1*c217d954SCole Faust /*
2*c217d954SCole Faust * Copyright (c) 2018-2021 Arm Limited.
3*c217d954SCole Faust *
4*c217d954SCole Faust * SPDX-License-Identifier: MIT
5*c217d954SCole Faust *
6*c217d954SCole Faust * Permission is hereby granted, free of charge, to any person obtaining a copy
7*c217d954SCole Faust * of this software and associated documentation files (the "Software"), to
8*c217d954SCole Faust * deal in the Software without restriction, including without limitation the
9*c217d954SCole Faust * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10*c217d954SCole Faust * sell copies of the Software, and to permit persons to whom the Software is
11*c217d954SCole Faust * furnished to do so, subject to the following conditions:
12*c217d954SCole Faust *
13*c217d954SCole Faust * The above copyright notice and this permission notice shall be included in all
14*c217d954SCole Faust * copies or substantial portions of the Software.
15*c217d954SCole Faust *
16*c217d954SCole Faust * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17*c217d954SCole Faust * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18*c217d954SCole Faust * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19*c217d954SCole Faust * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20*c217d954SCole Faust * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21*c217d954SCole Faust * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22*c217d954SCole Faust * SOFTWARE.
23*c217d954SCole Faust */
24*c217d954SCole Faust #include "arm_compute/graph.h"
25*c217d954SCole Faust #include "support/ToolchainSupport.h"
26*c217d954SCole Faust #include "utils/CommonGraphOptions.h"
27*c217d954SCole Faust #include "utils/GraphUtils.h"
28*c217d954SCole Faust #include "utils/Utils.h"
29*c217d954SCole Faust
30*c217d954SCole Faust using namespace arm_compute::utils;
31*c217d954SCole Faust using namespace arm_compute::graph::frontend;
32*c217d954SCole Faust using namespace arm_compute::graph_utils;
33*c217d954SCole Faust
34*c217d954SCole Faust /** Example demonstrating how to implement SRCNN 9-5-5 network using the Compute Library's graph API */
35*c217d954SCole Faust class GraphSRCNN955Example : public Example
36*c217d954SCole Faust {
37*c217d954SCole Faust public:
GraphSRCNN955Example()38*c217d954SCole Faust GraphSRCNN955Example()
39*c217d954SCole Faust : cmd_parser(), common_opts(cmd_parser), model_input_width(nullptr), model_input_height(nullptr), common_params(), graph(0, "SRCNN955")
40*c217d954SCole Faust {
41*c217d954SCole Faust model_input_width = cmd_parser.add_option<SimpleOption<unsigned int>>("image-width", 300);
42*c217d954SCole Faust model_input_height = cmd_parser.add_option<SimpleOption<unsigned int>>("image-height", 300);
43*c217d954SCole Faust
44*c217d954SCole Faust // Add model id option
45*c217d954SCole Faust model_input_width->set_help("Input image width.");
46*c217d954SCole Faust model_input_height->set_help("Input image height.");
47*c217d954SCole Faust }
48*c217d954SCole Faust GraphSRCNN955Example(const GraphSRCNN955Example &) = delete;
49*c217d954SCole Faust GraphSRCNN955Example &operator=(const GraphSRCNN955Example &) = delete;
50*c217d954SCole Faust ~GraphSRCNN955Example() override = default;
do_setup(int argc,char ** argv)51*c217d954SCole Faust bool do_setup(int argc, char **argv) override
52*c217d954SCole Faust {
53*c217d954SCole Faust // Parse arguments
54*c217d954SCole Faust cmd_parser.parse(argc, argv);
55*c217d954SCole Faust cmd_parser.validate();
56*c217d954SCole Faust
57*c217d954SCole Faust // Consume common parameters
58*c217d954SCole Faust common_params = consume_common_graph_parameters(common_opts);
59*c217d954SCole Faust
60*c217d954SCole Faust // Return when help menu is requested
61*c217d954SCole Faust if(common_params.help)
62*c217d954SCole Faust {
63*c217d954SCole Faust cmd_parser.print_help(argv[0]);
64*c217d954SCole Faust return false;
65*c217d954SCole Faust }
66*c217d954SCole Faust
67*c217d954SCole Faust // Get input image width and height
68*c217d954SCole Faust const unsigned int image_width = model_input_width->value();
69*c217d954SCole Faust const unsigned int image_height = model_input_height->value();
70*c217d954SCole Faust
71*c217d954SCole Faust // Print parameter values
72*c217d954SCole Faust std::cout << common_params << std::endl;
73*c217d954SCole Faust std::cout << "Image width: " << image_width << std::endl;
74*c217d954SCole Faust std::cout << "Image height: " << image_height << std::endl;
75*c217d954SCole Faust
76*c217d954SCole Faust // Get trainable parameters data path
77*c217d954SCole Faust const std::string data_path = common_params.data_path;
78*c217d954SCole Faust const std::string model_path = "/cnn_data/srcnn955_model/";
79*c217d954SCole Faust
80*c217d954SCole Faust // Create a preprocessor object
81*c217d954SCole Faust std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<TFPreproccessor>();
82*c217d954SCole Faust
83*c217d954SCole Faust // Create input descriptor
84*c217d954SCole Faust const TensorShape tensor_shape = permute_shape(TensorShape(image_width, image_height, 3U, common_params.batches), DataLayout::NCHW, common_params.data_layout);
85*c217d954SCole Faust TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
86*c217d954SCole Faust
87*c217d954SCole Faust // Set weights trained layout
88*c217d954SCole Faust const DataLayout weights_layout = DataLayout::NCHW;
89*c217d954SCole Faust
90*c217d954SCole Faust graph << common_params.target
91*c217d954SCole Faust << common_params.fast_math_hint
92*c217d954SCole Faust << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor), false /* Do not convert to BGR */))
93*c217d954SCole Faust << ConvolutionLayer(
94*c217d954SCole Faust 9U, 9U, 64U,
95*c217d954SCole Faust get_weights_accessor(data_path, "conv1_weights.npy", weights_layout),
96*c217d954SCole Faust get_weights_accessor(data_path, "conv1_biases.npy"),
97*c217d954SCole Faust PadStrideInfo(1, 1, 4, 4))
98*c217d954SCole Faust .set_name("conv1/convolution")
99*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1/Relu")
100*c217d954SCole Faust << ConvolutionLayer(
101*c217d954SCole Faust 5U, 5U, 32U,
102*c217d954SCole Faust get_weights_accessor(data_path, "conv2_weights.npy", weights_layout),
103*c217d954SCole Faust get_weights_accessor(data_path, "conv2_biases.npy"),
104*c217d954SCole Faust PadStrideInfo(1, 1, 2, 2))
105*c217d954SCole Faust .set_name("conv2/convolution")
106*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv2/Relu")
107*c217d954SCole Faust << ConvolutionLayer(
108*c217d954SCole Faust 5U, 5U, 3U,
109*c217d954SCole Faust get_weights_accessor(data_path, "conv3_weights.npy", weights_layout),
110*c217d954SCole Faust get_weights_accessor(data_path, "conv3_biases.npy"),
111*c217d954SCole Faust PadStrideInfo(1, 1, 2, 2))
112*c217d954SCole Faust .set_name("conv3/convolution")
113*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3/Relu")
114*c217d954SCole Faust << OutputLayer(std::make_unique<DummyAccessor>(0));
115*c217d954SCole Faust
116*c217d954SCole Faust // Finalize graph
117*c217d954SCole Faust GraphConfig config;
118*c217d954SCole Faust config.num_threads = common_params.threads;
119*c217d954SCole Faust config.use_tuner = common_params.enable_tuner;
120*c217d954SCole Faust config.tuner_mode = common_params.tuner_mode;
121*c217d954SCole Faust config.tuner_file = common_params.tuner_file;
122*c217d954SCole Faust config.mlgo_file = common_params.mlgo_file;
123*c217d954SCole Faust config.use_synthetic_type = arm_compute::is_data_type_quantized(common_params.data_type);
124*c217d954SCole Faust config.synthetic_type = common_params.data_type;
125*c217d954SCole Faust
126*c217d954SCole Faust graph.finalize(common_params.target, config);
127*c217d954SCole Faust
128*c217d954SCole Faust return true;
129*c217d954SCole Faust }
130*c217d954SCole Faust
do_run()131*c217d954SCole Faust void do_run() override
132*c217d954SCole Faust {
133*c217d954SCole Faust // Run graph
134*c217d954SCole Faust graph.run();
135*c217d954SCole Faust }
136*c217d954SCole Faust
137*c217d954SCole Faust private:
138*c217d954SCole Faust CommandLineParser cmd_parser;
139*c217d954SCole Faust CommonGraphOptions common_opts;
140*c217d954SCole Faust SimpleOption<unsigned int> *model_input_width{ nullptr };
141*c217d954SCole Faust SimpleOption<unsigned int> *model_input_height{ nullptr };
142*c217d954SCole Faust CommonGraphParams common_params;
143*c217d954SCole Faust Stream graph;
144*c217d954SCole Faust };
145*c217d954SCole Faust
146*c217d954SCole Faust /** Main program for SRCNN 9-5-5
147*c217d954SCole Faust *
148*c217d954SCole Faust * Model is based on:
149*c217d954SCole Faust * http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
150*c217d954SCole Faust * "Image Super-Resolution Using Deep Convolutional Networks"
151*c217d954SCole Faust * Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang
152*c217d954SCole Faust *
153*c217d954SCole Faust * @note To list all the possible arguments execute the binary appended with the --help option
154*c217d954SCole Faust *
155*c217d954SCole Faust * @param[in] argc Number of arguments
156*c217d954SCole Faust * @param[in] argv Arguments
157*c217d954SCole Faust */
main(int argc,char ** argv)158*c217d954SCole Faust int main(int argc, char **argv)
159*c217d954SCole Faust {
160*c217d954SCole Faust return arm_compute::utils::run_example<GraphSRCNN955Example>(argc, argv);
161*c217d954SCole Faust }
162