1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import xiangshan._ 24import xiangshan.cache._ 25import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants} 26import xiangshan.backend.roq.{RoqLsqIO, RoqPtr} 27import difftest._ 28import device.RAMHelper 29 30class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 31 p => p(XSCoreParamsKey).StoreQueueSize 32){ 33 override def cloneType = (new SqPtr).asInstanceOf[this.type] 34} 35 36object SqPtr { 37 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 38 val ptr = Wire(new SqPtr) 39 ptr.flag := f 40 ptr.value := v 41 ptr 42 } 43} 44 45class SqEnqIO(implicit p: Parameters) extends XSBundle { 46 val canAccept = Output(Bool()) 47 val lqCanAccept = Input(Bool()) 48 val needAlloc = Vec(RenameWidth, Input(Bool())) 49 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 50 val resp = Vec(RenameWidth, Output(new SqPtr)) 51} 52 53// Store Queue 54class StoreQueue(implicit p: Parameters) extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 55 val io = IO(new Bundle() { 56 val enq = new SqEnqIO 57 val brqRedirect = Flipped(ValidIO(new Redirect)) 58 val flush = Input(Bool()) 59 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 60 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreDataBundle))) // store data, send to sq from rs 61 val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq)) // write commited store to sbuffer 62 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 63 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 64 val roq = Flipped(new RoqLsqIO) 65 val uncache = new DCacheWordIO 66 // val refill = Flipped(Valid(new DCacheLineReq )) 67 val exceptionAddr = new ExceptionAddrIO 68 val sqempty = Output(Bool()) 69 val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store 70 val sqFull = Output(Bool()) 71 }) 72 73 println("StoreQueue: size:" + StoreQueueSize) 74 75 // data modules 76 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 77 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 78 val dataModule = Module(new SQDataModule(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth)) 79 dataModule.io := DontCare 80 val paddrModule = Module(new SQPaddrModule(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth)) 81 paddrModule.io := DontCare 82 val vaddrModule = Module(new SyncDataModuleTemplate(UInt(VAddrBits.W), StoreQueueSize, numRead = 1, numWrite = StorePipelineWidth)) 83 vaddrModule.io := DontCare 84 85 // state & misc 86 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 87 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 88 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 89 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 90 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq 91 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 92 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 93 94 // ptr 95 require(StoreQueueSize > RenameWidth) 96 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr)))) 97 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 98 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 99 val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 100 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 101 val allowEnqueue = RegInit(true.B) 102 103 val enqPtr = enqPtrExt(0).value 104 val deqPtr = deqPtrExt(0).value 105 val cmtPtr = cmtPtrExt(0).value 106 107 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 108 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 109 110 val commitCount = RegNext(io.roq.scommit) 111 112 // Read dataModule 113 // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule 114 // if !sbuffer.fire(), read the same ptr 115 // if sbuffer.fire(), read next 116 val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(), 117 VecInit(deqPtrExt.map(_ + 2.U)), 118 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 119 VecInit(deqPtrExt.map(_ + 1.U)), 120 deqPtrExt 121 ) 122 )) 123 for (i <- 0 until StorePipelineWidth) { 124 dataModule.io.raddr(i) := deqPtrExtNext(i).value 125 paddrModule.io.raddr(i) := deqPtrExtNext(i).value 126 } 127 128 // no inst will be commited 1 cycle before tval update 129 vaddrModule.io.raddr(0) := (cmtPtrExt(0) + commitCount).value 130 131 /** 132 * Enqueue at dispatch 133 * 134 * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 135 */ 136 io.enq.canAccept := allowEnqueue 137 for (i <- 0 until RenameWidth) { 138 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 139 val sqIdx = enqPtrExt(offset) 140 val index = sqIdx.value 141 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush)) { 142 uop(index) := io.enq.req(i).bits 143 allocated(index) := true.B 144 datavalid(index) := false.B 145 addrvalid(index) := false.B 146 commited(index) := false.B 147 pending(index) := false.B 148 } 149 io.enq.resp(i) := sqIdx 150 } 151 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 152 153 /** 154 * Update issuePtr when issue from rs 155 */ 156 // update issuePtr 157 val IssuePtrMoveStride = 4 158 require(IssuePtrMoveStride >= 2) 159 160 val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U) 161 val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && addrvalid(ptr.value) && datavalid(ptr.value) && ptr =/= enqPtrExt(0)) 162 val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B)) 163 issuePtrExt := nextIssuePtr 164 165 when (io.brqRedirect.valid || io.flush) { 166 issuePtrExt := Mux( 167 isAfter(cmtPtrExt(0), deqPtrExt(0)), 168 cmtPtrExt(0), 169 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 170 ) 171 } 172 // send issuePtrExt to rs 173 // io.issuePtrExt := cmtPtrExt(0) 174 io.issuePtrExt := issuePtrExt 175 176 /** 177 * Writeback store from store units 178 * 179 * Most store instructions writeback to regfile in the previous cycle. 180 * However, 181 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 182 * (in this way it will trigger an exception when it reaches ROB's head) 183 * instead of pending to avoid sending them to lower level. 184 * (2) For an mmio instruction without exceptions, we mark it as pending. 185 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 186 * Upon receiving the response, StoreQueue writes back the instruction 187 * through arbiter with store units. It will later commit as normal. 188 */ 189 190 // Write addr to sq 191 for (i <- 0 until StorePipelineWidth) { 192 paddrModule.io.wen(i) := false.B 193 dataModule.io.mask.wen(i) := false.B 194 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 195 when (io.storeIn(i).fire()) { 196 addrvalid(stWbIndex) := true.B//!io.storeIn(i).bits.mmio 197 pending(stWbIndex) := io.storeIn(i).bits.mmio 198 199 dataModule.io.mask.waddr(i) := stWbIndex 200 dataModule.io.mask.wdata(i) := io.storeIn(i).bits.mask 201 dataModule.io.mask.wen(i) := true.B 202 203 paddrModule.io.waddr(i) := stWbIndex 204 paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr 205 paddrModule.io.wen(i) := true.B 206 207 mmio(stWbIndex) := io.storeIn(i).bits.mmio 208 209 XSInfo("store addr write to sq idx %d pc 0x%x vaddr %x paddr %x mmio %x\n", 210 io.storeIn(i).bits.uop.sqIdx.value, 211 io.storeIn(i).bits.uop.cf.pc, 212 io.storeIn(i).bits.vaddr, 213 io.storeIn(i).bits.paddr, 214 io.storeIn(i).bits.mmio 215 ) 216 } 217 // vaddrModule write is delayed, as vaddrModule will not be read right after write 218 vaddrModule.io.waddr(i) := RegNext(stWbIndex) 219 vaddrModule.io.wdata(i) := RegNext(io.storeIn(i).bits.vaddr) 220 vaddrModule.io.wen(i) := RegNext(io.storeIn(i).fire()) 221 } 222 223 // Write data to sq 224 for (i <- 0 until StorePipelineWidth) { 225 dataModule.io.data.wen(i) := false.B 226 io.roq.storeDataRoqWb(i).valid := false.B 227 io.roq.storeDataRoqWb(i).bits := DontCare 228 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 229 when (io.storeDataIn(i).fire()) { 230 datavalid(stWbIndex) := true.B 231 232 dataModule.io.data.waddr(i) := stWbIndex 233 dataModule.io.data.wdata(i) := genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0)) 234 dataModule.io.data.wen(i) := true.B 235 236 io.roq.storeDataRoqWb(i).valid := true.B 237 io.roq.storeDataRoqWb(i).bits := io.storeDataIn(i).bits.uop.roqIdx 238 239 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 240 io.storeDataIn(i).bits.uop.sqIdx.value, 241 io.storeDataIn(i).bits.uop.cf.pc, 242 io.storeDataIn(i).bits.data, 243 dataModule.io.data.wdata(i) 244 ) 245 } 246 } 247 248 /** 249 * load forward query 250 * 251 * Check store queue for instructions that is older than the load. 252 * The response will be valid at the next cycle after req. 253 */ 254 // check over all lq entries and forward data from the first matched store 255 for (i <- 0 until LoadPipelineWidth) { 256 io.forward(i).forwardMask := 0.U(8.W).asBools 257 io.forward(i).forwardData := DontCare 258 259 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 260 // (1) if they have the same flag, we need to check range(tail, sqIdx) 261 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 262 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 263 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 264 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 265 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 266 val forwardMask = io.forward(i).sqIdxMask 267 // all addrvalid terms need to be checked 268 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i)))) 269 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i)))) 270 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i)))) 271 val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt 272 val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt 273 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 274 275 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 276 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 277 ) 278 279 // do real fwd query (cam lookup in load_s1) 280 dataModule.io.needForward(i)(0) := canForward1 & paddrModule.io.forwardMmask(i).asUInt 281 dataModule.io.needForward(i)(1) := canForward2 & paddrModule.io.forwardMmask(i).asUInt 282 283 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 284 285 // Forward result will be generated 1 cycle later (load_s2) 286 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 287 io.forward(i).forwardData := dataModule.io.forwardData(i) 288 289 // If addr match, data not ready, mark it as dataInvalid 290 // load_s1: generate dataInvalid in load_s1 to set fastUop to 291 io.forward(i).dataInvalidFast := (addrValidVec.asUInt & ~dataValidVec.asUInt & paddrModule.io.forwardMmask(i).asUInt & needForward).orR 292 // load_s2 293 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 294 } 295 296 /** 297 * Memory mapped IO / other uncached operations 298 * 299 * States: 300 * (1) writeback from store units: mark as pending 301 * (2) when they reach ROB's head, they can be sent to uncache channel 302 * (3) response from uncache channel: mark as datavalidmask.wen 303 * (4) writeback to ROB (and other units): mark as writebacked 304 * (5) ROB commits the instruction: same as normal instructions 305 */ 306 //(2) when they reach ROB's head, they can be sent to uncache channel 307 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 308 val uncacheState = RegInit(s_idle) 309 switch(uncacheState) { 310 is(s_idle) { 311 when(io.roq.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr)) { 312 uncacheState := s_req 313 } 314 } 315 is(s_req) { 316 when(io.uncache.req.fire()) { 317 uncacheState := s_resp 318 } 319 } 320 is(s_resp) { 321 when(io.uncache.resp.fire()) { 322 uncacheState := s_wb 323 } 324 } 325 is(s_wb) { 326 when (io.mmioStout.fire()) { 327 uncacheState := s_wait 328 } 329 } 330 is(s_wait) { 331 when(io.roq.commit) { 332 uncacheState := s_idle // ready for next mmio 333 } 334 } 335 } 336 io.uncache.req.valid := uncacheState === s_req 337 338 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 339 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 340 io.uncache.req.bits.data := dataModule.io.rdata(0).data 341 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 342 343 io.uncache.req.bits.id := DontCare 344 345 when(io.uncache.req.fire()){ 346 // mmio store should not be committed until uncache req is sent 347 pending(deqPtr) := false.B 348 349 XSDebug( 350 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 351 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 352 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 353 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 354 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 355 ) 356 } 357 358 // (3) response from uncache channel: mark as datavalid 359 io.uncache.resp.ready := true.B 360 361 // (4) writeback to ROB (and other units): mark as writebacked 362 io.mmioStout.valid := uncacheState === s_wb 363 io.mmioStout.bits.uop := uop(deqPtr) 364 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 365 io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr) 366 io.mmioStout.bits.redirectValid := false.B 367 io.mmioStout.bits.redirect := DontCare 368 io.mmioStout.bits.debug.isMMIO := true.B 369 io.mmioStout.bits.debug.paddr := DontCare 370 io.mmioStout.bits.debug.isPerfCnt := false.B 371 io.mmioStout.bits.fflags := DontCare 372 // Remove MMIO inst from store queue after MMIO request is being sent 373 // That inst will be traced by uncache state machine 374 when (io.mmioStout.fire()) { 375 allocated(deqPtr) := false.B 376 } 377 378 /** 379 * ROB commits store instructions (mark them as commited) 380 * 381 * (1) When store commits, mark it as commited. 382 * (2) They will not be cancelled and can be sent to lower level. 383 */ 384 XSError(uncacheState === s_wait && commitCount > 1.U, "should only commit one instruction when there's an MMIO\n") 385 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 386 "should not commit instruction when MMIO has not been finished\n") 387 for (i <- 0 until CommitWidth) { 388 when (commitCount > i.U && uncacheState === s_idle) { // MMIO inst is not in progress 389 commited(cmtPtrExt(i).value) := true.B 390 } 391 } 392 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 393 394 // Commited stores will not be cancelled and can be sent to lower level. 395 // remove retired insts from sq, add retired store to sbuffer 396 for (i <- 0 until StorePipelineWidth) { 397 // We use RegNext to prepare data for sbuffer 398 val ptr = deqPtrExt(i).value 399 // if !sbuffer.fire(), read the same ptr 400 // if sbuffer.fire(), read next 401 io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr) 402 // Note that store data/addr should both be valid after store's commit 403 assert(!io.sbuffer(i).valid || allvalid(ptr)) 404 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 405 io.sbuffer(i).bits.addr := paddrModule.io.rdata(i) 406 io.sbuffer(i).bits.data := dataModule.io.rdata(i).data 407 io.sbuffer(i).bits.mask := dataModule.io.rdata(i).mask 408 io.sbuffer(i).bits.id := DontCare 409 410 when (io.sbuffer(i).fire()) { 411 allocated(ptr) := false.B 412 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 413 } 414 } 415 when (io.sbuffer(1).fire()) { 416 assert(io.sbuffer(0).fire()) 417 } 418 if (useFakeDCache) { 419 for (i <- 0 until StorePipelineWidth) { 420 val ptr = deqPtrExt(i).value 421 val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024)) 422 fakeRAM.io.clk := clock 423 fakeRAM.io.en := allocated(ptr) && commited(ptr) && !mmio(ptr) 424 fakeRAM.io.rIdx := 0.U 425 fakeRAM.io.wIdx := (paddrModule.io.rdata(i) - "h80000000".U) >> 3 426 fakeRAM.io.wdata := dataModule.io.rdata(i).data 427 fakeRAM.io.wmask := MaskExpand(dataModule.io.rdata(i).mask) 428 fakeRAM.io.wen := allocated(ptr) && commited(ptr) && !mmio(ptr) 429 } 430 } 431 432 if (!env.FPGAPlatform) { 433 for (i <- 0 until StorePipelineWidth) { 434 val storeCommit = io.sbuffer(i).fire() 435 val waddr = SignExt(io.sbuffer(i).bits.addr, 64) 436 val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask) 437 val wmask = io.sbuffer(i).bits.mask 438 439 val difftest = Module(new DifftestStoreEvent) 440 difftest.io.clock := clock 441 difftest.io.coreid := hardId.U 442 difftest.io.index := i.U 443 difftest.io.valid := storeCommit 444 difftest.io.storeAddr := waddr 445 difftest.io.storeData := wdata 446 difftest.io.storeMask := wmask 447 } 448 } 449 450 // Read vaddr for mem exception 451 io.exceptionAddr.vaddr := vaddrModule.io.rdata(0) 452 453 // misprediction recovery / exception redirect 454 // invalidate sq term using robIdx 455 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 456 for (i <- 0 until StoreQueueSize) { 457 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect, io.flush) && allocated(i) && !commited(i) 458 when (needCancel(i)) { 459 allocated(i) := false.B 460 } 461 } 462 463 /** 464 * update pointers 465 */ 466 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 467 val lastCycleFlush = RegNext(io.flush) 468 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 469 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 470 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush), PopCount(io.enq.req.map(_.valid)), 0.U) 471 when (lastCycleRedirect || lastCycleFlush) { 472 // we recover the pointers in the next cycle after redirect 473 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 474 }.otherwise { 475 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 476 } 477 478 deqPtrExt := deqPtrExtNext 479 480 val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 481 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 482 483 allowEnqueue := validCount + enqNumber <= (StoreQueueSize - RenameWidth).U 484 485 // io.sqempty will be used by sbuffer 486 // We delay it for 1 cycle for better timing 487 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 488 // for 1 cycle will also promise that sq is empty in that cycle 489 io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag) 490 491 // perf counter 492 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 493 io.sqFull := !allowEnqueue 494 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 495 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 496 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire()) 497 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 498 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 499 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 500 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 501 502 // debug info 503 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 504 505 def PrintFlag(flag: Bool, name: String): Unit = { 506 when(flag) { 507 XSDebug(false, true.B, name) 508 }.otherwise { 509 XSDebug(false, true.B, " ") 510 } 511 } 512 513 for (i <- 0 until StoreQueueSize) { 514 if (i % 4 == 0) XSDebug("") 515 XSDebug(false, true.B, "%x ", uop(i).cf.pc) 516 PrintFlag(allocated(i), "a") 517 PrintFlag(allocated(i) && addrvalid(i), "a") 518 PrintFlag(allocated(i) && datavalid(i), "d") 519 PrintFlag(allocated(i) && commited(i), "c") 520 PrintFlag(allocated(i) && pending(i), "p") 521 PrintFlag(allocated(i) && mmio(i), "m") 522 XSDebug(false, true.B, " ") 523 if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n") 524 } 525 526} 527