initialization?
321*67e74705SXin Li ///
322*67e74705SXin Li /// The IR type is provided as a way of making certain queries faster.
requiresMemSetZero(llvm::Type * type) const323*67e74705SXin Li bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const {
324*67e74705SXin Li // If the atomic type has size padding, we definitely need a memset.
325*67e74705SXin Li if (hasPadding()) return true;
326*67e74705SXin Li
327*67e74705SXin Li // Otherwise, do some simple heuristics to try to avoid it:
328*67e74705SXin Li switch (getEvaluationKind()) {
329*67e74705SXin Li // For scalars and complexes, check whether the store size of the
330*67e74705SXin Li // type uses the full size.
331*67e74705SXin Li case TEK_Scalar:
332*67e74705SXin Li return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits);
333*67e74705SXin Li case TEK_Complex:
334*67e74705SXin Li return !isFullSizeType(CGF.CGM, type->getStructElementType(0),
335*67e74705SXin Li AtomicSizeInBits / 2);
336*67e74705SXin Li
337*67e74705SXin Li // Padding in structs has an undefined bit pattern. User beware.
338*67e74705SXin Li case TEK_Aggregate:
339*67e74705SXin Li return false;
340*67e74705SXin Li }
341*67e74705SXin Li llvm_unreachable("bad evaluation kind");
342*67e74705SXin Li }
343*67e74705SXin Li
emitMemSetZeroIfNecessary() const344*67e74705SXin Li bool AtomicInfo::emitMemSetZeroIfNecessary() const {
345*67e74705SXin Li assert(LVal.isSimple());
346*67e74705SXin Li llvm::Value *addr = LVal.getPointer();
347*67e74705SXin Li if (!requiresMemSetZero(addr->getType()->getPointerElementType()))
348*67e74705SXin Li return false;
349*67e74705SXin Li
350*67e74705SXin Li CGF.Builder.CreateMemSet(
351*67e74705SXin Li addr, llvm::ConstantInt::get(CGF.Int8Ty, 0),
352*67e74705SXin Li CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits).getQuantity(),
353*67e74705SXin Li LVal.getAlignment().getQuantity());
354*67e74705SXin Li return true;
355*67e74705SXin Li }
356*67e74705SXin Li
emitAtomicCmpXchg(CodeGenFunction & CGF,AtomicExpr * E,bool IsWeak,Address Dest,Address Ptr,Address Val1,Address Val2,uint64_t Size,llvm::AtomicOrdering SuccessOrder,llvm::AtomicOrdering FailureOrder)357*67e74705SXin Li static void emitAtomicCmpXchg(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak,
358*67e74705SXin Li Address Dest, Address Ptr,
359*67e74705SXin Li Address Val1, Address Val2,
360*67e74705SXin Li uint64_t Size,
361*67e74705SXin Li llvm::AtomicOrdering SuccessOrder,
362*67e74705SXin Li llvm::AtomicOrdering FailureOrder) {
363*67e74705SXin Li // Note that cmpxchg doesn't support weak cmpxchg, at least at the moment.
364*67e74705SXin Li llvm::Value *Expected = CGF.Builder.CreateLoad(Val1);
365*67e74705SXin Li llvm::Value *Desired = CGF.Builder.CreateLoad(Val2);
366*67e74705SXin Li
367*67e74705SXin Li llvm::AtomicCmpXchgInst *Pair = CGF.Builder.CreateAtomicCmpXchg(
368*67e74705SXin Li Ptr.getPointer(), Expected, Desired, SuccessOrder, FailureOrder);
369*67e74705SXin Li Pair->setVolatile(E->isVolatile());
370*67e74705SXin Li Pair->setWeak(IsWeak);
371*67e74705SXin Li
372*67e74705SXin Li // Cmp holds the result of the compare-exchange operation: true on success,
373*67e74705SXin Li // false on failure.
374*67e74705SXin Li llvm::Value *Old = CGF.Builder.CreateExtractValue(Pair, 0);
375*67e74705SXin Li llvm::Value *Cmp = CGF.Builder.CreateExtractValue(Pair, 1);
376*67e74705SXin Li
377*67e74705SXin Li // This basic block is used to hold the store instruction if the operation
378*67e74705SXin Li // failed.
379*67e74705SXin Li llvm::BasicBlock *StoreExpectedBB =
380*67e74705SXin Li CGF.createBasicBlock("cmpxchg.store_expected", CGF.CurFn);
381*67e74705SXin Li
382*67e74705SXin Li // This basic block is the exit point of the operation, we should end up
383*67e74705SXin Li // here regardless of whether or not the operation succeeded.
384*67e74705SXin Li llvm::BasicBlock *ContinueBB =
385*67e74705SXin Li CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn);
386*67e74705SXin Li
387*67e74705SXin Li // Update Expected if Expected isn't equal to Old, otherwise branch to the
388*67e74705SXin Li // exit point.
389*67e74705SXin Li CGF.Builder.CreateCondBr(Cmp, ContinueBB, StoreExpectedBB);
390*67e74705SXin Li
391*67e74705SXin Li CGF.Builder.SetInsertPoint(StoreExpectedBB);
392*67e74705SXin Li // Update the memory at Expected with Old's value.
393*67e74705SXin Li CGF.Builder.CreateStore(Old, Val1);
394*67e74705SXin Li // Finally, branch to the exit point.
395*67e74705SXin Li CGF.Builder.CreateBr(ContinueBB);
396*67e74705SXin Li
397*67e74705SXin Li CGF.Builder.SetInsertPoint(ContinueBB);
398*67e74705SXin Li // Update the memory at Dest with Cmp's value.
399*67e74705SXin Li CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
400*67e74705SXin Li }
401*67e74705SXin Li
402*67e74705SXin Li /// Given an ordering required on success, emit all possible cmpxchg
403*67e74705SXin Li /// instructions to cope with the provided (but possibly only dynamically known)
404*67e74705SXin Li /// FailureOrder.
emitAtomicCmpXchgFailureSet(CodeGenFunction & CGF,AtomicExpr * E,bool IsWeak,Address Dest,Address Ptr,Address Val1,Address Val2,llvm::Value * FailureOrderVal,uint64_t Size,llvm::AtomicOrdering SuccessOrder)405*67e74705SXin Li static void emitAtomicCmpXchgFailureSet(CodeGenFunction &CGF, AtomicExpr *E,
406*67e74705SXin Li bool IsWeak, Address Dest, Address Ptr,
407*67e74705SXin Li Address Val1, Address Val2,
408*67e74705SXin Li llvm::Value *FailureOrderVal,
409*67e74705SXin Li uint64_t Size,
410*67e74705SXin Li llvm::AtomicOrdering SuccessOrder) {
411*67e74705SXin Li llvm::AtomicOrdering FailureOrder;
412*67e74705SXin Li if (llvm::ConstantInt *FO = dyn_cast<llvm::ConstantInt>(FailureOrderVal)) {
413*67e74705SXin Li auto FOS = FO->getSExtValue();
414*67e74705SXin Li if (!llvm::isValidAtomicOrderingCABI(FOS))
415*67e74705SXin Li FailureOrder = llvm::AtomicOrdering::Monotonic;
416*67e74705SXin Li else
417*67e74705SXin Li switch ((llvm::AtomicOrderingCABI)FOS) {
418*67e74705SXin Li case llvm::AtomicOrderingCABI::relaxed:
419*67e74705SXin Li case llvm::AtomicOrderingCABI::release:
420*67e74705SXin Li case llvm::AtomicOrderingCABI::acq_rel:
421*67e74705SXin Li FailureOrder = llvm::AtomicOrdering::Monotonic;
422*67e74705SXin Li break;
423*67e74705SXin Li case llvm::AtomicOrderingCABI::consume:
424*67e74705SXin Li case llvm::AtomicOrderingCABI::acquire:
425*67e74705SXin Li FailureOrder = llvm::AtomicOrdering::Acquire;
426*67e74705SXin Li break;
427*67e74705SXin Li case llvm::AtomicOrderingCABI::seq_cst:
428*67e74705SXin Li FailureOrder = llvm::AtomicOrdering::SequentiallyConsistent;
429*67e74705SXin Li break;
430*67e74705SXin Li }
431*67e74705SXin Li if (isStrongerThan(FailureOrder, SuccessOrder)) {
432*67e74705SXin Li // Don't assert on undefined behavior "failure argument shall be no
433*67e74705SXin Li // stronger than the success argument".
434*67e74705SXin Li FailureOrder =
435*67e74705SXin Li llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrder);
436*67e74705SXin Li }
437*67e74705SXin Li emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder,
438*67e74705SXin Li FailureOrder);
439*67e74705SXin Li return;
440*67e74705SXin Li }
441*67e74705SXin Li
442*67e74705SXin Li // Create all the relevant BB's
443*67e74705SXin Li llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr,
444*67e74705SXin Li *SeqCstBB = nullptr;
445*67e74705SXin Li MonotonicBB = CGF.createBasicBlock("monotonic_fail", CGF.CurFn);
446*67e74705SXin Li if (SuccessOrder != llvm::AtomicOrdering::Monotonic &&
447*67e74705SXin Li SuccessOrder != llvm::AtomicOrdering::Release)
448*67e74705SXin Li AcquireBB = CGF.createBasicBlock("acquire_fail", CGF.CurFn);
449*67e74705SXin Li if (SuccessOrder == llvm::AtomicOrdering::SequentiallyConsistent)
450*67e74705SXin Li SeqCstBB = CGF.createBasicBlock("seqcst_fail", CGF.CurFn);
451*67e74705SXin Li
452*67e74705SXin Li llvm::BasicBlock *ContBB = CGF.createBasicBlock("atomic.continue", CGF.CurFn);
453*67e74705SXin Li
454*67e74705SXin Li llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(FailureOrderVal, MonotonicBB);
455*67e74705SXin Li
456*67e74705SXin Li // Emit all the different atomics
457*67e74705SXin Li
458*67e74705SXin Li // MonotonicBB is arbitrarily chosen as the default case; in practice, this
459*67e74705SXin Li // doesn't matter unless someone is crazy enough to use something that
460*67e74705SXin Li // doesn't fold to a constant for the ordering.
461*67e74705SXin Li CGF.Builder.SetInsertPoint(MonotonicBB);
462*67e74705SXin Li emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
463*67e74705SXin Li Size, SuccessOrder, llvm::AtomicOrdering::Monotonic);
464*67e74705SXin Li CGF.Builder.CreateBr(ContBB);
465*67e74705SXin Li
466*67e74705SXin Li if (AcquireBB) {
467*67e74705SXin Li CGF.Builder.SetInsertPoint(AcquireBB);
468*67e74705SXin Li emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
469*67e74705SXin Li Size, SuccessOrder, llvm::AtomicOrdering::Acquire);
470*67e74705SXin Li CGF.Builder.CreateBr(ContBB);
471*67e74705SXin Li SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::consume),
472*67e74705SXin Li AcquireBB);
473*67e74705SXin Li SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::acquire),
474*67e74705SXin Li AcquireBB);
475*67e74705SXin Li }
476*67e74705SXin Li if (SeqCstBB) {
477*67e74705SXin Li CGF.Builder.SetInsertPoint(SeqCstBB);
478*67e74705SXin Li emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder,
479*67e74705SXin Li llvm::AtomicOrdering::SequentiallyConsistent);
480*67e74705SXin Li CGF.Builder.CreateBr(ContBB);
481*67e74705SXin Li SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::seq_cst),
482*67e74705SXin Li SeqCstBB);
483*67e74705SXin Li }
484*67e74705SXin Li
485*67e74705SXin Li CGF.Builder.SetInsertPoint(ContBB);
486*67e74705SXin Li }
487*67e74705SXin Li
EmitAtomicOp(CodeGenFunction & CGF,AtomicExpr * E,Address Dest,Address Ptr,Address Val1,Address Val2,llvm::Value * IsWeak,llvm::Value * FailureOrder,uint64_t Size,llvm::AtomicOrdering Order)488*67e74705SXin Li static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, Address Dest,
489*67e74705SXin Li Address Ptr, Address Val1, Address Val2,
490*67e74705SXin Li llvm::Value *IsWeak, llvm::Value *FailureOrder,
491*67e74705SXin Li uint64_t Size, llvm::AtomicOrdering Order) {
492*67e74705SXin Li llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
493*67e74705SXin Li llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
494*67e74705SXin Li
495*67e74705SXin Li switch (E->getOp()) {
496*67e74705SXin Li case AtomicExpr::AO__c11_atomic_init:
497*67e74705SXin Li llvm_unreachable("Already handled!");
498*67e74705SXin Li
499*67e74705SXin Li case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
500*67e74705SXin Li emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2,
501*67e74705SXin Li FailureOrder, Size, Order);
502*67e74705SXin Li return;
503*67e74705SXin Li case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
504*67e74705SXin Li emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2,
505*67e74705SXin Li FailureOrder, Size, Order);
506*67e74705SXin Li return;
507*67e74705SXin Li case AtomicExpr::AO__atomic_compare_exchange:
508*67e74705SXin Li case AtomicExpr::AO__atomic_compare_exchange_n: {
509*67e74705SXin Li if (llvm::ConstantInt *IsWeakC = dyn_cast<llvm::ConstantInt>(IsWeak)) {
510*67e74705SXin Li emitAtomicCmpXchgFailureSet(CGF, E, IsWeakC->getZExtValue(), Dest, Ptr,
511*67e74705SXin Li Val1, Val2, FailureOrder, Size, Order);
512*67e74705SXin Li } else {
513*67e74705SXin Li // Create all the relevant BB's
514*67e74705SXin Li llvm::BasicBlock *StrongBB =
515*67e74705SXin Li CGF.createBasicBlock("cmpxchg.strong", CGF.CurFn);
516*67e74705SXin Li llvm::BasicBlock *WeakBB = CGF.createBasicBlock("cmxchg.weak", CGF.CurFn);
517*67e74705SXin Li llvm::BasicBlock *ContBB =
518*67e74705SXin Li CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn);
519*67e74705SXin Li
520*67e74705SXin Li llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(IsWeak, WeakBB);
521*67e74705SXin Li SI->addCase(CGF.Builder.getInt1(false), StrongBB);
522*67e74705SXin Li
523*67e74705SXin Li CGF.Builder.SetInsertPoint(StrongBB);
524*67e74705SXin Li emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2,
525*67e74705SXin Li FailureOrder, Size, Order);
526*67e74705SXin Li CGF.Builder.CreateBr(ContBB);
527*67e74705SXin Li
528*67e74705SXin Li CGF.Builder.SetInsertPoint(WeakBB);
529*67e74705SXin Li emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2,
530*67e74705SXin Li FailureOrder, Size, Order);
531*67e74705SXin Li CGF.Builder.CreateBr(ContBB);
532*67e74705SXin Li
533*67e74705SXin Li CGF.Builder.SetInsertPoint(ContBB);
534*67e74705SXin Li }
535*67e74705SXin Li return;
536*67e74705SXin Li }
537*67e74705SXin Li case AtomicExpr::AO__c11_atomic_load:
538*67e74705SXin Li case AtomicExpr::AO__atomic_load_n:
539*67e74705SXin Li case AtomicExpr::AO__atomic_load: {
540*67e74705SXin Li llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
541*67e74705SXin Li Load->setAtomic(Order);
542*67e74705SXin Li Load->setVolatile(E->isVolatile());
543*67e74705SXin Li CGF.Builder.CreateStore(Load, Dest);
544*67e74705SXin Li return;
545*67e74705SXin Li }
546*67e74705SXin Li
547*67e74705SXin Li case AtomicExpr::AO__c11_atomic_store:
548*67e74705SXin Li case AtomicExpr::AO__atomic_store:
549*67e74705SXin Li case AtomicExpr::AO__atomic_store_n: {
550*67e74705SXin Li llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1);
551*67e74705SXin Li llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
552*67e74705SXin Li Store->setAtomic(Order);
553*67e74705SXin Li Store->setVolatile(E->isVolatile());
554*67e74705SXin Li return;
555*67e74705SXin Li }
556*67e74705SXin Li
557*67e74705SXin Li case AtomicExpr::AO__c11_atomic_exchange:
558*67e74705SXin Li case AtomicExpr::AO__atomic_exchange_n:
559*67e74705SXin Li case AtomicExpr::AO__atomic_exchange:
560*67e74705SXin Li Op = llvm::AtomicRMWInst::Xchg;
561*67e74705SXin Li break;
562*67e74705SXin Li
563*67e74705SXin Li case AtomicExpr::AO__atomic_add_fetch:
564*67e74705SXin Li PostOp = llvm::Instruction::Add;
565*67e74705SXin Li // Fall through.
566*67e74705SXin Li case AtomicExpr::AO__c11_atomic_fetch_add:
567*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_add:
568*67e74705SXin Li Op = llvm::AtomicRMWInst::Add;
569*67e74705SXin Li break;
570*67e74705SXin Li
571*67e74705SXin Li case AtomicExpr::AO__atomic_sub_fetch:
572*67e74705SXin Li PostOp = llvm::Instruction::Sub;
573*67e74705SXin Li // Fall through.
574*67e74705SXin Li case AtomicExpr::AO__c11_atomic_fetch_sub:
575*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_sub:
576*67e74705SXin Li Op = llvm::AtomicRMWInst::Sub;
577*67e74705SXin Li break;
578*67e74705SXin Li
579*67e74705SXin Li case AtomicExpr::AO__atomic_and_fetch:
580*67e74705SXin Li PostOp = llvm::Instruction::And;
581*67e74705SXin Li // Fall through.
582*67e74705SXin Li case AtomicExpr::AO__c11_atomic_fetch_and:
583*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_and:
584*67e74705SXin Li Op = llvm::AtomicRMWInst::And;
585*67e74705SXin Li break;
586*67e74705SXin Li
587*67e74705SXin Li case AtomicExpr::AO__atomic_or_fetch:
588*67e74705SXin Li PostOp = llvm::Instruction::Or;
589*67e74705SXin Li // Fall through.
590*67e74705SXin Li case AtomicExpr::AO__c11_atomic_fetch_or:
591*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_or:
592*67e74705SXin Li Op = llvm::AtomicRMWInst::Or;
593*67e74705SXin Li break;
594*67e74705SXin Li
595*67e74705SXin Li case AtomicExpr::AO__atomic_xor_fetch:
596*67e74705SXin Li PostOp = llvm::Instruction::Xor;
597*67e74705SXin Li // Fall through.
598*67e74705SXin Li case AtomicExpr::AO__c11_atomic_fetch_xor:
599*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_xor:
600*67e74705SXin Li Op = llvm::AtomicRMWInst::Xor;
601*67e74705SXin Li break;
602*67e74705SXin Li
603*67e74705SXin Li case AtomicExpr::AO__atomic_nand_fetch:
604*67e74705SXin Li PostOp = llvm::Instruction::And; // the NOT is special cased below
605*67e74705SXin Li // Fall through.
606*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_nand:
607*67e74705SXin Li Op = llvm::AtomicRMWInst::Nand;
608*67e74705SXin Li break;
609*67e74705SXin Li }
610*67e74705SXin Li
611*67e74705SXin Li llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1);
612*67e74705SXin Li llvm::AtomicRMWInst *RMWI =
613*67e74705SXin Li CGF.Builder.CreateAtomicRMW(Op, Ptr.getPointer(), LoadVal1, Order);
614*67e74705SXin Li RMWI->setVolatile(E->isVolatile());
615*67e74705SXin Li
616*67e74705SXin Li // For __atomic_*_fetch operations, perform the operation again to
617*67e74705SXin Li // determine the value which was written.
618*67e74705SXin Li llvm::Value *Result = RMWI;
619*67e74705SXin Li if (PostOp)
620*67e74705SXin Li Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1);
621*67e74705SXin Li if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
622*67e74705SXin Li Result = CGF.Builder.CreateNot(Result);
623*67e74705SXin Li CGF.Builder.CreateStore(Result, Dest);
624*67e74705SXin Li }
625*67e74705SXin Li
626*67e74705SXin Li // This function emits any expression (scalar, complex, or aggregate)
627*67e74705SXin Li // into a temporary alloca.
628*67e74705SXin Li static Address
EmitValToTemp(CodeGenFunction & CGF,Expr * E)629*67e74705SXin Li EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
630*67e74705SXin Li Address DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
631*67e74705SXin Li CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
632*67e74705SXin Li /*Init*/ true);
633*67e74705SXin Li return DeclPtr;
634*67e74705SXin Li }
635*67e74705SXin Li
636*67e74705SXin Li static void
AddDirectArgument(CodeGenFunction & CGF,CallArgList & Args,bool UseOptimizedLibcall,llvm::Value * Val,QualType ValTy,SourceLocation Loc,CharUnits SizeInChars)637*67e74705SXin Li AddDirectArgument(CodeGenFunction &CGF, CallArgList &Args,
638*67e74705SXin Li bool UseOptimizedLibcall, llvm::Value *Val, QualType ValTy,
639*67e74705SXin Li SourceLocation Loc, CharUnits SizeInChars) {
640*67e74705SXin Li if (UseOptimizedLibcall) {
641*67e74705SXin Li // Load value and pass it to the function directly.
642*67e74705SXin Li CharUnits Align = CGF.getContext().getTypeAlignInChars(ValTy);
643*67e74705SXin Li int64_t SizeInBits = CGF.getContext().toBits(SizeInChars);
644*67e74705SXin Li ValTy =
645*67e74705SXin Li CGF.getContext().getIntTypeForBitwidth(SizeInBits, /*Signed=*/false);
646*67e74705SXin Li llvm::Type *IPtrTy = llvm::IntegerType::get(CGF.getLLVMContext(),
647*67e74705SXin Li SizeInBits)->getPointerTo();
648*67e74705SXin Li Address Ptr = Address(CGF.Builder.CreateBitCast(Val, IPtrTy), Align);
649*67e74705SXin Li Val = CGF.EmitLoadOfScalar(Ptr, false,
650*67e74705SXin Li CGF.getContext().getPointerType(ValTy),
651*67e74705SXin Li Loc);
652*67e74705SXin Li // Coerce the value into an appropriately sized integer type.
653*67e74705SXin Li Args.add(RValue::get(Val), ValTy);
654*67e74705SXin Li } else {
655*67e74705SXin Li // Non-optimized functions always take a reference.
656*67e74705SXin Li Args.add(RValue::get(CGF.EmitCastToVoidPtr(Val)),
657*67e74705SXin Li CGF.getContext().VoidPtrTy);
658*67e74705SXin Li }
659*67e74705SXin Li }
660*67e74705SXin Li
EmitAtomicExpr(AtomicExpr * E)661*67e74705SXin Li RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) {
662*67e74705SXin Li QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
663*67e74705SXin Li QualType MemTy = AtomicTy;
664*67e74705SXin Li if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
665*67e74705SXin Li MemTy = AT->getValueType();
666*67e74705SXin Li CharUnits sizeChars, alignChars;
667*67e74705SXin Li std::tie(sizeChars, alignChars) = getContext().getTypeInfoInChars(AtomicTy);
668*67e74705SXin Li uint64_t Size = sizeChars.getQuantity();
669*67e74705SXin Li unsigned MaxInlineWidthInBits = getTarget().getMaxAtomicInlineWidth();
670*67e74705SXin Li bool UseLibcall = (sizeChars != alignChars ||
671*67e74705SXin Li getContext().toBits(sizeChars) > MaxInlineWidthInBits);
672*67e74705SXin Li
673*67e74705SXin Li llvm::Value *IsWeak = nullptr, *OrderFail = nullptr;
674*67e74705SXin Li
675*67e74705SXin Li Address Val1 = Address::invalid();
676*67e74705SXin Li Address Val2 = Address::invalid();
677*67e74705SXin Li Address Dest = Address::invalid();
678*67e74705SXin Li Address Ptr(EmitScalarExpr(E->getPtr()), alignChars);
679*67e74705SXin Li
680*67e74705SXin Li if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
681*67e74705SXin Li LValue lvalue = MakeAddrLValue(Ptr, AtomicTy);
682*67e74705SXin Li EmitAtomicInit(E->getVal1(), lvalue);
683*67e74705SXin Li return RValue::get(nullptr);
684*67e74705SXin Li }
685*67e74705SXin Li
686*67e74705SXin Li llvm::Value *Order = EmitScalarExpr(E->getOrder());
687*67e74705SXin Li
688*67e74705SXin Li switch (E->getOp()) {
689*67e74705SXin Li case AtomicExpr::AO__c11_atomic_init:
690*67e74705SXin Li llvm_unreachable("Already handled above with EmitAtomicInit!");
691*67e74705SXin Li
692*67e74705SXin Li case AtomicExpr::AO__c11_atomic_load:
693*67e74705SXin Li case AtomicExpr::AO__atomic_load_n:
694*67e74705SXin Li break;
695*67e74705SXin Li
696*67e74705SXin Li case AtomicExpr::AO__atomic_load:
697*67e74705SXin Li Dest = EmitPointerWithAlignment(E->getVal1());
698*67e74705SXin Li break;
699*67e74705SXin Li
700*67e74705SXin Li case AtomicExpr::AO__atomic_store:
701*67e74705SXin Li Val1 = EmitPointerWithAlignment(E->getVal1());
702*67e74705SXin Li break;
703*67e74705SXin Li
704*67e74705SXin Li case AtomicExpr::AO__atomic_exchange:
705*67e74705SXin Li Val1 = EmitPointerWithAlignment(E->getVal1());
706*67e74705SXin Li Dest = EmitPointerWithAlignment(E->getVal2());
707*67e74705SXin Li break;
708*67e74705SXin Li
709*67e74705SXin Li case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
710*67e74705SXin Li case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
711*67e74705SXin Li case AtomicExpr::AO__atomic_compare_exchange_n:
712*67e74705SXin Li case AtomicExpr::AO__atomic_compare_exchange:
713*67e74705SXin Li Val1 = EmitPointerWithAlignment(E->getVal1());
714*67e74705SXin Li if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
715*67e74705SXin Li Val2 = EmitPointerWithAlignment(E->getVal2());
716*67e74705SXin Li else
717*67e74705SXin Li Val2 = EmitValToTemp(*this, E->getVal2());
718*67e74705SXin Li OrderFail = EmitScalarExpr(E->getOrderFail());
719*67e74705SXin Li if (E->getNumSubExprs() == 6)
720*67e74705SXin Li IsWeak = EmitScalarExpr(E->getWeak());
721*67e74705SXin Li break;
722*67e74705SXin Li
723*67e74705SXin Li case AtomicExpr::AO__c11_atomic_fetch_add:
724*67e74705SXin Li case AtomicExpr::AO__c11_atomic_fetch_sub:
725*67e74705SXin Li if (MemTy->isPointerType()) {
726*67e74705SXin Li // For pointer arithmetic, we're required to do a bit of math:
727*67e74705SXin Li // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
728*67e74705SXin Li // ... but only for the C11 builtins. The GNU builtins expect the
729*67e74705SXin Li // user to multiply by sizeof(T).
730*67e74705SXin Li QualType Val1Ty = E->getVal1()->getType();
731*67e74705SXin Li llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
732*67e74705SXin Li CharUnits PointeeIncAmt =
733*67e74705SXin Li getContext().getTypeSizeInChars(MemTy->getPointeeType());
734*67e74705SXin Li Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
735*67e74705SXin Li auto Temp = CreateMemTemp(Val1Ty, ".atomictmp");
736*67e74705SXin Li Val1 = Temp;
737*67e74705SXin Li EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Temp, Val1Ty));
738*67e74705SXin Li break;
739*67e74705SXin Li }
740*67e74705SXin Li // Fall through.
741*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_add:
742*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_sub:
743*67e74705SXin Li case AtomicExpr::AO__atomic_add_fetch:
744*67e74705SXin Li case AtomicExpr::AO__atomic_sub_fetch:
745*67e74705SXin Li case AtomicExpr::AO__c11_atomic_store:
746*67e74705SXin Li case AtomicExpr::AO__c11_atomic_exchange:
747*67e74705SXin Li case AtomicExpr::AO__atomic_store_n:
748*67e74705SXin Li case AtomicExpr::AO__atomic_exchange_n:
749*67e74705SXin Li case AtomicExpr::AO__c11_atomic_fetch_and:
750*67e74705SXin Li case AtomicExpr::AO__c11_atomic_fetch_or:
751*67e74705SXin Li case AtomicExpr::AO__c11_atomic_fetch_xor:
752*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_and:
753*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_or:
754*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_xor:
755*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_nand:
756*67e74705SXin Li case AtomicExpr::AO__atomic_and_fetch:
757*67e74705SXin Li case AtomicExpr::AO__atomic_or_fetch:
758*67e74705SXin Li case AtomicExpr::AO__atomic_xor_fetch:
759*67e74705SXin Li case AtomicExpr::AO__atomic_nand_fetch:
760*67e74705SXin Li Val1 = EmitValToTemp(*this, E->getVal1());
761*67e74705SXin Li break;
762*67e74705SXin Li }
763*67e74705SXin Li
764*67e74705SXin Li QualType RValTy = E->getType().getUnqualifiedType();
765*67e74705SXin Li
766*67e74705SXin Li // The inlined atomics only function on iN types, where N is a power of 2. We
767*67e74705SXin Li // need to make sure (via temporaries if necessary) that all incoming values
768*67e74705SXin Li // are compatible.
769*67e74705SXin Li LValue AtomicVal = MakeAddrLValue(Ptr, AtomicTy);
770*67e74705SXin Li AtomicInfo Atomics(*this, AtomicVal);
771*67e74705SXin Li
772*67e74705SXin Li Ptr = Atomics.emitCastToAtomicIntPointer(Ptr);
773*67e74705SXin Li if (Val1.isValid()) Val1 = Atomics.convertToAtomicIntPointer(Val1);
774*67e74705SXin Li if (Val2.isValid()) Val2 = Atomics.convertToAtomicIntPointer(Val2);
775*67e74705SXin Li if (Dest.isValid())
776*67e74705SXin Li Dest = Atomics.emitCastToAtomicIntPointer(Dest);
777*67e74705SXin Li else if (E->isCmpXChg())
778*67e74705SXin Li Dest = CreateMemTemp(RValTy, "cmpxchg.bool");
779*67e74705SXin Li else if (!RValTy->isVoidType())
780*67e74705SXin Li Dest = Atomics.emitCastToAtomicIntPointer(Atomics.CreateTempAlloca());
781*67e74705SXin Li
782*67e74705SXin Li // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
783*67e74705SXin Li if (UseLibcall) {
784*67e74705SXin Li bool UseOptimizedLibcall = false;
785*67e74705SXin Li switch (E->getOp()) {
786*67e74705SXin Li case AtomicExpr::AO__c11_atomic_init:
787*67e74705SXin Li llvm_unreachable("Already handled above with EmitAtomicInit!");
788*67e74705SXin Li
789*67e74705SXin Li case AtomicExpr::AO__c11_atomic_fetch_add:
790*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_add:
791*67e74705SXin Li case AtomicExpr::AO__c11_atomic_fetch_and:
792*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_and:
793*67e74705SXin Li case AtomicExpr::AO__c11_atomic_fetch_or:
794*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_or:
795*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_nand:
796*67e74705SXin Li case AtomicExpr::AO__c11_atomic_fetch_sub:
797*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_sub:
798*67e74705SXin Li case AtomicExpr::AO__c11_atomic_fetch_xor:
799*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_xor:
800*67e74705SXin Li case AtomicExpr::AO__atomic_add_fetch:
801*67e74705SXin Li case AtomicExpr::AO__atomic_and_fetch:
802*67e74705SXin Li case AtomicExpr::AO__atomic_nand_fetch:
803*67e74705SXin Li case AtomicExpr::AO__atomic_or_fetch:
804*67e74705SXin Li case AtomicExpr::AO__atomic_sub_fetch:
805*67e74705SXin Li case AtomicExpr::AO__atomic_xor_fetch:
806*67e74705SXin Li // For these, only library calls for certain sizes exist.
807*67e74705SXin Li UseOptimizedLibcall = true;
808*67e74705SXin Li break;
809*67e74705SXin Li
810*67e74705SXin Li case AtomicExpr::AO__c11_atomic_load:
811*67e74705SXin Li case AtomicExpr::AO__c11_atomic_store:
812*67e74705SXin Li case AtomicExpr::AO__c11_atomic_exchange:
813*67e74705SXin Li case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
814*67e74705SXin Li case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
815*67e74705SXin Li case AtomicExpr::AO__atomic_load_n:
816*67e74705SXin Li case AtomicExpr::AO__atomic_load:
817*67e74705SXin Li case AtomicExpr::AO__atomic_store_n:
818*67e74705SXin Li case AtomicExpr::AO__atomic_store:
819*67e74705SXin Li case AtomicExpr::AO__atomic_exchange_n:
820*67e74705SXin Li case AtomicExpr::AO__atomic_exchange:
821*67e74705SXin Li case AtomicExpr::AO__atomic_compare_exchange_n:
822*67e74705SXin Li case AtomicExpr::AO__atomic_compare_exchange:
823*67e74705SXin Li // Only use optimized library calls for sizes for which they exist.
824*67e74705SXin Li if (Size == 1 || Size == 2 || Size == 4 || Size == 8)
825*67e74705SXin Li UseOptimizedLibcall = true;
826*67e74705SXin Li break;
827*67e74705SXin Li }
828*67e74705SXin Li
829*67e74705SXin Li CallArgList Args;
830*67e74705SXin Li if (!UseOptimizedLibcall) {
831*67e74705SXin Li // For non-optimized library calls, the size is the first parameter
832*67e74705SXin Li Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
833*67e74705SXin Li getContext().getSizeType());
834*67e74705SXin Li }
835*67e74705SXin Li // Atomic address is the first or second parameter
836*67e74705SXin Li Args.add(RValue::get(EmitCastToVoidPtr(Ptr.getPointer())),
837*67e74705SXin Li getContext().VoidPtrTy);
838*67e74705SXin Li
839*67e74705SXin Li std::string LibCallName;
840*67e74705SXin Li QualType LoweredMemTy =
841*67e74705SXin Li MemTy->isPointerType() ? getContext().getIntPtrType() : MemTy;
842*67e74705SXin Li QualType RetTy;
843*67e74705SXin Li bool HaveRetTy = false;
844*67e74705SXin Li llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
845*67e74705SXin Li switch (E->getOp()) {
846*67e74705SXin Li case AtomicExpr::AO__c11_atomic_init:
847*67e74705SXin Li llvm_unreachable("Already handled!");
848*67e74705SXin Li
849*67e74705SXin Li // There is only one libcall for compare an exchange, because there is no
850*67e74705SXin Li // optimisation benefit possible from a libcall version of a weak compare
851*67e74705SXin Li // and exchange.
852*67e74705SXin Li // bool __atomic_compare_exchange(size_t size, void *mem, void *expected,
853*67e74705SXin Li // void *desired, int success, int failure)
854*67e74705SXin Li // bool __atomic_compare_exchange_N(T *mem, T *expected, T desired,
855*67e74705SXin Li // int success, int failure)
856*67e74705SXin Li case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
857*67e74705SXin Li case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
858*67e74705SXin Li case AtomicExpr::AO__atomic_compare_exchange:
859*67e74705SXin Li case AtomicExpr::AO__atomic_compare_exchange_n:
860*67e74705SXin Li LibCallName = "__atomic_compare_exchange";
861*67e74705SXin Li RetTy = getContext().BoolTy;
862*67e74705SXin Li HaveRetTy = true;
863*67e74705SXin Li Args.add(RValue::get(EmitCastToVoidPtr(Val1.getPointer())),
864*67e74705SXin Li getContext().VoidPtrTy);
865*67e74705SXin Li AddDirectArgument(*this, Args, UseOptimizedLibcall, Val2.getPointer(),
866*67e74705SXin Li MemTy, E->getExprLoc(), sizeChars);
867*67e74705SXin Li Args.add(RValue::get(Order), getContext().IntTy);
868*67e74705SXin Li Order = OrderFail;
869*67e74705SXin Li break;
870*67e74705SXin Li // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
871*67e74705SXin Li // int order)
872*67e74705SXin Li // T __atomic_exchange_N(T *mem, T val, int order)
873*67e74705SXin Li case AtomicExpr::AO__c11_atomic_exchange:
874*67e74705SXin Li case AtomicExpr::AO__atomic_exchange_n:
875*67e74705SXin Li case AtomicExpr::AO__atomic_exchange:
876*67e74705SXin Li LibCallName = "__atomic_exchange";
877*67e74705SXin Li AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
878*67e74705SXin Li MemTy, E->getExprLoc(), sizeChars);
879*67e74705SXin Li break;
880*67e74705SXin Li // void __atomic_store(size_t size, void *mem, void *val, int order)
881*67e74705SXin Li // void __atomic_store_N(T *mem, T val, int order)
882*67e74705SXin Li case AtomicExpr::AO__c11_atomic_store:
883*67e74705SXin Li case AtomicExpr::AO__atomic_store:
884*67e74705SXin Li case AtomicExpr::AO__atomic_store_n:
885*67e74705SXin Li LibCallName = "__atomic_store";
886*67e74705SXin Li RetTy = getContext().VoidTy;
887*67e74705SXin Li HaveRetTy = true;
888*67e74705SXin Li AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
889*67e74705SXin Li MemTy, E->getExprLoc(), sizeChars);
890*67e74705SXin Li break;
891*67e74705SXin Li // void __atomic_load(size_t size, void *mem, void *return, int order)
892*67e74705SXin Li // T __atomic_load_N(T *mem, int order)
893*67e74705SXin Li case AtomicExpr::AO__c11_atomic_load:
894*67e74705SXin Li case AtomicExpr::AO__atomic_load:
895*67e74705SXin Li case AtomicExpr::AO__atomic_load_n:
896*67e74705SXin Li LibCallName = "__atomic_load";
897*67e74705SXin Li break;
898*67e74705SXin Li // T __atomic_add_fetch_N(T *mem, T val, int order)
899*67e74705SXin Li // T __atomic_fetch_add_N(T *mem, T val, int order)
900*67e74705SXin Li case AtomicExpr::AO__atomic_add_fetch:
901*67e74705SXin Li PostOp = llvm::Instruction::Add;
902*67e74705SXin Li // Fall through.
903*67e74705SXin Li case AtomicExpr::AO__c11_atomic_fetch_add:
904*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_add:
905*67e74705SXin Li LibCallName = "__atomic_fetch_add";
906*67e74705SXin Li AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
907*67e74705SXin Li LoweredMemTy, E->getExprLoc(), sizeChars);
908*67e74705SXin Li break;
909*67e74705SXin Li // T __atomic_and_fetch_N(T *mem, T val, int order)
910*67e74705SXin Li // T __atomic_fetch_and_N(T *mem, T val, int order)
911*67e74705SXin Li case AtomicExpr::AO__atomic_and_fetch:
912*67e74705SXin Li PostOp = llvm::Instruction::And;
913*67e74705SXin Li // Fall through.
914*67e74705SXin Li case AtomicExpr::AO__c11_atomic_fetch_and:
915*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_and:
916*67e74705SXin Li LibCallName = "__atomic_fetch_and";
917*67e74705SXin Li AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
918*67e74705SXin Li MemTy, E->getExprLoc(), sizeChars);
919*67e74705SXin Li break;
920*67e74705SXin Li // T __atomic_or_fetch_N(T *mem, T val, int order)
921*67e74705SXin Li // T __atomic_fetch_or_N(T *mem, T val, int order)
922*67e74705SXin Li case AtomicExpr::AO__atomic_or_fetch:
923*67e74705SXin Li PostOp = llvm::Instruction::Or;
924*67e74705SXin Li // Fall through.
925*67e74705SXin Li case AtomicExpr::AO__c11_atomic_fetch_or:
926*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_or:
927*67e74705SXin Li LibCallName = "__atomic_fetch_or";
928*67e74705SXin Li AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
929*67e74705SXin Li MemTy, E->getExprLoc(), sizeChars);
930*67e74705SXin Li break;
931*67e74705SXin Li // T __atomic_sub_fetch_N(T *mem, T val, int order)
932*67e74705SXin Li // T __atomic_fetch_sub_N(T *mem, T val, int order)
933*67e74705SXin Li case AtomicExpr::AO__atomic_sub_fetch:
934*67e74705SXin Li PostOp = llvm::Instruction::Sub;
935*67e74705SXin Li // Fall through.
936*67e74705SXin Li case AtomicExpr::AO__c11_atomic_fetch_sub:
937*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_sub:
938*67e74705SXin Li LibCallName = "__atomic_fetch_sub";
939*67e74705SXin Li AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
940*67e74705SXin Li LoweredMemTy, E->getExprLoc(), sizeChars);
941*67e74705SXin Li break;
942*67e74705SXin Li // T __atomic_xor_fetch_N(T *mem, T val, int order)
943*67e74705SXin Li // T __atomic_fetch_xor_N(T *mem, T val, int order)
944*67e74705SXin Li case AtomicExpr::AO__atomic_xor_fetch:
945*67e74705SXin Li PostOp = llvm::Instruction::Xor;
946*67e74705SXin Li // Fall through.
947*67e74705SXin Li case AtomicExpr::AO__c11_atomic_fetch_xor:
948*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_xor:
949*67e74705SXin Li LibCallName = "__atomic_fetch_xor";
950*67e74705SXin Li AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
951*67e74705SXin Li MemTy, E->getExprLoc(), sizeChars);
952*67e74705SXin Li break;
953*67e74705SXin Li // T __atomic_nand_fetch_N(T *mem, T val, int order)
954*67e74705SXin Li // T __atomic_fetch_nand_N(T *mem, T val, int order)
955*67e74705SXin Li case AtomicExpr::AO__atomic_nand_fetch:
956*67e74705SXin Li PostOp = llvm::Instruction::And; // the NOT is special cased below
957*67e74705SXin Li // Fall through.
958*67e74705SXin Li case AtomicExpr::AO__atomic_fetch_nand:
959*67e74705SXin Li LibCallName = "__atomic_fetch_nand";
960*67e74705SXin Li AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
961*67e74705SXin Li MemTy, E->getExprLoc(), sizeChars);
962*67e74705SXin Li break;
963*67e74705SXin Li }
964*67e74705SXin Li
965*67e74705SXin Li // Optimized functions have the size in their name.
966*67e74705SXin Li if (UseOptimizedLibcall)
967*67e74705SXin Li LibCallName += "_" + llvm::utostr(Size);
968*67e74705SXin Li // By default, assume we return a value of the atomic type.
969*67e74705SXin Li if (!HaveRetTy) {
970*67e74705SXin Li if (UseOptimizedLibcall) {
971*67e74705SXin Li // Value is returned directly.
972*67e74705SXin Li // The function returns an appropriately sized integer type.
973*67e74705SXin Li RetTy = getContext().getIntTypeForBitwidth(
974*67e74705SXin Li getContext().toBits(sizeChars), /*Signed=*/false);
975*67e74705SXin Li } else {
976*67e74705SXin Li // Value is returned through parameter before the order.
977*67e74705SXin Li RetTy = getContext().VoidTy;
978*67e74705SXin Li Args.add(RValue::get(EmitCastToVoidPtr(Dest.getPointer())),
979*67e74705SXin Li getContext().VoidPtrTy);
980*67e74705SXin Li }
981*67e74705SXin Li }
982*67e74705SXin Li // order is always the last parameter
983*67e74705SXin Li Args.add(RValue::get(Order),
984*67e74705SXin Li getContext().IntTy);
985*67e74705SXin Li
986*67e74705SXin Li // PostOp is only needed for the atomic_*_fetch operations, and
987*67e74705SXin Li // thus is only needed for and implemented in the
988*67e74705SXin Li // UseOptimizedLibcall codepath.
989*67e74705SXin Li assert(UseOptimizedLibcall || !PostOp);
990*67e74705SXin Li
991*67e74705SXin Li RValue Res = emitAtomicLibcall(*this, LibCallName, RetTy, Args);
992*67e74705SXin Li // The value is returned directly from the libcall.
993*67e74705SXin Li if (E->isCmpXChg())
994*67e74705SXin Li return Res;
995*67e74705SXin Li
996*67e74705SXin Li // The value is returned directly for optimized libcalls but the expr
997*67e74705SXin Li // provided an out-param.
998*67e74705SXin Li if (UseOptimizedLibcall && Res.getScalarVal()) {
999*67e74705SXin Li llvm::Value *ResVal = Res.getScalarVal();
1000*67e74705SXin Li if (PostOp) {
1001*67e74705SXin Li llvm::Value *LoadVal1 = Args[1].RV.getScalarVal();
1002*67e74705SXin Li ResVal = Builder.CreateBinOp(PostOp, ResVal, LoadVal1);
1003*67e74705SXin Li }
1004*67e74705SXin Li if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
1005*67e74705SXin Li ResVal = Builder.CreateNot(ResVal);
1006*67e74705SXin Li
1007*67e74705SXin Li Builder.CreateStore(
1008*67e74705SXin Li ResVal,
1009*67e74705SXin Li Builder.CreateBitCast(Dest, ResVal->getType()->getPointerTo()));
1010*67e74705SXin Li }
1011*67e74705SXin Li
1012*67e74705SXin Li if (RValTy->isVoidType())
1013*67e74705SXin Li return RValue::get(nullptr);
1014*67e74705SXin Li
1015*67e74705SXin Li return convertTempToRValue(
1016*67e74705SXin Li Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo()),
1017*67e74705SXin Li RValTy, E->getExprLoc());
1018*67e74705SXin Li }
1019*67e74705SXin Li
1020*67e74705SXin Li bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
1021*67e74705SXin Li E->getOp() == AtomicExpr::AO__atomic_store ||
1022*67e74705SXin Li E->getOp() == AtomicExpr::AO__atomic_store_n;
1023*67e74705SXin Li bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
1024*67e74705SXin Li E->getOp() == AtomicExpr::AO__atomic_load ||
1025*67e74705SXin Li E->getOp() == AtomicExpr::AO__atomic_load_n;
1026*67e74705SXin Li
1027*67e74705SXin Li if (isa<llvm::ConstantInt>(Order)) {
1028*67e74705SXin Li auto ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1029*67e74705SXin Li // We should not ever get to a case where the ordering isn't a valid C ABI
1030*67e74705SXin Li // value, but it's hard to enforce that in general.
1031*67e74705SXin Li if (llvm::isValidAtomicOrderingCABI(ord))
1032*67e74705SXin Li switch ((llvm::AtomicOrderingCABI)ord) {
1033*67e74705SXin Li case llvm::AtomicOrderingCABI::relaxed:
1034*67e74705SXin Li EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1035*67e74705SXin Li llvm::AtomicOrdering::Monotonic);
1036*67e74705SXin Li break;
1037*67e74705SXin Li case llvm::AtomicOrderingCABI::consume:
1038*67e74705SXin Li case llvm::AtomicOrderingCABI::acquire:
1039*67e74705SXin Li if (IsStore)
1040*67e74705SXin Li break; // Avoid crashing on code with undefined behavior
1041*67e74705SXin Li EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1042*67e74705SXin Li llvm::AtomicOrdering::Acquire);
1043*67e74705SXin Li break;
1044*67e74705SXin Li case llvm::AtomicOrderingCABI::release:
1045*67e74705SXin Li if (IsLoad)
1046*67e74705SXin Li break; // Avoid crashing on code with undefined behavior
1047*67e74705SXin Li EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1048*67e74705SXin Li llvm::AtomicOrdering::Release);
1049*67e74705SXin Li break;
1050*67e74705SXin Li case llvm::AtomicOrderingCABI::acq_rel:
1051*67e74705SXin Li if (IsLoad || IsStore)
1052*67e74705SXin Li break; // Avoid crashing on code with undefined behavior
1053*67e74705SXin Li EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1054*67e74705SXin Li llvm::AtomicOrdering::AcquireRelease);
1055*67e74705SXin Li break;
1056*67e74705SXin Li case llvm::AtomicOrderingCABI::seq_cst:
1057*67e74705SXin Li EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1058*67e74705SXin Li llvm::AtomicOrdering::SequentiallyConsistent);
1059*67e74705SXin Li break;
1060*67e74705SXin Li }
1061*67e74705SXin Li if (RValTy->isVoidType())
1062*67e74705SXin Li return RValue::get(nullptr);
1063*67e74705SXin Li
1064*67e74705SXin Li return convertTempToRValue(
1065*67e74705SXin Li Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo()),
1066*67e74705SXin Li RValTy, E->getExprLoc());
1067*67e74705SXin Li }
1068*67e74705SXin Li
1069*67e74705SXin Li // Long case, when Order isn't obviously constant.
1070*67e74705SXin Li
1071*67e74705SXin Li // Create all the relevant BB's
1072*67e74705SXin Li llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr,
1073*67e74705SXin Li *ReleaseBB = nullptr, *AcqRelBB = nullptr,
1074*67e74705SXin Li *SeqCstBB = nullptr;
1075*67e74705SXin Li MonotonicBB = createBasicBlock("monotonic", CurFn);
1076*67e74705SXin Li if (!IsStore)
1077*67e74705SXin Li AcquireBB = createBasicBlock("acquire", CurFn);
1078*67e74705SXin Li if (!IsLoad)
1079*67e74705SXin Li ReleaseBB = createBasicBlock("release", CurFn);
1080*67e74705SXin Li if (!IsLoad && !IsStore)
1081*67e74705SXin Li AcqRelBB = createBasicBlock("acqrel", CurFn);
1082*67e74705SXin Li SeqCstBB = createBasicBlock("seqcst", CurFn);
1083*67e74705SXin Li llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1084*67e74705SXin Li
1085*67e74705SXin Li // Create the switch for the split
1086*67e74705SXin Li // MonotonicBB is arbitrarily chosen as the default case; in practice, this
1087*67e74705SXin Li // doesn't matter unless someone is crazy enough to use something that
1088*67e74705SXin Li // doesn't fold to a constant for the ordering.
1089*67e74705SXin Li Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1090*67e74705SXin Li llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
1091*67e74705SXin Li
1092*67e74705SXin Li // Emit all the different atomics
1093*67e74705SXin Li Builder.SetInsertPoint(MonotonicBB);
1094*67e74705SXin Li EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
1095*67e74705SXin Li Size, llvm::AtomicOrdering::Monotonic);
1096*67e74705SXin Li Builder.CreateBr(ContBB);
1097*67e74705SXin Li if (!IsStore) {
1098*67e74705SXin Li Builder.SetInsertPoint(AcquireBB);
1099*67e74705SXin Li EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
1100*67e74705SXin Li Size, llvm::AtomicOrdering::Acquire);
1101*67e74705SXin Li Builder.CreateBr(ContBB);
1102*67e74705SXin Li SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::consume),
1103*67e74705SXin Li AcquireBB);
1104*67e74705SXin Li SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::acquire),
1105*67e74705SXin Li AcquireBB);
1106*67e74705SXin Li }
1107*67e74705SXin Li if (!IsLoad) {
1108*67e74705SXin Li Builder.SetInsertPoint(ReleaseBB);
1109*67e74705SXin Li EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
1110*67e74705SXin Li Size, llvm::AtomicOrdering::Release);
1111*67e74705SXin Li Builder.CreateBr(ContBB);
1112*67e74705SXin Li SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::release),
1113*67e74705SXin Li ReleaseBB);
1114*67e74705SXin Li }
1115*67e74705SXin Li if (!IsLoad && !IsStore) {
1116*67e74705SXin Li Builder.SetInsertPoint(AcqRelBB);
1117*67e74705SXin Li EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
1118*67e74705SXin Li Size, llvm::AtomicOrdering::AcquireRelease);
1119*67e74705SXin Li Builder.CreateBr(ContBB);
1120*67e74705SXin Li SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::acq_rel),
1121*67e74705SXin Li AcqRelBB);
1122*67e74705SXin Li }
1123*67e74705SXin Li Builder.SetInsertPoint(SeqCstBB);
1124*67e74705SXin Li EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
1125*67e74705SXin Li Size, llvm::AtomicOrdering::SequentiallyConsistent);
1126*67e74705SXin Li Builder.CreateBr(ContBB);
1127*67e74705SXin Li SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::seq_cst),
1128*67e74705SXin Li SeqCstBB);
1129*67e74705SXin Li
1130*67e74705SXin Li // Cleanup and return
1131*67e74705SXin Li Builder.SetInsertPoint(ContBB);
1132*67e74705SXin Li if (RValTy->isVoidType())
1133*67e74705SXin Li return RValue::get(nullptr);
1134*67e74705SXin Li
1135*67e74705SXin Li assert(Atomics.getValueSizeInBits() <= Atomics.getAtomicSizeInBits());
1136*67e74705SXin Li return convertTempToRValue(
1137*67e74705SXin Li Builder.CreateBitCast(Dest, ConvertTypeForMem(RValTy)->getPointerTo()),
1138*67e74705SXin Li RValTy, E->getExprLoc());
1139*67e74705SXin Li }
1140*67e74705SXin Li
emitCastToAtomicIntPointer(Address addr) const1141*67e74705SXin Li Address AtomicInfo::emitCastToAtomicIntPointer(Address addr) const {
1142*67e74705SXin Li unsigned addrspace =
1143*67e74705SXin Li cast<llvm::PointerType>(addr.getPointer()->getType())->getAddressSpace();
1144*67e74705SXin Li llvm::IntegerType *ty =
1145*67e74705SXin Li llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits);
1146*67e74705SXin Li return CGF.Builder.CreateBitCast(addr, ty->getPointerTo(addrspace));
1147*67e74705SXin Li }
1148*67e74705SXin Li
convertToAtomicIntPointer(Address Addr) const1149*67e74705SXin Li Address AtomicInfo::convertToAtomicIntPointer(Address Addr) const {
1150*67e74705SXin Li llvm::Type *Ty = Addr.getElementType();
1151*67e74705SXin Li uint64_t SourceSizeInBits = CGF.CGM.getDataLayout().getTypeSizeInBits(Ty);
1152*67e74705SXin Li if (SourceSizeInBits != AtomicSizeInBits) {
1153*67e74705SXin Li Address Tmp = CreateTempAlloca();
1154*67e74705SXin Li CGF.Builder.CreateMemCpy(Tmp, Addr,
1155*67e74705SXin Li std::min(AtomicSizeInBits, SourceSizeInBits) / 8);
1156*67e74705SXin Li Addr = Tmp;
1157*67e74705SXin Li }
1158*67e74705SXin Li
1159*67e74705SXin Li return emitCastToAtomicIntPointer(Addr);
1160*67e74705SXin Li }
1161*67e74705SXin Li
convertAtomicTempToRValue(Address addr,AggValueSlot resultSlot,SourceLocation loc,bool asValue) const1162*67e74705SXin Li RValue AtomicInfo::convertAtomicTempToRValue(Address addr,
1163*67e74705SXin Li AggValueSlot resultSlot,
1164*67e74705SXin Li SourceLocation loc,
1165*67e74705SXin Li bool asValue) const {
1166*67e74705SXin Li if (LVal.isSimple()) {
1167*67e74705SXin Li if (EvaluationKind == TEK_Aggregate)
1168*67e74705SXin Li return resultSlot.asRValue();
1169*67e74705SXin Li
1170*67e74705SXin Li // Drill into the padding structure if we have one.
1171*67e74705SXin Li if (hasPadding())
1172*67e74705SXin Li addr = CGF.Builder.CreateStructGEP(addr, 0, CharUnits());
1173*67e74705SXin Li
1174*67e74705SXin Li // Otherwise, just convert the temporary to an r-value using the
1175*67e74705SXin Li // normal conversion routine.
1176*67e74705SXin Li return CGF.convertTempToRValue(addr, getValueType(), loc);
1177*67e74705SXin Li }
1178*67e74705SXin Li if (!asValue)
1179*67e74705SXin Li // Get RValue from temp memory as atomic for non-simple lvalues
1180*67e74705SXin Li return RValue::get(CGF.Builder.CreateLoad(addr));
1181*67e74705SXin Li if (LVal.isBitField())
1182*67e74705SXin Li return CGF.EmitLoadOfBitfieldLValue(
1183*67e74705SXin Li LValue::MakeBitfield(addr, LVal.getBitFieldInfo(), LVal.getType(),
1184*67e74705SXin Li LVal.getAlignmentSource()));
1185*67e74705SXin Li if (LVal.isVectorElt())
1186*67e74705SXin Li return CGF.EmitLoadOfLValue(
1187*67e74705SXin Li LValue::MakeVectorElt(addr, LVal.getVectorIdx(), LVal.getType(),
1188*67e74705SXin Li LVal.getAlignmentSource()), loc);
1189*67e74705SXin Li assert(LVal.isExtVectorElt());
1190*67e74705SXin Li return CGF.EmitLoadOfExtVectorElementLValue(LValue::MakeExtVectorElt(
1191*67e74705SXin Li addr, LVal.getExtVectorElts(), LVal.getType(),
1192*67e74705SXin Li LVal.getAlignmentSource()));
1193*67e74705SXin Li }
1194*67e74705SXin Li
ConvertIntToValueOrAtomic(llvm::Value * IntVal,AggValueSlot ResultSlot,SourceLocation Loc,bool AsValue) const1195*67e74705SXin Li RValue AtomicInfo::ConvertIntToValueOrAtomic(llvm::Value *IntVal,
1196*67e74705SXin Li AggValueSlot ResultSlot,
1197*67e74705SXin Li SourceLocation Loc,
1198*67e74705SXin Li bool AsValue) const {
1199*67e74705SXin Li // Try not to in some easy cases.
1200*67e74705SXin Li assert(IntVal->getType()->isIntegerTy() && "Expected integer value");
1201*67e74705SXin Li if (getEvaluationKind() == TEK_Scalar &&
1202*67e74705SXin Li (((!LVal.isBitField() ||
1203*67e74705SXin Li LVal.getBitFieldInfo().Size == ValueSizeInBits) &&
1204*67e74705SXin Li !hasPadding()) ||
1205*67e74705SXin Li !AsValue)) {
1206*67e74705SXin Li auto *ValTy = AsValue
1207*67e74705SXin Li ? CGF.ConvertTypeForMem(ValueTy)
1208*67e74705SXin Li : getAtomicAddress().getType()->getPointerElementType();
1209*67e74705SXin Li if (ValTy->isIntegerTy()) {
1210*67e74705SXin Li assert(IntVal->getType() == ValTy && "Different integer types.");
1211*67e74705SXin Li return RValue::get(CGF.EmitFromMemory(IntVal, ValueTy));
1212*67e74705SXin Li } else if (ValTy->isPointerTy())
1213*67e74705SXin Li return RValue::get(CGF.Builder.CreateIntToPtr(IntVal, ValTy));
1214*67e74705SXin Li else if (llvm::CastInst::isBitCastable(IntVal->getType(), ValTy))
1215*67e74705SXin Li return RValue::get(CGF.Builder.CreateBitCast(IntVal, ValTy));
1216*67e74705SXin Li }
1217*67e74705SXin Li
1218*67e74705SXin Li // Create a temporary. This needs to be big enough to hold the
1219*67e74705SXin Li // atomic integer.
1220*67e74705SXin Li Address Temp = Address::invalid();
1221*67e74705SXin Li bool TempIsVolatile = false;
1222*67e74705SXin Li if (AsValue && getEvaluationKind() == TEK_Aggregate) {
1223*67e74705SXin Li assert(!ResultSlot.isIgnored());
1224*67e74705SXin Li Temp = ResultSlot.getAddress();
1225*67e74705SXin Li TempIsVolatile = ResultSlot.isVolatile();
1226*67e74705SXin Li } else {
1227*67e74705SXin Li Temp = CreateTempAlloca();
1228*67e74705SXin Li }
1229*67e74705SXin Li
1230*67e74705SXin Li // Slam the integer into the temporary.
1231*67e74705SXin Li Address CastTemp = emitCastToAtomicIntPointer(Temp);
1232*67e74705SXin Li CGF.Builder.CreateStore(IntVal, CastTemp)
1233*67e74705SXin Li ->setVolatile(TempIsVolatile);
1234*67e74705SXin Li
1235*67e74705SXin Li return convertAtomicTempToRValue(Temp, ResultSlot, Loc, AsValue);
1236*67e74705SXin Li }
1237*67e74705SXin Li
EmitAtomicLoadLibcall(llvm::Value * AddForLoaded,llvm::AtomicOrdering AO,bool)1238*67e74705SXin Li void AtomicInfo::EmitAtomicLoadLibcall(llvm::Value *AddForLoaded,
1239*67e74705SXin Li llvm::AtomicOrdering AO, bool) {
1240*67e74705SXin Li // void __atomic_load(size_t size, void *mem, void *return, int order);
1241*67e74705SXin Li CallArgList Args;
1242*67e74705SXin Li Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType());
1243*67e74705SXin Li Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicPointer())),
1244*67e74705SXin Li CGF.getContext().VoidPtrTy);
1245*67e74705SXin Li Args.add(RValue::get(CGF.EmitCastToVoidPtr(AddForLoaded)),
1246*67e74705SXin Li CGF.getContext().VoidPtrTy);
1247*67e74705SXin Li Args.add(
1248*67e74705SXin Li RValue::get(llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(AO))),
1249*67e74705SXin Li CGF.getContext().IntTy);
1250*67e74705SXin Li emitAtomicLibcall(CGF, "__atomic_load", CGF.getContext().VoidTy, Args);
1251*67e74705SXin Li }
1252*67e74705SXin Li
EmitAtomicLoadOp(llvm::AtomicOrdering AO,bool IsVolatile)1253*67e74705SXin Li llvm::Value *AtomicInfo::EmitAtomicLoadOp(llvm::AtomicOrdering AO,
1254*67e74705SXin Li bool IsVolatile) {
1255*67e74705SXin Li // Okay, we're doing this natively.
1256*67e74705SXin Li Address Addr = getAtomicAddressAsAtomicIntPointer();
1257*67e74705SXin Li llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr, "atomic-load");
1258*67e74705SXin Li Load->setAtomic(AO);
1259*67e74705SXin Li
1260*67e74705SXin Li // Other decoration.
1261*67e74705SXin Li if (IsVolatile)
1262*67e74705SXin Li Load->setVolatile(true);
1263*67e74705SXin Li if (LVal.getTBAAInfo())
1264*67e74705SXin Li CGF.CGM.DecorateInstructionWithTBAA(Load, LVal.getTBAAInfo());
1265*67e74705SXin Li return Load;
1266*67e74705SXin Li }
1267*67e74705SXin Li
1268*67e74705SXin Li /// An LValue is a candidate for having its loads and stores be made atomic if
1269*67e74705SXin Li /// we are operating under /volatile:ms *and* the LValue itself is volatile and
1270*67e74705SXin Li /// performing such an operation can be performed without a libcall.
LValueIsSuitableForInlineAtomic(LValue LV)1271*67e74705SXin Li bool CodeGenFunction::LValueIsSuitableForInlineAtomic(LValue LV) {
1272*67e74705SXin Li if (!CGM.getCodeGenOpts().MSVolatile) return false;
1273*67e74705SXin Li AtomicInfo AI(*this, LV);
1274*67e74705SXin Li bool IsVolatile = LV.isVolatile() || hasVolatileMember(LV.getType());
1275*67e74705SXin Li // An atomic is inline if we don't need to use a libcall.
1276*67e74705SXin Li bool AtomicIsInline = !AI.shouldUseLibcall();
1277*67e74705SXin Li // MSVC doesn't seem to do this for types wider than a pointer.
1278*67e74705SXin Li if (getContext().getTypeSize(LV.getType()) >
1279*67e74705SXin Li getContext().getTypeSize(getContext().getIntPtrType()))
1280*67e74705SXin Li return false;
1281*67e74705SXin Li return IsVolatile && AtomicIsInline;
1282*67e74705SXin Li }
1283*67e74705SXin Li
EmitAtomicLoad(LValue LV,SourceLocation SL,AggValueSlot Slot)1284*67e74705SXin Li RValue CodeGenFunction::EmitAtomicLoad(LValue LV, SourceLocation SL,
1285*67e74705SXin Li AggValueSlot Slot) {
1286*67e74705SXin Li llvm::AtomicOrdering AO;
1287*67e74705SXin Li bool IsVolatile = LV.isVolatileQualified();
1288*67e74705SXin Li if (LV.getType()->isAtomicType()) {
1289*67e74705SXin Li AO = llvm::AtomicOrdering::SequentiallyConsistent;
1290*67e74705SXin Li } else {
1291*67e74705SXin Li AO = llvm::AtomicOrdering::Acquire;
1292*67e74705SXin Li IsVolatile = true;
1293*67e74705SXin Li }
1294*67e74705SXin Li return EmitAtomicLoad(LV, SL, AO, IsVolatile, Slot);
1295*67e74705SXin Li }
1296*67e74705SXin Li
EmitAtomicLoad(AggValueSlot ResultSlot,SourceLocation Loc,bool AsValue,llvm::AtomicOrdering AO,bool IsVolatile)1297*67e74705SXin Li RValue AtomicInfo::EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc,
1298*67e74705SXin Li bool AsValue, llvm::AtomicOrdering AO,
1299*67e74705SXin Li bool IsVolatile) {
1300*67e74705SXin Li // Check whether we should use a library call.
1301*67e74705SXin Li if (shouldUseLibcall()) {
1302*67e74705SXin Li Address TempAddr = Address::invalid();
1303*67e74705SXin Li if (LVal.isSimple() && !ResultSlot.isIgnored()) {
1304*67e74705SXin Li assert(getEvaluationKind() == TEK_Aggregate);
1305*67e74705SXin Li TempAddr = ResultSlot.getAddress();
1306*67e74705SXin Li } else
1307*67e74705SXin Li TempAddr = CreateTempAlloca();
1308*67e74705SXin Li
1309*67e74705SXin Li EmitAtomicLoadLibcall(TempAddr.getPointer(), AO, IsVolatile);
1310*67e74705SXin Li
1311*67e74705SXin Li // Okay, turn that back into the original value or whole atomic (for
1312*67e74705SXin Li // non-simple lvalues) type.
1313*67e74705SXin Li return convertAtomicTempToRValue(TempAddr, ResultSlot, Loc, AsValue);
1314*67e74705SXin Li }
1315*67e74705SXin Li
1316*67e74705SXin Li // Okay, we're doing this natively.
1317*67e74705SXin Li auto *Load = EmitAtomicLoadOp(AO, IsVolatile);
1318*67e74705SXin Li
1319*67e74705SXin Li // If we're ignoring an aggregate return, don't do anything.
1320*67e74705SXin Li if (getEvaluationKind() == TEK_Aggregate && ResultSlot.isIgnored())
1321*67e74705SXin Li return RValue::getAggregate(Address::invalid(), false);
1322*67e74705SXin Li
1323*67e74705SXin Li // Okay, turn that back into the original value or atomic (for non-simple
1324*67e74705SXin Li // lvalues) type.
1325*67e74705SXin Li return ConvertIntToValueOrAtomic(Load, ResultSlot, Loc, AsValue);
1326*67e74705SXin Li }
1327*67e74705SXin Li
1328*67e74705SXin Li /// Emit a load from an l-value of atomic type. Note that the r-value
1329*67e74705SXin Li /// we produce is an r-value of the atomic *value* type.
EmitAtomicLoad(LValue src,SourceLocation loc,llvm::AtomicOrdering AO,bool IsVolatile,AggValueSlot resultSlot)1330*67e74705SXin Li RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc,
1331*67e74705SXin Li llvm::AtomicOrdering AO, bool IsVolatile,
1332*67e74705SXin Li AggValueSlot resultSlot) {
1333*67e74705SXin Li AtomicInfo Atomics(*this, src);
1334*67e74705SXin Li return Atomics.EmitAtomicLoad(resultSlot, loc, /*AsValue=*/true, AO,
1335*67e74705SXin Li IsVolatile);
1336*67e74705SXin Li }
1337*67e74705SXin Li
1338*67e74705SXin Li /// Copy an r-value into memory as part of storing to an atomic type.
1339*67e74705SXin Li /// This needs to create a bit-pattern suitable for atomic operations.
emitCopyIntoMemory(RValue rvalue) const1340*67e74705SXin Li void AtomicInfo::emitCopyIntoMemory(RValue rvalue) const {
1341*67e74705SXin Li assert(LVal.isSimple());
1342*67e74705SXin Li // If we have an r-value, the rvalue should be of the atomic type,
1343*67e74705SXin Li // which means that the caller is responsible for having zeroed
1344*67e74705SXin Li // any padding. Just do an aggregate copy of that type.
1345*67e74705SXin Li if (rvalue.isAggregate()) {
1346*67e74705SXin Li CGF.EmitAggregateCopy(getAtomicAddress(),
1347*67e74705SXin Li rvalue.getAggregateAddress(),
1348*67e74705SXin Li getAtomicType(),
1349*67e74705SXin Li (rvalue.isVolatileQualified()
1350*67e74705SXin Li || LVal.isVolatileQualified()));
1351*67e74705SXin Li return;
1352*67e74705SXin Li }
1353*67e74705SXin Li
1354*67e74705SXin Li // Okay, otherwise we're copying stuff.
1355*67e74705SXin Li
1356*67e74705SXin Li // Zero out the buffer if necessary.
1357*67e74705SXin Li emitMemSetZeroIfNecessary();
1358*67e74705SXin Li
1359*67e74705SXin Li // Drill past the padding if present.
1360*67e74705SXin Li LValue TempLVal = projectValue();
1361*67e74705SXin Li
1362*67e74705SXin Li // Okay, store the rvalue in.
1363*67e74705SXin Li if (rvalue.isScalar()) {
1364*67e74705SXin Li CGF.EmitStoreOfScalar(rvalue.getScalarVal(), TempLVal, /*init*/ true);
1365*67e74705SXin Li } else {
1366*67e74705SXin Li CGF.EmitStoreOfComplex(rvalue.getComplexVal(), TempLVal, /*init*/ true);
1367*67e74705SXin Li }
1368*67e74705SXin Li }
1369*67e74705SXin Li
1370*67e74705SXin Li
1371*67e74705SXin Li /// Materialize an r-value into memory for the purposes of storing it
1372*67e74705SXin Li /// to an atomic type.
materializeRValue(RValue rvalue) const1373*67e74705SXin Li Address AtomicInfo::materializeRValue(RValue rvalue) const {
1374*67e74705SXin Li // Aggregate r-values are already in memory, and EmitAtomicStore
1375*67e74705SXin Li // requires them to be values of the atomic type.
1376*67e74705SXin Li if (rvalue.isAggregate())
1377*67e74705SXin Li return rvalue.getAggregateAddress();
1378*67e74705SXin Li
1379*67e74705SXin Li // Otherwise, make a temporary and materialize into it.
1380*67e74705SXin Li LValue TempLV = CGF.MakeAddrLValue(CreateTempAlloca(), getAtomicType());
1381*67e74705SXin Li AtomicInfo Atomics(CGF, TempLV);
1382*67e74705SXin Li Atomics.emitCopyIntoMemory(rvalue);
1383*67e74705SXin Li return TempLV.getAddress();
1384*67e74705SXin Li }
1385*67e74705SXin Li
convertRValueToInt(RValue RVal) const1386*67e74705SXin Li llvm::Value *AtomicInfo::convertRValueToInt(RValue RVal) const {
1387*67e74705SXin Li // If we've got a scalar value of the right size, try to avoid going
1388*67e74705SXin Li // through memory.
1389*67e74705SXin Li if (RVal.isScalar() && (!hasPadding() || !LVal.isSimple())) {
1390*67e74705SXin Li llvm::Value *Value = RVal.getScalarVal();
1391*67e74705SXin Li if (isa<llvm::IntegerType>(Value->getType()))
1392*67e74705SXin Li return CGF.EmitToMemory(Value, ValueTy);
1393*67e74705SXin Li else {
1394*67e74705SXin Li llvm::IntegerType *InputIntTy = llvm::IntegerType::get(
1395*67e74705SXin Li CGF.getLLVMContext(),
1396*67e74705SXin Li LVal.isSimple() ? getValueSizeInBits() : getAtomicSizeInBits());
1397*67e74705SXin Li if (isa<llvm::PointerType>(Value->getType()))
1398*67e74705SXin Li return CGF.Builder.CreatePtrToInt(Value, InputIntTy);
1399*67e74705SXin Li else if (llvm::BitCastInst::isBitCastable(Value->getType(), InputIntTy))
1400*67e74705SXin Li return CGF.Builder.CreateBitCast(Value, InputIntTy);
1401*67e74705SXin Li }
1402*67e74705SXin Li }
1403*67e74705SXin Li // Otherwise, we need to go through memory.
1404*67e74705SXin Li // Put the r-value in memory.
1405*67e74705SXin Li Address Addr = materializeRValue(RVal);
1406*67e74705SXin Li
1407*67e74705SXin Li // Cast the temporary to the atomic int type and pull a value out.
1408*67e74705SXin Li Addr = emitCastToAtomicIntPointer(Addr);
1409*67e74705SXin Li return CGF.Builder.CreateLoad(Addr);
1410*67e74705SXin Li }
1411*67e74705SXin Li
EmitAtomicCompareExchangeOp(llvm::Value * ExpectedVal,llvm::Value * DesiredVal,llvm::AtomicOrdering Success,llvm::AtomicOrdering Failure,bool IsWeak)1412*67e74705SXin Li std::pair<llvm::Value *, llvm::Value *> AtomicInfo::EmitAtomicCompareExchangeOp(
1413*67e74705SXin Li llvm::Value *ExpectedVal, llvm::Value *DesiredVal,
1414*67e74705SXin Li llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak) {
1415*67e74705SXin Li // Do the atomic store.
1416*67e74705SXin Li Address Addr = getAtomicAddressAsAtomicIntPointer();
1417*67e74705SXin Li auto *Inst = CGF.Builder.CreateAtomicCmpXchg(Addr.getPointer(),
1418*67e74705SXin Li ExpectedVal, DesiredVal,
1419*67e74705SXin Li Success, Failure);
1420*67e74705SXin Li // Other decoration.
1421*67e74705SXin Li Inst->setVolatile(LVal.isVolatileQualified());
1422*67e74705SXin Li Inst->setWeak(IsWeak);
1423*67e74705SXin Li
1424*67e74705SXin Li // Okay, turn that back into the original value type.
1425*67e74705SXin Li auto *PreviousVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/0);
1426*67e74705SXin Li auto *SuccessFailureVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/1);
1427*67e74705SXin Li return std::make_pair(PreviousVal, SuccessFailureVal);
1428*67e74705SXin Li }
1429*67e74705SXin Li
1430*67e74705SXin Li llvm::Value *
EmitAtomicCompareExchangeLibcall(llvm::Value * ExpectedAddr,llvm::Value * DesiredAddr,llvm::AtomicOrdering Success,llvm::AtomicOrdering Failure)1431*67e74705SXin Li AtomicInfo::EmitAtomicCompareExchangeLibcall(llvm::Value *ExpectedAddr,
1432*67e74705SXin Li llvm::Value *DesiredAddr,
1433*67e74705SXin Li llvm::AtomicOrdering Success,
1434*67e74705SXin Li llvm::AtomicOrdering Failure) {
1435*67e74705SXin Li // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
1436*67e74705SXin Li // void *desired, int success, int failure);
1437*67e74705SXin Li CallArgList Args;
1438*67e74705SXin Li Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType());
1439*67e74705SXin Li Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicPointer())),
1440*67e74705SXin Li CGF.getContext().VoidPtrTy);
1441*67e74705SXin Li Args.add(RValue::get(CGF.EmitCastToVoidPtr(ExpectedAddr)),
1442*67e74705SXin Li CGF.getContext().VoidPtrTy);
1443*67e74705SXin Li Args.add(RValue::get(CGF.EmitCastToVoidPtr(DesiredAddr)),
1444*67e74705SXin Li CGF.getContext().VoidPtrTy);
1445*67e74705SXin Li Args.add(RValue::get(
1446*67e74705SXin Li llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(Success))),
1447*67e74705SXin Li CGF.getContext().IntTy);
1448*67e74705SXin Li Args.add(RValue::get(
1449*67e74705SXin Li llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(Failure))),
1450*67e74705SXin Li CGF.getContext().IntTy);
1451*67e74705SXin Li auto SuccessFailureRVal = emitAtomicLibcall(CGF, "__atomic_compare_exchange",
1452*67e74705SXin Li CGF.getContext().BoolTy, Args);
1453*67e74705SXin Li
1454*67e74705SXin Li return SuccessFailureRVal.getScalarVal();
1455*67e74705SXin Li }
1456*67e74705SXin Li
EmitAtomicCompareExchange(RValue Expected,RValue Desired,llvm::AtomicOrdering Success,llvm::AtomicOrdering Failure,bool IsWeak)1457*67e74705SXin Li std::pair<RValue, llvm::Value *> AtomicInfo::EmitAtomicCompareExchange(
1458*67e74705SXin Li RValue Expected, RValue Desired, llvm::AtomicOrdering Success,
1459*67e74705SXin Li llvm::AtomicOrdering Failure, bool IsWeak) {
1460*67e74705SXin Li if (isStrongerThan(Failure, Success))
1461*67e74705SXin Li // Don't assert on undefined behavior "failure argument shall be no stronger
1462*67e74705SXin Li // than the success argument".
1463*67e74705SXin Li Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(Success);
1464*67e74705SXin Li
1465*67e74705SXin Li // Check whether we should use a library call.
1466*67e74705SXin Li if (shouldUseLibcall()) {
1467*67e74705SXin Li // Produce a source address.
1468*67e74705SXin Li Address ExpectedAddr = materializeRValue(Expected);
1469*67e74705SXin Li Address DesiredAddr = materializeRValue(Desired);
1470*67e74705SXin Li auto *Res = EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(),
1471*67e74705SXin Li DesiredAddr.getPointer(),
1472*67e74705SXin Li Success, Failure);
1473*67e74705SXin Li return std::make_pair(
1474*67e74705SXin Li convertAtomicTempToRValue(ExpectedAddr, AggValueSlot::ignored(),
1475*67e74705SXin Li SourceLocation(), /*AsValue=*/false),
1476*67e74705SXin Li Res);
1477*67e74705SXin Li }
1478*67e74705SXin Li
1479*67e74705SXin Li // If we've got a scalar value of the right size, try to avoid going
1480*67e74705SXin Li // through memory.
1481*67e74705SXin Li auto *ExpectedVal = convertRValueToInt(Expected);
1482*67e74705SXin Li auto *DesiredVal = convertRValueToInt(Desired);
1483*67e74705SXin Li auto Res = EmitAtomicCompareExchangeOp(ExpectedVal, DesiredVal, Success,
1484*67e74705SXin Li Failure, IsWeak);
1485*67e74705SXin Li return std::make_pair(
1486*67e74705SXin Li ConvertIntToValueOrAtomic(Res.first, AggValueSlot::ignored(),
1487*67e74705SXin Li SourceLocation(), /*AsValue=*/false),
1488*67e74705SXin Li Res.second);
1489*67e74705SXin Li }
1490*67e74705SXin Li
1491*67e74705SXin Li static void
EmitAtomicUpdateValue(CodeGenFunction & CGF,AtomicInfo & Atomics,RValue OldRVal,const llvm::function_ref<RValue (RValue)> & UpdateOp,Address DesiredAddr)1492*67e74705SXin Li EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, RValue OldRVal,
1493*67e74705SXin Li const llvm::function_ref<RValue(RValue)> &UpdateOp,
1494*67e74705SXin Li Address DesiredAddr) {
1495*67e74705SXin Li RValue UpRVal;
1496*67e74705SXin Li LValue AtomicLVal = Atomics.getAtomicLValue();
1497*67e74705SXin Li LValue DesiredLVal;
1498*67e74705SXin Li if (AtomicLVal.isSimple()) {
1499*67e74705SXin Li UpRVal = OldRVal;
1500*67e74705SXin Li DesiredLVal = CGF.MakeAddrLValue(DesiredAddr, AtomicLVal.getType());
1501*67e74705SXin Li } else {
1502*67e74705SXin Li // Build new lvalue for temp address
1503*67e74705SXin Li Address Ptr = Atomics.materializeRValue(OldRVal);
1504*67e74705SXin Li LValue UpdateLVal;
1505*67e74705SXin Li if (AtomicLVal.isBitField()) {
1506*67e74705SXin Li UpdateLVal =
1507*67e74705SXin Li LValue::MakeBitfield(Ptr, AtomicLVal.getBitFieldInfo(),
1508*67e74705SXin Li AtomicLVal.getType(),
1509*67e74705SXin Li AtomicLVal.getAlignmentSource());
1510*67e74705SXin Li DesiredLVal =
1511*67e74705SXin Li LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(),
1512*67e74705SXin Li AtomicLVal.getType(),
1513*67e74705SXin Li AtomicLVal.getAlignmentSource());
1514*67e74705SXin Li } else if (AtomicLVal.isVectorElt()) {
1515*67e74705SXin Li UpdateLVal = LValue::MakeVectorElt(Ptr, AtomicLVal.getVectorIdx(),
1516*67e74705SXin Li AtomicLVal.getType(),
1517*67e74705SXin Li AtomicLVal.getAlignmentSource());
1518*67e74705SXin Li DesiredLVal = LValue::MakeVectorElt(
1519*67e74705SXin Li DesiredAddr, AtomicLVal.getVectorIdx(), AtomicLVal.getType(),
1520*67e74705SXin Li AtomicLVal.getAlignmentSource());
1521*67e74705SXin Li } else {
1522*67e74705SXin Li assert(AtomicLVal.isExtVectorElt());
1523*67e74705SXin Li UpdateLVal = LValue::MakeExtVectorElt(Ptr, AtomicLVal.getExtVectorElts(),
1524*67e74705SXin Li AtomicLVal.getType(),
1525*67e74705SXin Li AtomicLVal.getAlignmentSource());
1526*67e74705SXin Li DesiredLVal = LValue::MakeExtVectorElt(
1527*67e74705SXin Li DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(),
1528*67e74705SXin Li AtomicLVal.getAlignmentSource());
1529*67e74705SXin Li }
1530*67e74705SXin Li UpdateLVal.setTBAAInfo(AtomicLVal.getTBAAInfo());
1531*67e74705SXin Li DesiredLVal.setTBAAInfo(AtomicLVal.getTBAAInfo());
1532*67e74705SXin Li UpRVal = CGF.EmitLoadOfLValue(UpdateLVal, SourceLocation());
1533*67e74705SXin Li }
1534*67e74705SXin Li // Store new value in the corresponding memory area
1535*67e74705SXin Li RValue NewRVal = UpdateOp(UpRVal);
1536*67e74705SXin Li if (NewRVal.isScalar()) {
1537*67e74705SXin Li CGF.EmitStoreThroughLValue(NewRVal, DesiredLVal);
1538*67e74705SXin Li } else {
1539*67e74705SXin Li assert(NewRVal.isComplex());
1540*67e74705SXin Li CGF.EmitStoreOfComplex(NewRVal.getComplexVal(), DesiredLVal,
1541*67e74705SXin Li /*isInit=*/false);
1542*67e74705SXin Li }
1543*67e74705SXin Li }
1544*67e74705SXin Li
EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,const llvm::function_ref<RValue (RValue)> & UpdateOp,bool IsVolatile)1545*67e74705SXin Li void AtomicInfo::EmitAtomicUpdateLibcall(
1546*67e74705SXin Li llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
1547*67e74705SXin Li bool IsVolatile) {
1548*67e74705SXin Li auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1549*67e74705SXin Li
1550*67e74705SXin Li Address ExpectedAddr = CreateTempAlloca();
1551*67e74705SXin Li
1552*67e74705SXin Li EmitAtomicLoadLibcall(ExpectedAddr.getPointer(), AO, IsVolatile);
1553*67e74705SXin Li auto *ContBB = CGF.createBasicBlock("atomic_cont");
1554*67e74705SXin Li auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1555*67e74705SXin Li CGF.EmitBlock(ContBB);
1556*67e74705SXin Li Address DesiredAddr = CreateTempAlloca();
1557*67e74705SXin Li if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1558*67e74705SXin Li requiresMemSetZero(getAtomicAddress().getElementType())) {
1559*67e74705SXin Li auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr);
1560*67e74705SXin Li CGF.Builder.CreateStore(OldVal, DesiredAddr);
1561*67e74705SXin Li }
1562*67e74705SXin Li auto OldRVal = convertAtomicTempToRValue(ExpectedAddr,
1563*67e74705SXin Li AggValueSlot::ignored(),
1564*67e74705SXin Li SourceLocation(), /*AsValue=*/false);
1565*67e74705SXin Li EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, DesiredAddr);
1566*67e74705SXin Li auto *Res =
1567*67e74705SXin Li EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(),
1568*67e74705SXin Li DesiredAddr.getPointer(),
1569*67e74705SXin Li AO, Failure);
1570*67e74705SXin Li CGF.Builder.CreateCondBr(Res, ExitBB, ContBB);
1571*67e74705SXin Li CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1572*67e74705SXin Li }
1573*67e74705SXin Li
EmitAtomicUpdateOp(llvm::AtomicOrdering AO,const llvm::function_ref<RValue (RValue)> & UpdateOp,bool IsVolatile)1574*67e74705SXin Li void AtomicInfo::EmitAtomicUpdateOp(
1575*67e74705SXin Li llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
1576*67e74705SXin Li bool IsVolatile) {
1577*67e74705SXin Li auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1578*67e74705SXin Li
1579*67e74705SXin Li // Do the atomic load.
1580*67e74705SXin Li auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile);
1581*67e74705SXin Li // For non-simple lvalues perform compare-and-swap procedure.
1582*67e74705SXin Li auto *ContBB = CGF.createBasicBlock("atomic_cont");
1583*67e74705SXin Li auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1584*67e74705SXin Li auto *CurBB = CGF.Builder.GetInsertBlock();
1585*67e74705SXin Li CGF.EmitBlock(ContBB);
1586*67e74705SXin Li llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(),
1587*67e74705SXin Li /*NumReservedValues=*/2);
1588*67e74705SXin Li PHI->addIncoming(OldVal, CurBB);
1589*67e74705SXin Li Address NewAtomicAddr = CreateTempAlloca();
1590*67e74705SXin Li Address NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr);
1591*67e74705SXin Li if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1592*67e74705SXin Li requiresMemSetZero(getAtomicAddress().getElementType())) {
1593*67e74705SXin Li CGF.Builder.CreateStore(PHI, NewAtomicIntAddr);
1594*67e74705SXin Li }
1595*67e74705SXin Li auto OldRVal = ConvertIntToValueOrAtomic(PHI, AggValueSlot::ignored(),
1596*67e74705SXin Li SourceLocation(), /*AsValue=*/false);
1597*67e74705SXin Li EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, NewAtomicAddr);
1598*67e74705SXin Li auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr);
1599*67e74705SXin Li // Try to write new value using cmpxchg operation
1600*67e74705SXin Li auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure);
1601*67e74705SXin Li PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock());
1602*67e74705SXin Li CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB);
1603*67e74705SXin Li CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1604*67e74705SXin Li }
1605*67e74705SXin Li
EmitAtomicUpdateValue(CodeGenFunction & CGF,AtomicInfo & Atomics,RValue UpdateRVal,Address DesiredAddr)1606*67e74705SXin Li static void EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics,
1607*67e74705SXin Li RValue UpdateRVal, Address DesiredAddr) {
1608*67e74705SXin Li LValue AtomicLVal = Atomics.getAtomicLValue();
1609*67e74705SXin Li LValue DesiredLVal;
1610*67e74705SXin Li // Build new lvalue for temp address
1611*67e74705SXin Li if (AtomicLVal.isBitField()) {
1612*67e74705SXin Li DesiredLVal =
1613*67e74705SXin Li LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(),
1614*67e74705SXin Li AtomicLVal.getType(),
1615*67e74705SXin Li AtomicLVal.getAlignmentSource());
1616*67e74705SXin Li } else if (AtomicLVal.isVectorElt()) {
1617*67e74705SXin Li DesiredLVal =
1618*67e74705SXin Li LValue::MakeVectorElt(DesiredAddr, AtomicLVal.getVectorIdx(),
1619*67e74705SXin Li AtomicLVal.getType(),
1620*67e74705SXin Li AtomicLVal.getAlignmentSource());
1621*67e74705SXin Li } else {
1622*67e74705SXin Li assert(AtomicLVal.isExtVectorElt());
1623*67e74705SXin Li DesiredLVal = LValue::MakeExtVectorElt(
1624*67e74705SXin Li DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(),
1625*67e74705SXin Li AtomicLVal.getAlignmentSource());
1626*67e74705SXin Li }
1627*67e74705SXin Li DesiredLVal.setTBAAInfo(AtomicLVal.getTBAAInfo());
1628*67e74705SXin Li // Store new value in the corresponding memory area
1629*67e74705SXin Li assert(UpdateRVal.isScalar());
1630*67e74705SXin Li CGF.EmitStoreThroughLValue(UpdateRVal, DesiredLVal);
1631*67e74705SXin Li }
1632*67e74705SXin Li
EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,RValue UpdateRVal,bool IsVolatile)1633*67e74705SXin Li void AtomicInfo::EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,
1634*67e74705SXin Li RValue UpdateRVal, bool IsVolatile) {
1635*67e74705SXin Li auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1636*67e74705SXin Li
1637*67e74705SXin Li Address ExpectedAddr = CreateTempAlloca();
1638*67e74705SXin Li
1639*67e74705SXin Li EmitAtomicLoadLibcall(ExpectedAddr.getPointer(), AO, IsVolatile);
1640*67e74705SXin Li auto *ContBB = CGF.createBasicBlock("atomic_cont");
1641*67e74705SXin Li auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1642*67e74705SXin Li CGF.EmitBlock(ContBB);
1643*67e74705SXin Li Address DesiredAddr = CreateTempAlloca();
1644*67e74705SXin Li if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1645*67e74705SXin Li requiresMemSetZero(getAtomicAddress().getElementType())) {
1646*67e74705SXin Li auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr);
1647*67e74705SXin Li CGF.Builder.CreateStore(OldVal, DesiredAddr);
1648*67e74705SXin Li }
1649*67e74705SXin Li EmitAtomicUpdateValue(CGF, *this, UpdateRVal, DesiredAddr);
1650*67e74705SXin Li auto *Res =
1651*67e74705SXin Li EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(),
1652*67e74705SXin Li DesiredAddr.getPointer(),
1653*67e74705SXin Li AO, Failure);
1654*67e74705SXin Li CGF.Builder.CreateCondBr(Res, ExitBB, ContBB);
1655*67e74705SXin Li CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1656*67e74705SXin Li }
1657*67e74705SXin Li
EmitAtomicUpdateOp(llvm::AtomicOrdering AO,RValue UpdateRVal,bool IsVolatile)1658*67e74705SXin Li void AtomicInfo::EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRVal,
1659*67e74705SXin Li bool IsVolatile) {
1660*67e74705SXin Li auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1661*67e74705SXin Li
1662*67e74705SXin Li // Do the atomic load.
1663*67e74705SXin Li auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile);
1664*67e74705SXin Li // For non-simple lvalues perform compare-and-swap procedure.
1665*67e74705SXin Li auto *ContBB = CGF.createBasicBlock("atomic_cont");
1666*67e74705SXin Li auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1667*67e74705SXin Li auto *CurBB = CGF.Builder.GetInsertBlock();
1668*67e74705SXin Li CGF.EmitBlock(ContBB);
1669*67e74705SXin Li llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(),
1670*67e74705SXin Li /*NumReservedValues=*/2);
1671*67e74705SXin Li PHI->addIncoming(OldVal, CurBB);
1672*67e74705SXin Li Address NewAtomicAddr = CreateTempAlloca();
1673*67e74705SXin Li Address NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr);
1674*67e74705SXin Li if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1675*67e74705SXin Li requiresMemSetZero(getAtomicAddress().getElementType())) {
1676*67e74705SXin Li CGF.Builder.CreateStore(PHI, NewAtomicIntAddr);
1677*67e74705SXin Li }
1678*67e74705SXin Li EmitAtomicUpdateValue(CGF, *this, UpdateRVal, NewAtomicAddr);
1679*67e74705SXin Li auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr);
1680*67e74705SXin Li // Try to write new value using cmpxchg operation
1681*67e74705SXin Li auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure);
1682*67e74705SXin Li PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock());
1683*67e74705SXin Li CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB);
1684*67e74705SXin Li CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1685*67e74705SXin Li }
1686*67e74705SXin Li
EmitAtomicUpdate(llvm::AtomicOrdering AO,const llvm::function_ref<RValue (RValue)> & UpdateOp,bool IsVolatile)1687*67e74705SXin Li void AtomicInfo::EmitAtomicUpdate(
1688*67e74705SXin Li llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
1689*67e74705SXin Li bool IsVolatile) {
1690*67e74705SXin Li if (shouldUseLibcall()) {
1691*67e74705SXin Li EmitAtomicUpdateLibcall(AO, UpdateOp, IsVolatile);
1692*67e74705SXin Li } else {
1693*67e74705SXin Li EmitAtomicUpdateOp(AO, UpdateOp, IsVolatile);
1694*67e74705SXin Li }
1695*67e74705SXin Li }
1696*67e74705SXin Li
EmitAtomicUpdate(llvm::AtomicOrdering AO,RValue UpdateRVal,bool IsVolatile)1697*67e74705SXin Li void AtomicInfo::EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal,
1698*67e74705SXin Li bool IsVolatile) {
1699*67e74705SXin Li if (shouldUseLibcall()) {
1700*67e74705SXin Li EmitAtomicUpdateLibcall(AO, UpdateRVal, IsVolatile);
1701*67e74705SXin Li } else {
1702*67e74705SXin Li EmitAtomicUpdateOp(AO, UpdateRVal, IsVolatile);
1703*67e74705SXin Li }
1704*67e74705SXin Li }
1705*67e74705SXin Li
EmitAtomicStore(RValue rvalue,LValue lvalue,bool isInit)1706*67e74705SXin Li void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue lvalue,
1707*67e74705SXin Li bool isInit) {
1708*67e74705SXin Li bool IsVolatile = lvalue.isVolatileQualified();
1709*67e74705SXin Li llvm::AtomicOrdering AO;
1710*67e74705SXin Li if (lvalue.getType()->isAtomicType()) {
1711*67e74705SXin Li AO = llvm::AtomicOrdering::SequentiallyConsistent;
1712*67e74705SXin Li } else {
1713*67e74705SXin Li AO = llvm::AtomicOrdering::Release;
1714*67e74705SXin Li IsVolatile = true;
1715*67e74705SXin Li }
1716*67e74705SXin Li return EmitAtomicStore(rvalue, lvalue, AO, IsVolatile, isInit);
1717*67e74705SXin Li }
1718*67e74705SXin Li
1719*67e74705SXin Li /// Emit a store to an l-value of atomic type.
1720*67e74705SXin Li ///
1721*67e74705SXin Li /// Note that the r-value is expected to be an r-value *of the atomic
1722*67e74705SXin Li /// type*; this means that for aggregate r-values, it should include
1723*67e74705SXin Li /// storage for any padding that was necessary.
EmitAtomicStore(RValue rvalue,LValue dest,llvm::AtomicOrdering AO,bool IsVolatile,bool isInit)1724*67e74705SXin Li void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest,
1725*67e74705SXin Li llvm::AtomicOrdering AO, bool IsVolatile,
1726*67e74705SXin Li bool isInit) {
1727*67e74705SXin Li // If this is an aggregate r-value, it should agree in type except
1728*67e74705SXin Li // maybe for address-space qualification.
1729*67e74705SXin Li assert(!rvalue.isAggregate() ||
1730*67e74705SXin Li rvalue.getAggregateAddress().getElementType()
1731*67e74705SXin Li == dest.getAddress().getElementType());
1732*67e74705SXin Li
1733*67e74705SXin Li AtomicInfo atomics(*this, dest);
1734*67e74705SXin Li LValue LVal = atomics.getAtomicLValue();
1735*67e74705SXin Li
1736*67e74705SXin Li // If this is an initialization, just put the value there normally.
1737*67e74705SXin Li if (LVal.isSimple()) {
1738*67e74705SXin Li if (isInit) {
1739*67e74705SXin Li atomics.emitCopyIntoMemory(rvalue);
1740*67e74705SXin Li return;
1741*67e74705SXin Li }
1742*67e74705SXin Li
1743*67e74705SXin Li // Check whether we should use a library call.
1744*67e74705SXin Li if (atomics.shouldUseLibcall()) {
1745*67e74705SXin Li // Produce a source address.
1746*67e74705SXin Li Address srcAddr = atomics.materializeRValue(rvalue);
1747*67e74705SXin Li
1748*67e74705SXin Li // void __atomic_store(size_t size, void *mem, void *val, int order)
1749*67e74705SXin Li CallArgList args;
1750*67e74705SXin Li args.add(RValue::get(atomics.getAtomicSizeValue()),
1751*67e74705SXin Li getContext().getSizeType());
1752*67e74705SXin Li args.add(RValue::get(EmitCastToVoidPtr(atomics.getAtomicPointer())),
1753*67e74705SXin Li getContext().VoidPtrTy);
1754*67e74705SXin Li args.add(RValue::get(EmitCastToVoidPtr(srcAddr.getPointer())),
1755*67e74705SXin Li getContext().VoidPtrTy);
1756*67e74705SXin Li args.add(
1757*67e74705SXin Li RValue::get(llvm::ConstantInt::get(IntTy, (int)llvm::toCABI(AO))),
1758*67e74705SXin Li getContext().IntTy);
1759*67e74705SXin Li emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args);
1760*67e74705SXin Li return;
1761*67e74705SXin Li }
1762*67e74705SXin Li
1763*67e74705SXin Li // Okay, we're doing this natively.
1764*67e74705SXin Li llvm::Value *intValue = atomics.convertRValueToInt(rvalue);
1765*67e74705SXin Li
1766*67e74705SXin Li // Do the atomic store.
1767*67e74705SXin Li Address addr =
1768*67e74705SXin Li atomics.emitCastToAtomicIntPointer(atomics.getAtomicAddress());
1769*67e74705SXin Li intValue = Builder.CreateIntCast(
1770*67e74705SXin Li intValue, addr.getElementType(), /*isSigned=*/false);
1771*67e74705SXin Li llvm::StoreInst *store = Builder.CreateStore(intValue, addr);
1772*67e74705SXin Li
1773*67e74705SXin Li // Initializations don't need to be atomic.
1774*67e74705SXin Li if (!isInit)
1775*67e74705SXin Li store->setAtomic(AO);
1776*67e74705SXin Li
1777*67e74705SXin Li // Other decoration.
1778*67e74705SXin Li if (IsVolatile)
1779*67e74705SXin Li store->setVolatile(true);
1780*67e74705SXin Li if (dest.getTBAAInfo())
1781*67e74705SXin Li CGM.DecorateInstructionWithTBAA(store, dest.getTBAAInfo());
1782*67e74705SXin Li return;
1783*67e74705SXin Li }
1784*67e74705SXin Li
1785*67e74705SXin Li // Emit simple atomic update operation.
1786*67e74705SXin Li atomics.EmitAtomicUpdate(AO, rvalue, IsVolatile);
1787*67e74705SXin Li }
1788*67e74705SXin Li
1789*67e74705SXin Li /// Emit a compare-and-exchange op for atomic type.
1790*67e74705SXin Li ///
EmitAtomicCompareExchange(LValue Obj,RValue Expected,RValue Desired,SourceLocation Loc,llvm::AtomicOrdering Success,llvm::AtomicOrdering Failure,bool IsWeak,AggValueSlot Slot)1791*67e74705SXin Li std::pair<RValue, llvm::Value *> CodeGenFunction::EmitAtomicCompareExchange(
1792*67e74705SXin Li LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
1793*67e74705SXin Li llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak,
1794*67e74705SXin Li AggValueSlot Slot) {
1795*67e74705SXin Li // If this is an aggregate r-value, it should agree in type except
1796*67e74705SXin Li // maybe for address-space qualification.
1797*67e74705SXin Li assert(!Expected.isAggregate() ||
1798*67e74705SXin Li Expected.getAggregateAddress().getElementType() ==
1799*67e74705SXin Li Obj.getAddress().getElementType());
1800*67e74705SXin Li assert(!Desired.isAggregate() ||
1801*67e74705SXin Li Desired.getAggregateAddress().getElementType() ==
1802*67e74705SXin Li Obj.getAddress().getElementType());
1803*67e74705SXin Li AtomicInfo Atomics(*this, Obj);
1804*67e74705SXin Li
1805*67e74705SXin Li return Atomics.EmitAtomicCompareExchange(Expected, Desired, Success, Failure,
1806*67e74705SXin Li IsWeak);
1807*67e74705SXin Li }
1808*67e74705SXin Li
EmitAtomicUpdate(LValue LVal,llvm::AtomicOrdering AO,const llvm::function_ref<RValue (RValue)> & UpdateOp,bool IsVolatile)1809*67e74705SXin Li void CodeGenFunction::EmitAtomicUpdate(
1810*67e74705SXin Li LValue LVal, llvm::AtomicOrdering AO,
1811*67e74705SXin Li const llvm::function_ref<RValue(RValue)> &UpdateOp, bool IsVolatile) {
1812*67e74705SXin Li AtomicInfo Atomics(*this, LVal);
1813*67e74705SXin Li Atomics.EmitAtomicUpdate(AO, UpdateOp, IsVolatile);
1814*67e74705SXin Li }
1815*67e74705SXin Li
EmitAtomicInit(Expr * init,LValue dest)1816*67e74705SXin Li void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) {
1817*67e74705SXin Li AtomicInfo atomics(*this, dest);
1818*67e74705SXin Li
1819*67e74705SXin Li switch (atomics.getEvaluationKind()) {
1820*67e74705SXin Li case TEK_Scalar: {
1821*67e74705SXin Li llvm::Value *value = EmitScalarExpr(init);
1822*67e74705SXin Li atomics.emitCopyIntoMemory(RValue::get(value));
1823*67e74705SXin Li return;
1824*67e74705SXin Li }
1825*67e74705SXin Li
1826*67e74705SXin Li case TEK_Complex: {
1827*67e74705SXin Li ComplexPairTy value = EmitComplexExpr(init);
1828*67e74705SXin Li atomics.emitCopyIntoMemory(RValue::getComplex(value));
1829*67e74705SXin Li return;
1830*67e74705SXin Li }
1831*67e74705SXin Li
1832*67e74705SXin Li case TEK_Aggregate: {
1833*67e74705SXin Li // Fix up the destination if the initializer isn't an expression
1834*67e74705SXin Li // of atomic type.
1835*67e74705SXin Li bool Zeroed = false;
1836*67e74705SXin Li if (!init->getType()->isAtomicType()) {
1837*67e74705SXin Li Zeroed = atomics.emitMemSetZeroIfNecessary();
1838*67e74705SXin Li dest = atomics.projectValue();
1839*67e74705SXin Li }
1840*67e74705SXin Li
1841*67e74705SXin Li // Evaluate the expression directly into the destination.
1842*67e74705SXin Li AggValueSlot slot = AggValueSlot::forLValue(dest,
1843*67e74705SXin Li AggValueSlot::IsNotDestructed,
1844*67e74705SXin Li AggValueSlot::DoesNotNeedGCBarriers,
1845*67e74705SXin Li AggValueSlot::IsNotAliased,
1846*67e74705SXin Li Zeroed ? AggValueSlot::IsZeroed :
1847*67e74705SXin Li AggValueSlot::IsNotZeroed);
1848*67e74705SXin Li
1849*67e74705SXin Li EmitAggExpr(init, slot);
1850*67e74705SXin Li return;
1851*67e74705SXin Li }
1852*67e74705SXin Li }
1853*67e74705SXin Li llvm_unreachable("bad evaluation kind");
1854*67e74705SXin Li }
1855