1*c217d954SCole Faust /*
2*c217d954SCole Faust * Copyright (c) 2017-2021 Arm Limited.
3*c217d954SCole Faust *
4*c217d954SCole Faust * SPDX-License-Identifier: MIT
5*c217d954SCole Faust *
6*c217d954SCole Faust * Permission is hereby granted, free of charge, to any person obtaining a copy
7*c217d954SCole Faust * of this software and associated documentation files (the "Software"), to
8*c217d954SCole Faust * deal in the Software without restriction, including without limitation the
9*c217d954SCole Faust * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10*c217d954SCole Faust * sell copies of the Software, and to permit persons to whom the Software is
11*c217d954SCole Faust * furnished to do so, subject to the following conditions:
12*c217d954SCole Faust *
13*c217d954SCole Faust * The above copyright notice and this permission notice shall be included in all
14*c217d954SCole Faust * copies or substantial portions of the Software.
15*c217d954SCole Faust *
16*c217d954SCole Faust * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17*c217d954SCole Faust * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18*c217d954SCole Faust * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19*c217d954SCole Faust * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20*c217d954SCole Faust * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21*c217d954SCole Faust * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22*c217d954SCole Faust * SOFTWARE.
23*c217d954SCole Faust */
24*c217d954SCole Faust #include "arm_compute/graph.h"
25*c217d954SCole Faust #ifdef ARM_COMPUTE_CL
26*c217d954SCole Faust #include "arm_compute/runtime/CL/Utils.h"
27*c217d954SCole Faust #endif /* ARM_COMPUTE_CL */
28*c217d954SCole Faust #include "support/ToolchainSupport.h"
29*c217d954SCole Faust #include "utils/CommonGraphOptions.h"
30*c217d954SCole Faust #include "utils/GraphUtils.h"
31*c217d954SCole Faust #include "utils/Utils.h"
32*c217d954SCole Faust
33*c217d954SCole Faust using namespace arm_compute;
34*c217d954SCole Faust using namespace arm_compute::utils;
35*c217d954SCole Faust using namespace arm_compute::graph::frontend;
36*c217d954SCole Faust using namespace arm_compute::graph_utils;
37*c217d954SCole Faust
38*c217d954SCole Faust /** Example demonstrating how to implement AlexNet's network using the Compute Library's graph API */
39*c217d954SCole Faust class GraphAlexnetExample : public Example
40*c217d954SCole Faust {
41*c217d954SCole Faust public:
GraphAlexnetExample()42*c217d954SCole Faust GraphAlexnetExample()
43*c217d954SCole Faust : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "AlexNet")
44*c217d954SCole Faust {
45*c217d954SCole Faust }
do_setup(int argc,char ** argv)46*c217d954SCole Faust bool do_setup(int argc, char **argv) override
47*c217d954SCole Faust {
48*c217d954SCole Faust // Parse arguments
49*c217d954SCole Faust cmd_parser.parse(argc, argv);
50*c217d954SCole Faust cmd_parser.validate();
51*c217d954SCole Faust
52*c217d954SCole Faust // Consume common parameters
53*c217d954SCole Faust common_params = consume_common_graph_parameters(common_opts);
54*c217d954SCole Faust
55*c217d954SCole Faust // Return when help menu is requested
56*c217d954SCole Faust if(common_params.help)
57*c217d954SCole Faust {
58*c217d954SCole Faust cmd_parser.print_help(argv[0]);
59*c217d954SCole Faust return false;
60*c217d954SCole Faust }
61*c217d954SCole Faust
62*c217d954SCole Faust // Checks
63*c217d954SCole Faust ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
64*c217d954SCole Faust
65*c217d954SCole Faust // Print parameter values
66*c217d954SCole Faust std::cout << common_params << std::endl;
67*c217d954SCole Faust
68*c217d954SCole Faust // Get trainable parameters data path
69*c217d954SCole Faust std::string data_path = common_params.data_path;
70*c217d954SCole Faust
71*c217d954SCole Faust // Create a preprocessor object
72*c217d954SCole Faust const std::array<float, 3> mean_rgb{ { 122.68f, 116.67f, 104.01f } };
73*c217d954SCole Faust std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<CaffePreproccessor>(mean_rgb);
74*c217d954SCole Faust
75*c217d954SCole Faust // Create input descriptor
76*c217d954SCole Faust const auto operation_layout = common_params.data_layout;
77*c217d954SCole Faust const TensorShape tensor_shape = permute_shape(TensorShape(227U, 227U, 3U, common_params.batches), DataLayout::NCHW, operation_layout);
78*c217d954SCole Faust TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
79*c217d954SCole Faust
80*c217d954SCole Faust // Set weights trained layout
81*c217d954SCole Faust const DataLayout weights_layout = DataLayout::NCHW;
82*c217d954SCole Faust
83*c217d954SCole Faust graph << common_params.target
84*c217d954SCole Faust << common_params.fast_math_hint
85*c217d954SCole Faust << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
86*c217d954SCole Faust // Layer 1
87*c217d954SCole Faust << ConvolutionLayer(
88*c217d954SCole Faust 11U, 11U, 96U,
89*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv1_w.npy", weights_layout),
90*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv1_b.npy"),
91*c217d954SCole Faust PadStrideInfo(4, 4, 0, 0))
92*c217d954SCole Faust .set_name("conv1")
93*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu1")
94*c217d954SCole Faust << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)).set_name("norm1")
95*c217d954SCole Faust << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool1")
96*c217d954SCole Faust // Layer 2
97*c217d954SCole Faust << ConvolutionLayer(
98*c217d954SCole Faust 5U, 5U, 256U,
99*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv2_w.npy", weights_layout),
100*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv2_b.npy"),
101*c217d954SCole Faust PadStrideInfo(1, 1, 2, 2), 2)
102*c217d954SCole Faust .set_name("conv2")
103*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu2")
104*c217d954SCole Faust << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)).set_name("norm2")
105*c217d954SCole Faust << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool2")
106*c217d954SCole Faust // Layer 3
107*c217d954SCole Faust << ConvolutionLayer(
108*c217d954SCole Faust 3U, 3U, 384U,
109*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv3_w.npy", weights_layout),
110*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv3_b.npy"),
111*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
112*c217d954SCole Faust .set_name("conv3")
113*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu3")
114*c217d954SCole Faust // Layer 4
115*c217d954SCole Faust << ConvolutionLayer(
116*c217d954SCole Faust 3U, 3U, 384U,
117*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv4_w.npy", weights_layout),
118*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv4_b.npy"),
119*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1), 2)
120*c217d954SCole Faust .set_name("conv4")
121*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu4")
122*c217d954SCole Faust // Layer 5
123*c217d954SCole Faust << ConvolutionLayer(
124*c217d954SCole Faust 3U, 3U, 256U,
125*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv5_w.npy", weights_layout),
126*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv5_b.npy"),
127*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1), 2)
128*c217d954SCole Faust .set_name("conv5")
129*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu5")
130*c217d954SCole Faust << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool5")
131*c217d954SCole Faust // Layer 6
132*c217d954SCole Faust << FullyConnectedLayer(
133*c217d954SCole Faust 4096U,
134*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc6_w.npy", weights_layout),
135*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc6_b.npy"))
136*c217d954SCole Faust .set_name("fc6")
137*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu6")
138*c217d954SCole Faust // Layer 7
139*c217d954SCole Faust << FullyConnectedLayer(
140*c217d954SCole Faust 4096U,
141*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc7_w.npy", weights_layout),
142*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc7_b.npy"))
143*c217d954SCole Faust .set_name("fc7")
144*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu7")
145*c217d954SCole Faust // Layer 8
146*c217d954SCole Faust << FullyConnectedLayer(
147*c217d954SCole Faust 1000U,
148*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc8_w.npy", weights_layout),
149*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc8_b.npy"))
150*c217d954SCole Faust .set_name("fc8")
151*c217d954SCole Faust // Softmax
152*c217d954SCole Faust << SoftmaxLayer().set_name("prob")
153*c217d954SCole Faust << OutputLayer(get_output_accessor(common_params, 5));
154*c217d954SCole Faust
155*c217d954SCole Faust // Finalize graph
156*c217d954SCole Faust GraphConfig config;
157*c217d954SCole Faust
158*c217d954SCole Faust config.num_threads = common_params.threads;
159*c217d954SCole Faust config.use_tuner = common_params.enable_tuner;
160*c217d954SCole Faust config.tuner_mode = common_params.tuner_mode;
161*c217d954SCole Faust config.tuner_file = common_params.tuner_file;
162*c217d954SCole Faust config.mlgo_file = common_params.mlgo_file;
163*c217d954SCole Faust
164*c217d954SCole Faust // Load the precompiled kernels from a file into the kernel library, in this way the next time they are needed
165*c217d954SCole Faust // compilation won't be required.
166*c217d954SCole Faust if(common_params.enable_cl_cache)
167*c217d954SCole Faust {
168*c217d954SCole Faust #ifdef ARM_COMPUTE_CL
169*c217d954SCole Faust restore_program_cache_from_file();
170*c217d954SCole Faust #endif /* ARM_COMPUTE_CL */
171*c217d954SCole Faust }
172*c217d954SCole Faust
173*c217d954SCole Faust graph.finalize(common_params.target, config);
174*c217d954SCole Faust
175*c217d954SCole Faust // Save the opencl kernels to a file
176*c217d954SCole Faust if(common_opts.enable_cl_cache)
177*c217d954SCole Faust {
178*c217d954SCole Faust #ifdef ARM_COMPUTE_CL
179*c217d954SCole Faust save_program_cache_to_file();
180*c217d954SCole Faust #endif /* ARM_COMPUTE_CL */
181*c217d954SCole Faust }
182*c217d954SCole Faust
183*c217d954SCole Faust return true;
184*c217d954SCole Faust }
do_run()185*c217d954SCole Faust void do_run() override
186*c217d954SCole Faust {
187*c217d954SCole Faust // Run graph
188*c217d954SCole Faust graph.run();
189*c217d954SCole Faust }
190*c217d954SCole Faust
191*c217d954SCole Faust private:
192*c217d954SCole Faust CommandLineParser cmd_parser;
193*c217d954SCole Faust CommonGraphOptions common_opts;
194*c217d954SCole Faust CommonGraphParams common_params;
195*c217d954SCole Faust Stream graph;
196*c217d954SCole Faust };
197*c217d954SCole Faust
198*c217d954SCole Faust /** Main program for AlexNet
199*c217d954SCole Faust *
200*c217d954SCole Faust * Model is based on:
201*c217d954SCole Faust * https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
202*c217d954SCole Faust * "ImageNet Classification with Deep Convolutional Neural Networks"
203*c217d954SCole Faust * Alex Krizhevsky and Sutskever, Ilya and Hinton, Geoffrey E
204*c217d954SCole Faust *
205*c217d954SCole Faust * Provenance: https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
206*c217d954SCole Faust *
207*c217d954SCole Faust * @note To list all the possible arguments execute the binary appended with the --help option
208*c217d954SCole Faust *
209*c217d954SCole Faust * @param[in] argc Number of arguments
210*c217d954SCole Faust * @param[in] argv Arguments
211*c217d954SCole Faust *
212*c217d954SCole Faust * @return Return code
213*c217d954SCole Faust */
main(int argc,char ** argv)214*c217d954SCole Faust int main(int argc, char **argv)
215*c217d954SCole Faust {
216*c217d954SCole Faust return arm_compute::utils::run_example<GraphAlexnetExample>(argc, argv);
217*c217d954SCole Faust }
218