xref: /aosp_15_r20/cts/apps/CameraITS/tests/tutorial.py (revision b7c941bb3fa97aba169d73cee0bed2de8ac964bf)
1# Copyright 2014 The Android Open Source Project
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#      http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14
15# --------------------------------------------------------------------------- #
16# The Google Python style guide should be used for scripts:                   #
17# http://google-styleguide.googlecode.com/svn/trunk/pyguide.html              #
18# --------------------------------------------------------------------------- #
19
20# The ITS modules that are in the utils directory. To see formatted
21# docs, use the "pydoc" command:
22#
23# > pydoc image_processing_utils
24#
25"""Tutorial script for CameraITS tests."""
26import capture_request_utils
27import image_processing_utils
28import its_base_test
29import its_session_utils
30
31# Standard Python modules.
32import logging
33import os.path
34
35# Modules from the numpy, scipy, and matplotlib libraries. These are used for
36# the image processing code, and images are represented as numpy arrays.
37from matplotlib import pyplot as plt
38import numpy
39
40# Module for Mobly
41from mobly import test_runner
42
43# A convention in each script is to use the filename (without the extension)
44# as the name of the test, when printing results to the screen or dumping files.
45_NAME = os.path.basename(__file__).split('.')[0]
46
47
48# Each script has a class definition
49class TutorialTest(its_base_test.ItsBaseTest):
50  """Test the validity of some metadata entries.
51
52  Looks at the capture results and at the camera characteristics objects.
53  Script uses a config.yml file in the CameraITS directory.
54  A sample config.yml file:
55    TestBeds:
56    - Name: TEST_BED_TUTORIAL
57      Controllers:
58          AndroidDevice:
59            - serial: 03281FDD40008Y
60              label: dut
61      TestParams:
62        camera: "1"
63        scene: "0"
64
65  A sample script call:
66    python tests/tutorial.py --config config.yml
67
68  """
69
70  def test_tutorial(self):
71    # Each script has a string description of what it does. This is the first
72    # entry inside the main function.
73    """Tutorial script to show how to use the ITS infrastructure."""
74
75    # The standard way to open a session with a connected camera device. This
76    # creates a cam object which encapsulates the session and which is active
77    # within the scope of the 'with' block; when the block exits, the camera
78    # session is closed. The device and camera are defined in the config.yml
79    # file.
80    with its_session_utils.ItsSession(
81        device_id=self.dut.serial,
82        camera_id=self.camera_id,
83        hidden_physical_id=self.hidden_physical_id) as cam:
84
85      # Append the log_path to store images in the proper location.
86      # Images will be stored in the test output folder:
87      # /tmp/logs/mobly/$TEST_BED_NAME/$DATE/TutorialTest
88      file_name = os.path.join(self.log_path, _NAME)
89
90      # Get the static properties of the camera device. Returns a Python
91      # associative array object; print it to the console.
92      props = cam.get_camera_properties()
93      logging.debug('props\n%s', str(props))
94
95      # Grab a YUV frame with manual exposure of sensitivity = 200, exposure
96      # duration = 50ms.
97      req = capture_request_utils.manual_capture_request(200, 50*1000*1000)
98      cap = cam.do_capture(req)
99
100      # Print the properties of the captured frame; width and height are
101      # integers, and the metadata is a Python associative array object.
102      # logging.info will be printed to screen & test_log.INFO
103      # logging.debug to test_log.DEBUG in /tmp/logs/mobly/... directory
104      logging.info('Captured image width: %d, height: %d',
105                   cap['width'], cap['height'])
106      logging.debug('metadata\n%s', str(cap['metadata']))
107
108      # The captured image is YUV420. Convert to RGB, and save as a file.
109      rgbimg = image_processing_utils.convert_capture_to_rgb_image(cap)
110      image_processing_utils.write_image(rgbimg, f'{file_name}_rgb.jpg')
111
112      # Can also get the Y,U,V planes separately; save these to greyscale
113      # files.
114      yimg, uimg, vimg = image_processing_utils.convert_capture_to_planes(cap)
115      image_processing_utils.write_image(yimg, f'{file_name}_y_plane.jpg')
116      image_processing_utils.write_image(uimg, f'{file_name}_u_plane.jpg')
117      image_processing_utils.write_image(vimg, f'{file_name}_v_plane.jpg')
118
119      # Run 3A on the device. In this case, just use the entire image as the
120      # 3A region, and run each of AWB,AE,AF. Can also change the region and
121      # specify independently for each of AE,AWB,AF whether it should run.
122      #
123      # NOTE: This may fail, if the camera isn't pointed at a reasonable
124      # target scene. If it fails, the script will end. The logcat messages
125      # can be inspected to see the status of 3A running on the device.
126      #
127      # If this keeps on failing, try also rebooting the device before
128      # running the test.
129      sens, exp, gains, xform, focus = cam.do_3a(get_results=True)
130      logging.info('AE: sensitivity %d, exposure %dms', sens, exp/1000000.0)
131      logging.info('AWB: gains %s', str(gains))
132      logging.info('AWB: transform %s', str(xform))
133      logging.info('AF: distance %.4f', focus)
134
135      # Grab a new manual frame, using the 3A values, and convert it to RGB
136      # and save it to a file too. Note that the 'req' object is just a
137      # Python dictionary that is pre-populated by the capture_request_utils
138      # functions (in this case a default manual capture), and the key/value
139      # pairs in the object can be used to set any field of the capture
140      # request. Here, the AWB gains and transform (CCM) are being used.
141      # Note that the CCM transform is in a rational format in capture
142      # requests, meaning it is an object with integer numerators and
143      # denominators. The 3A routine returns simple floats instead, however,
144      # so a conversion from float to rational must be performed.
145      req = capture_request_utils.manual_capture_request(sens, exp)
146      xform_rat = capture_request_utils.float_to_rational(xform)
147
148      req['android.colorCorrection.transform'] = xform_rat
149      req['android.colorCorrection.gains'] = gains
150      cap = cam.do_capture(req)
151      rgbimg = image_processing_utils.convert_capture_to_rgb_image(cap)
152      image_processing_utils.write_image(rgbimg, f'{file_name}_rgb_2.jpg')
153
154      # log the actual capture request object that was used.
155      logging.debug('req: %s', str(req))
156
157      # Images are numpy arrays. The dimensions are (h,w,3) when indexing,
158      # in the case of RGB images. Greyscale images are (h,w,1). Pixels are
159      # generally float32 values in the [0,1] range, however some of the
160      # helper functions in image_processing_utils deal with the packed YUV420
161      # and other formats of images that come from the device (and convert
162      # them to float32).
163      # Print the dimensions of the image, and the top-left pixel value,
164      # which is an array of 3 floats.
165      logging.info('RGB image dimensions: %s', str(rgbimg.shape))
166      logging.info('RGB image top-left pixel: %s', str(rgbimg[0, 0]))
167
168      # Grab a center tile from the image; this returns a new image. Save
169      # this tile image. In this case, the tile is the middle 10% x 10%
170      # rectangle.
171      tile = image_processing_utils.get_image_patch(
172          rgbimg, 0.45, 0.45, 0.1, 0.1)
173      image_processing_utils.write_image(tile, f'{file_name}_rgb_2_tile.jpg')
174
175      # Compute the mean values of the center tile image.
176      rgb_means = image_processing_utils.compute_image_means(tile)
177      logging.info('RGB means: %s', str(rgb_means))
178
179      # Apply a lookup table to the image, and save the new version. The LUT
180      # is basically a tonemap, and can be used to implement a gamma curve.
181      # In this case, the LUT is used to double the value of each pixel.
182      lut = numpy.array([2*i for i in range(65536)])
183      rgbimg_lut = image_processing_utils.apply_lut_to_image(rgbimg, lut)
184      image_processing_utils.write_image(
185          rgbimg_lut, f'{file_name}_rgb_2_lut.jpg')
186
187      # Compute a histogram of the luma image, in 256 buckets.
188      yimg, _, _ = image_processing_utils.convert_capture_to_planes(cap)
189      hist, _ = numpy.histogram(yimg*255, 256, (0, 256))
190
191      # Plot the histogram using matplotlib, and save as a PNG image.
192      plt.plot(range(256), hist.tolist())
193      plt.xlabel('Luma DN')
194      plt.ylabel('Pixel count')
195      plt.title('Histogram of luma channel of captured image')
196      plt.savefig(f'{file_name}_histogram.png')
197
198      # Capture a frame to be returned as a JPEG. Load it as an RGB image,
199      # then save it back as a JPEG.
200      cap = cam.do_capture(req, cam.CAP_JPEG)
201      rgbimg = image_processing_utils.convert_capture_to_rgb_image(cap)
202      image_processing_utils.write_image(rgbimg, f'{file_name}_jpg.jpg')
203      r, _, _ = image_processing_utils.convert_capture_to_planes(cap)
204      image_processing_utils.write_image(r, f'{file_name}_r.jpg')
205
206# This is the standard boilerplate in each test that allows the script to both
207# be executed directly and imported as a module.
208if __name__ == '__main__':
209  test_runner.main()
210
211