1package xiangshan.mem 2 3import chisel3._ 4import chisel3.util._ 5import utils._ 6import xiangshan._ 7import xiangshan.cache._ 8import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants} 9import xiangshan.backend.LSUOpType 10import xiangshan.backend.roq.RoqPtr 11 12 13class SqPtr extends CircularQueuePtr(SqPtr.StoreQueueSize) { } 14 15object SqPtr extends HasXSParameter { 16 def apply(f: Bool, v: UInt): SqPtr = { 17 val ptr = Wire(new SqPtr) 18 ptr.flag := f 19 ptr.value := v 20 ptr 21 } 22} 23 24class SqEnqIO extends XSBundle { 25 val canAccept = Output(Bool()) 26 val lqCanAccept = Input(Bool()) 27 val needAlloc = Vec(RenameWidth, Input(Bool())) 28 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 29 val resp = Vec(RenameWidth, Output(new SqPtr)) 30} 31 32// Store Queue 33class StoreQueue extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 34 val io = IO(new Bundle() { 35 val enq = new SqEnqIO 36 val brqRedirect = Input(Valid(new Redirect)) 37 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 38 val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq)) 39 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 40 val forward = Vec(LoadPipelineWidth, Flipped(new LoadForwardQueryIO)) 41 val commits = Flipped(new RoqCommitIO) 42 val uncache = new DCacheWordIO 43 val roqDeqPtr = Input(new RoqPtr) 44 // val refill = Flipped(Valid(new DCacheLineReq )) 45 val exceptionAddr = new ExceptionAddrIO 46 val sqempty = Output(Bool()) 47 }) 48 49 // data modules 50 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 51 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 52 val dataModule = Module(new StoreQueueData(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth)) 53 dataModule.io := DontCare 54 val vaddrModule = Module(new AsyncDataModuleTemplate(UInt(VAddrBits.W), StoreQueueSize, numRead = 1, numWrite = StorePipelineWidth)) 55 vaddrModule.io := DontCare 56 57 // state & misc 58 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 59 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 60 val writebacked = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been writebacked to CDB 61 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq 62 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 63 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 64 65 // ptr 66 require(StoreQueueSize > RenameWidth) 67 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr)))) 68 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 69 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 70 val allowEnqueue = RegInit(true.B) 71 72 val enqPtr = enqPtrExt(0).value 73 val deqPtr = deqPtrExt(0).value 74 75 val tailMask = UIntToMask(deqPtr, StoreQueueSize) 76 val headMask = UIntToMask(enqPtr, StoreQueueSize) 77 78 // Read dataModule 79 // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule 80 // if !sbuffer.fire(), read the same ptr 81 // if sbuffer.fire(), read next 82 val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(), 83 VecInit(deqPtrExt.map(_ + 2.U)), 84 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 85 VecInit(deqPtrExt.map(_ + 1.U)), 86 deqPtrExt 87 ) 88 )) 89 val dataModuleRead = dataModule.io.rdata 90 for (i <- 0 until StorePipelineWidth) { 91 dataModule.io.raddr(i) := deqPtrExtNext(i).value 92 } 93 vaddrModule.io.raddr(0) := io.exceptionAddr.lsIdx.sqIdx.value 94 95 /** 96 * Enqueue at dispatch 97 * 98 * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 99 */ 100 io.enq.canAccept := allowEnqueue 101 for (i <- 0 until RenameWidth) { 102 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 103 val sqIdx = enqPtrExt(offset) 104 val index = sqIdx.value 105 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid) { 106 uop(index) := io.enq.req(i).bits 107 allocated(index) := true.B 108 datavalid(index) := false.B 109 writebacked(index) := false.B 110 commited(index) := false.B 111 pending(index) := false.B 112 } 113 io.enq.resp(i) := sqIdx 114 } 115 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 116 117 /** 118 * Writeback store from store units 119 * 120 * Most store instructions writeback to regfile in the previous cycle. 121 * However, 122 * (1) For an mmio instruction with exceptions, we need to mark it as datavalid 123 * (in this way it will trigger an exception when it reaches ROB's head) 124 * instead of pending to avoid sending them to lower level. 125 * (2) For an mmio instruction without exceptions, we mark it as pending. 126 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 127 * Upon receiving the response, StoreQueue writes back the instruction 128 * through arbiter with store units. It will later commit as normal. 129 */ 130 for (i <- 0 until StorePipelineWidth) { 131 dataModule.io.wen(i) := false.B 132 vaddrModule.io.wen(i) := false.B 133 when (io.storeIn(i).fire()) { 134 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 135 datavalid(stWbIndex) := !io.storeIn(i).bits.mmio 136 writebacked(stWbIndex) := !io.storeIn(i).bits.mmio 137 pending(stWbIndex) := io.storeIn(i).bits.mmio 138 139 val storeWbData = Wire(new SQDataEntry) 140 storeWbData := DontCare 141 storeWbData.paddr := io.storeIn(i).bits.paddr 142 storeWbData.mask := io.storeIn(i).bits.mask 143 storeWbData.data := io.storeIn(i).bits.data 144 dataModule.io.waddr(i) := stWbIndex 145 dataModule.io.wdata(i) := storeWbData 146 dataModule.io.wen(i) := true.B 147 148 vaddrModule.io.waddr(i) := stWbIndex 149 vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr 150 vaddrModule.io.wen(i) := true.B 151 152 mmio(stWbIndex) := io.storeIn(i).bits.mmio 153 154 XSInfo("store write to sq idx %d pc 0x%x vaddr %x paddr %x data %x mmio %x\n", 155 io.storeIn(i).bits.uop.sqIdx.value, 156 io.storeIn(i).bits.uop.cf.pc, 157 io.storeIn(i).bits.vaddr, 158 io.storeIn(i).bits.paddr, 159 io.storeIn(i).bits.data, 160 io.storeIn(i).bits.mmio 161 ) 162 } 163 } 164 165 /** 166 * load forward query 167 * 168 * Check store queue for instructions that is older than the load. 169 * The response will be valid at the next cycle after req. 170 */ 171 // check over all lq entries and forward data from the first matched store 172 for (i <- 0 until LoadPipelineWidth) { 173 io.forward(i).forwardMask := 0.U(8.W).asBools 174 io.forward(i).forwardData := DontCare 175 176 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 177 // (1) if they have the same flag, we need to check range(tail, sqIdx) 178 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 179 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 180 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 181 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 182 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 183 val forwardMask = UIntToMask(io.forward(i).sqIdx.value, StoreQueueSize) 184 val storeWritebackedVec = WireInit(VecInit(Seq.fill(StoreQueueSize)(false.B))) 185 for (j <- 0 until StoreQueueSize) { 186 storeWritebackedVec(j) := datavalid(j) && allocated(j) // all datavalid terms need to be checked 187 } 188 val needForward1 = Mux(differentFlag, ~tailMask, tailMask ^ forwardMask) & storeWritebackedVec.asUInt 189 val needForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & storeWritebackedVec.asUInt 190 191 XSDebug(p"$i f1 ${Binary(needForward1)} f2 ${Binary(needForward2)} " + 192 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 193 ) 194 195 // do real fwd query 196 dataModule.io.forwardQuery( 197 numForward = i, 198 paddr = io.forward(i).paddr, 199 needForward1 = needForward1, 200 needForward2 = needForward2 201 ) 202 203 io.forward(i).forwardMask := dataModule.io.forward(i).forwardMask 204 io.forward(i).forwardData := dataModule.io.forward(i).forwardData 205 } 206 207 /** 208 * Memory mapped IO / other uncached operations 209 * 210 * States: 211 * (1) writeback from store units: mark as pending 212 * (2) when they reach ROB's head, they can be sent to uncache channel 213 * (3) response from uncache channel: mark as datavalid 214 * (4) writeback to ROB (and other units): mark as writebacked 215 * (5) ROB commits the instruction: same as normal instructions 216 */ 217 //(2) when they reach ROB's head, they can be sent to uncache channel 218 io.uncache.req.valid := pending(deqPtr) && allocated(deqPtr) && 219 io.commits.info(0).commitType === CommitType.STORE && 220 io.roqDeqPtr === uop(deqPtr).roqIdx && 221 !io.commits.isWalk 222 223 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 224 io.uncache.req.bits.addr := dataModule.io.rdata(0).paddr // data(deqPtr) -> rdata(0) 225 io.uncache.req.bits.data := dataModule.io.rdata(0).data 226 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 227 228 io.uncache.req.bits.meta.id := DontCare 229 io.uncache.req.bits.meta.vaddr := DontCare 230 io.uncache.req.bits.meta.paddr := dataModule.io.rdata(0).paddr 231 io.uncache.req.bits.meta.uop := uop(deqPtr) 232 io.uncache.req.bits.meta.mmio := true.B 233 io.uncache.req.bits.meta.tlb_miss := false.B 234 io.uncache.req.bits.meta.mask := dataModule.io.rdata(0).mask 235 io.uncache.req.bits.meta.replay := false.B 236 237 when(io.uncache.req.fire()){ 238 pending(deqPtr) := false.B 239 240 XSDebug( 241 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 242 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 243 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 244 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 245 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 246 ) 247 } 248 249 // (3) response from uncache channel: mark as datavalid 250 io.uncache.resp.ready := true.B 251 when (io.uncache.resp.fire()) { 252 datavalid(deqPtr) := true.B 253 } 254 255 // (4) writeback to ROB (and other units): mark as writebacked 256 io.mmioStout.valid := allocated(deqPtr) && datavalid(deqPtr) && !writebacked(deqPtr) 257 io.mmioStout.bits.uop := uop(deqPtr) 258 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 259 io.mmioStout.bits.data := dataModuleRead(0).data // dataModuleRead.read(deqPtr) 260 io.mmioStout.bits.redirectValid := false.B 261 io.mmioStout.bits.redirect := DontCare 262 io.mmioStout.bits.brUpdate := DontCare 263 io.mmioStout.bits.debug.isMMIO := true.B 264 io.mmioStout.bits.debug.isPerfCnt := false.B 265 io.mmioStout.bits.fflags := DontCare 266 when (io.mmioStout.fire()) { 267 writebacked(deqPtr) := true.B 268 allocated(deqPtr) := false.B 269 } 270 271 /** 272 * ROB commits store instructions (mark them as commited) 273 * 274 * (1) When store commits, mark it as commited. 275 * (2) They will not be cancelled and can be sent to lower level. 276 */ 277 for (i <- 0 until CommitWidth) { 278 val storeCommit = !io.commits.isWalk && io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE 279 when (storeCommit) { 280 commited(io.commits.info(i).sqIdx.value) := true.B 281 XSDebug("store commit %d: idx %d\n", i.U, io.commits.info(i).sqIdx.value) 282 } 283 } 284 285 // Commited stores will not be cancelled and can be sent to lower level. 286 // remove retired insts from sq, add retired store to sbuffer 287 for (i <- 0 until StorePipelineWidth) { 288 // We use RegNext to prepare data for sbuffer 289 val ptr = deqPtrExt(i).value 290 // if !sbuffer.fire(), read the same ptr 291 // if sbuffer.fire(), read next 292 io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr) 293 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 294 io.sbuffer(i).bits.addr := dataModuleRead(i).paddr 295 io.sbuffer(i).bits.data := dataModuleRead(i).data 296 io.sbuffer(i).bits.mask := dataModuleRead(i).mask 297 io.sbuffer(i).bits.meta := DontCare 298 io.sbuffer(i).bits.meta.tlb_miss := false.B 299 io.sbuffer(i).bits.meta.uop := DontCare 300 io.sbuffer(i).bits.meta.mmio := false.B 301 io.sbuffer(i).bits.meta.mask := io.sbuffer(i).bits.mask 302 303 when (io.sbuffer(i).fire()) { 304 allocated(ptr) := false.B 305 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 306 } 307 } 308 when (io.sbuffer(1).fire()) { 309 assert(io.sbuffer(0).fire()) 310 } 311 312 if (!env.FPGAPlatform) { 313 val storeCommit = PopCount(io.sbuffer.map(_.fire())) 314 val waddr = VecInit(io.sbuffer.map(req => SignExt(req.bits.addr, 64))) 315 val wdata = VecInit(io.sbuffer.map(req => req.bits.data & MaskExpand(req.bits.mask))) 316 val wmask = VecInit(io.sbuffer.map(_.bits.mask)) 317 318 ExcitingUtils.addSource(RegNext(storeCommit), "difftestStoreCommit", ExcitingUtils.Debug) 319 ExcitingUtils.addSource(RegNext(waddr), "difftestStoreAddr", ExcitingUtils.Debug) 320 ExcitingUtils.addSource(RegNext(wdata), "difftestStoreData", ExcitingUtils.Debug) 321 ExcitingUtils.addSource(RegNext(wmask), "difftestStoreMask", ExcitingUtils.Debug) 322 } 323 324 // Read vaddr for mem exception 325 io.exceptionAddr.vaddr := vaddrModule.io.rdata(0) 326 327 // misprediction recovery / exception redirect 328 // invalidate sq term using robIdx 329 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 330 for (i <- 0 until StoreQueueSize) { 331 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect) && allocated(i) && !commited(i) 332 when (needCancel(i)) { 333 allocated(i) := false.B 334 } 335 } 336 337 /** 338 * update pointers 339 */ 340 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 341 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 342 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 343 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid, PopCount(io.enq.req.map(_.valid)), 0.U) 344 when (lastCycleRedirect) { 345 // we recover the pointers in the next cycle after redirect 346 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 347 }.otherwise { 348 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 349 } 350 351 deqPtrExt := deqPtrExtNext 352 353 val lastLastCycleRedirect = RegNext(lastCycleRedirect) 354 val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 355 val trueValidCounter = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 356 validCounter := Mux(lastLastCycleRedirect, 357 trueValidCounter - dequeueCount, 358 validCounter + enqNumber - dequeueCount 359 ) 360 361 allowEnqueue := Mux(io.brqRedirect.valid, 362 false.B, 363 Mux(lastLastCycleRedirect, 364 trueValidCounter <= (StoreQueueSize - RenameWidth).U, 365 validCounter + enqNumber <= (StoreQueueSize - RenameWidth).U 366 ) 367 ) 368 369 // io.sqempty will be used by sbuffer 370 // We delay it for 1 cycle for better timing 371 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 372 // for 1 cycle will also promise that sq is empty in that cycle 373 io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag) 374 375 // debug info 376 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 377 378 def PrintFlag(flag: Bool, name: String): Unit = { 379 when(flag) { 380 XSDebug(false, true.B, name) 381 }.otherwise { 382 XSDebug(false, true.B, " ") 383 } 384 } 385 386 for (i <- 0 until StoreQueueSize) { 387 if (i % 4 == 0) XSDebug("") 388 XSDebug(false, true.B, "%x [%x] ", uop(i).cf.pc, dataModule.io.debug(i).paddr) 389 PrintFlag(allocated(i), "a") 390 PrintFlag(allocated(i) && datavalid(i), "v") 391 PrintFlag(allocated(i) && writebacked(i), "w") 392 PrintFlag(allocated(i) && commited(i), "c") 393 PrintFlag(allocated(i) && pending(i), "p") 394 XSDebug(false, true.B, " ") 395 if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n") 396 } 397 398} 399