1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import xiangshan._ 24import xiangshan.cache._ 25import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants} 26import xiangshan.backend.roq.{RoqLsqIO, RoqPtr} 27import difftest._ 28import device.RAMHelper 29 30class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 31 p => p(XSCoreParamsKey).StoreQueueSize 32){ 33 override def cloneType = (new SqPtr).asInstanceOf[this.type] 34} 35 36object SqPtr { 37 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 38 val ptr = Wire(new SqPtr) 39 ptr.flag := f 40 ptr.value := v 41 ptr 42 } 43} 44 45class SqEnqIO(implicit p: Parameters) extends XSBundle { 46 val canAccept = Output(Bool()) 47 val lqCanAccept = Input(Bool()) 48 val needAlloc = Vec(RenameWidth, Input(Bool())) 49 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 50 val resp = Vec(RenameWidth, Output(new SqPtr)) 51} 52 53// Store Queue 54class StoreQueue(implicit p: Parameters) extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 55 val io = IO(new Bundle() { 56 val enq = new SqEnqIO 57 val brqRedirect = Flipped(ValidIO(new Redirect)) 58 val flush = Input(Bool()) 59 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 60 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreDataBundle))) // store data, send to sq from rs 61 val sbuffer = Vec(StorePipelineWidth, Decoupled(new SBufferWordReq)) // write commited store to sbuffer 62 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 63 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 64 val roq = Flipped(new RoqLsqIO) 65 val uncache = new DCacheWordIO 66 // val refill = Flipped(Valid(new DCacheLineReq )) 67 val exceptionAddr = new ExceptionAddrIO 68 val sqempty = Output(Bool()) 69 val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store 70 val sqFull = Output(Bool()) 71 }) 72 73 println("StoreQueue: size:" + StoreQueueSize) 74 75 // data modules 76 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 77 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 78 val dataModule = Module(new SQDataModule( 79 numEntries = StoreQueueSize, 80 numRead = StorePipelineWidth, 81 numWrite = StorePipelineWidth, 82 numForward = StorePipelineWidth 83 )) 84 dataModule.io := DontCare 85 val paddrModule = Module(new SQAddrModule( 86 dataWidth = PAddrBits, 87 numEntries = StoreQueueSize, 88 numRead = StorePipelineWidth, 89 numWrite = StorePipelineWidth, 90 numForward = StorePipelineWidth 91 )) 92 paddrModule.io := DontCare 93 val vaddrModule = Module(new SQAddrModule( 94 dataWidth = VAddrBits, 95 numEntries = StoreQueueSize, 96 numRead = StorePipelineWidth + 1, // sbuffer 2 + badvaddr 1 (TODO) 97 numWrite = StorePipelineWidth, 98 numForward = StorePipelineWidth 99 )) 100 vaddrModule.io := DontCare 101 102 // state & misc 103 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 104 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 105 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 106 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 107 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq 108 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 109 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 110 111 // ptr 112 require(StoreQueueSize > RenameWidth) 113 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr)))) 114 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 115 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 116 val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 117 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 118 val allowEnqueue = RegInit(true.B) 119 120 val enqPtr = enqPtrExt(0).value 121 val deqPtr = deqPtrExt(0).value 122 val cmtPtr = cmtPtrExt(0).value 123 124 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 125 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 126 127 val commitCount = RegNext(io.roq.scommit) 128 129 // Read dataModule 130 // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule 131 // if !sbuffer.fire(), read the same ptr 132 // if sbuffer.fire(), read next 133 val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(), 134 VecInit(deqPtrExt.map(_ + 2.U)), 135 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 136 VecInit(deqPtrExt.map(_ + 1.U)), 137 deqPtrExt 138 ) 139 )) 140 for (i <- 0 until StorePipelineWidth) { 141 dataModule.io.raddr(i) := deqPtrExtNext(i).value 142 paddrModule.io.raddr(i) := deqPtrExtNext(i).value 143 vaddrModule.io.raddr(i) := deqPtrExtNext(i).value 144 } 145 146 // no inst will be commited 1 cycle before tval update 147 vaddrModule.io.raddr(StorePipelineWidth) := (cmtPtrExt(0) + commitCount).value 148 149 /** 150 * Enqueue at dispatch 151 * 152 * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 153 */ 154 io.enq.canAccept := allowEnqueue 155 for (i <- 0 until RenameWidth) { 156 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 157 val sqIdx = enqPtrExt(offset) 158 val index = sqIdx.value 159 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush)) { 160 uop(index) := io.enq.req(i).bits 161 allocated(index) := true.B 162 datavalid(index) := false.B 163 addrvalid(index) := false.B 164 commited(index) := false.B 165 pending(index) := false.B 166 } 167 io.enq.resp(i) := sqIdx 168 } 169 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 170 171 /** 172 * Update issuePtr when issue from rs 173 */ 174 // update issuePtr 175 val IssuePtrMoveStride = 4 176 require(IssuePtrMoveStride >= 2) 177 178 val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U) 179 val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && addrvalid(ptr.value) && datavalid(ptr.value) && ptr =/= enqPtrExt(0)) 180 val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B)) 181 issuePtrExt := nextIssuePtr 182 183 when (io.brqRedirect.valid || io.flush) { 184 issuePtrExt := Mux( 185 isAfter(cmtPtrExt(0), deqPtrExt(0)), 186 cmtPtrExt(0), 187 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 188 ) 189 } 190 // send issuePtrExt to rs 191 // io.issuePtrExt := cmtPtrExt(0) 192 io.issuePtrExt := issuePtrExt 193 194 /** 195 * Writeback store from store units 196 * 197 * Most store instructions writeback to regfile in the previous cycle. 198 * However, 199 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 200 * (in this way it will trigger an exception when it reaches ROB's head) 201 * instead of pending to avoid sending them to lower level. 202 * (2) For an mmio instruction without exceptions, we mark it as pending. 203 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 204 * Upon receiving the response, StoreQueue writes back the instruction 205 * through arbiter with store units. It will later commit as normal. 206 */ 207 208 // Write addr to sq 209 for (i <- 0 until StorePipelineWidth) { 210 paddrModule.io.wen(i) := false.B 211 vaddrModule.io.wen(i) := false.B 212 dataModule.io.mask.wen(i) := false.B 213 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 214 when (io.storeIn(i).fire()) { 215 addrvalid(stWbIndex) := true.B//!io.storeIn(i).bits.mmio 216 pending(stWbIndex) := io.storeIn(i).bits.mmio 217 218 dataModule.io.mask.waddr(i) := stWbIndex 219 dataModule.io.mask.wdata(i) := io.storeIn(i).bits.mask 220 dataModule.io.mask.wen(i) := true.B 221 222 paddrModule.io.waddr(i) := stWbIndex 223 paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr 224 paddrModule.io.wen(i) := true.B 225 226 vaddrModule.io.waddr(i) := stWbIndex 227 vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr 228 vaddrModule.io.wen(i) := true.B 229 230 mmio(stWbIndex) := io.storeIn(i).bits.mmio 231 232 XSInfo("store addr write to sq idx %d pc 0x%x vaddr %x paddr %x mmio %x\n", 233 io.storeIn(i).bits.uop.sqIdx.value, 234 io.storeIn(i).bits.uop.cf.pc, 235 io.storeIn(i).bits.vaddr, 236 io.storeIn(i).bits.paddr, 237 io.storeIn(i).bits.mmio 238 ) 239 } 240 } 241 242 // Write data to sq 243 for (i <- 0 until StorePipelineWidth) { 244 dataModule.io.data.wen(i) := false.B 245 io.roq.storeDataRoqWb(i).valid := false.B 246 io.roq.storeDataRoqWb(i).bits := DontCare 247 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 248 when (io.storeDataIn(i).fire()) { 249 datavalid(stWbIndex) := true.B 250 251 dataModule.io.data.waddr(i) := stWbIndex 252 dataModule.io.data.wdata(i) := genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0)) 253 dataModule.io.data.wen(i) := true.B 254 255 io.roq.storeDataRoqWb(i).valid := true.B 256 io.roq.storeDataRoqWb(i).bits := io.storeDataIn(i).bits.uop.roqIdx 257 258 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 259 io.storeDataIn(i).bits.uop.sqIdx.value, 260 io.storeDataIn(i).bits.uop.cf.pc, 261 io.storeDataIn(i).bits.data, 262 dataModule.io.data.wdata(i) 263 ) 264 } 265 } 266 267 /** 268 * load forward query 269 * 270 * Check store queue for instructions that is older than the load. 271 * The response will be valid at the next cycle after req. 272 */ 273 // check over all lq entries and forward data from the first matched store 274 for (i <- 0 until LoadPipelineWidth) { 275 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 276 // (1) if they have the same flag, we need to check range(tail, sqIdx) 277 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 278 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 279 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 280 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 281 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 282 val forwardMask = io.forward(i).sqIdxMask 283 // all addrvalid terms need to be checked 284 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i)))) 285 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i)))) 286 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i)))) 287 val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt 288 val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt 289 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 290 291 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 292 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 293 ) 294 295 // do real fwd query (cam lookup in load_s1) 296 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 297 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 298 299 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 300 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 301 302 // vaddr cam result does not equal to paddr cam result 303 // replay needed 304 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 305 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 306 val vpmaskNotEqual = ((RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & RegNext(needForward)) =/= 0.U 307 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 308 when (vaddrMatchFailed) { 309 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 310 RegNext(io.forward(i).uop.cf.pc), 311 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 312 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 313 ); 314 } 315 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 316 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 317 318 // Fast forward mask will be generated immediately (load_s1) 319 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 320 321 // Forward result will be generated 1 cycle later (load_s2) 322 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 323 io.forward(i).forwardData := dataModule.io.forwardData(i) 324 325 // If addr match, data not ready, mark it as dataInvalid 326 // load_s1: generate dataInvalid in load_s1 to set fastUop to 327 io.forward(i).dataInvalidFast := (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward).orR 328 // load_s2 329 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 330 331 // load_s2 332 // check if vaddr forward mismatched 333 io.forward(i).matchInvalid := vaddrMatchFailed 334 } 335 336 /** 337 * Memory mapped IO / other uncached operations 338 * 339 * States: 340 * (1) writeback from store units: mark as pending 341 * (2) when they reach ROB's head, they can be sent to uncache channel 342 * (3) response from uncache channel: mark as datavalidmask.wen 343 * (4) writeback to ROB (and other units): mark as writebacked 344 * (5) ROB commits the instruction: same as normal instructions 345 */ 346 //(2) when they reach ROB's head, they can be sent to uncache channel 347 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 348 val uncacheState = RegInit(s_idle) 349 switch(uncacheState) { 350 is(s_idle) { 351 when(io.roq.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr)) { 352 uncacheState := s_req 353 } 354 } 355 is(s_req) { 356 when(io.uncache.req.fire()) { 357 uncacheState := s_resp 358 } 359 } 360 is(s_resp) { 361 when(io.uncache.resp.fire()) { 362 uncacheState := s_wb 363 } 364 } 365 is(s_wb) { 366 when (io.mmioStout.fire()) { 367 uncacheState := s_wait 368 } 369 } 370 is(s_wait) { 371 when(io.roq.commit) { 372 uncacheState := s_idle // ready for next mmio 373 } 374 } 375 } 376 io.uncache.req.valid := uncacheState === s_req 377 378 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 379 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 380 io.uncache.req.bits.data := dataModule.io.rdata(0).data 381 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 382 383 io.uncache.req.bits.id := DontCare 384 385 when(io.uncache.req.fire()){ 386 // mmio store should not be committed until uncache req is sent 387 pending(deqPtr) := false.B 388 389 XSDebug( 390 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 391 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 392 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 393 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 394 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 395 ) 396 } 397 398 // (3) response from uncache channel: mark as datavalid 399 io.uncache.resp.ready := true.B 400 401 // (4) writeback to ROB (and other units): mark as writebacked 402 io.mmioStout.valid := uncacheState === s_wb 403 io.mmioStout.bits.uop := uop(deqPtr) 404 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 405 io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr) 406 io.mmioStout.bits.redirectValid := false.B 407 io.mmioStout.bits.redirect := DontCare 408 io.mmioStout.bits.debug.isMMIO := true.B 409 io.mmioStout.bits.debug.paddr := DontCare 410 io.mmioStout.bits.debug.isPerfCnt := false.B 411 io.mmioStout.bits.fflags := DontCare 412 // Remove MMIO inst from store queue after MMIO request is being sent 413 // That inst will be traced by uncache state machine 414 when (io.mmioStout.fire()) { 415 allocated(deqPtr) := false.B 416 } 417 418 /** 419 * ROB commits store instructions (mark them as commited) 420 * 421 * (1) When store commits, mark it as commited. 422 * (2) They will not be cancelled and can be sent to lower level. 423 */ 424 XSError(uncacheState === s_wait && commitCount > 1.U, "should only commit one instruction when there's an MMIO\n") 425 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 426 "should not commit instruction when MMIO has not been finished\n") 427 for (i <- 0 until CommitWidth) { 428 when (commitCount > i.U && uncacheState === s_idle) { // MMIO inst is not in progress 429 commited(cmtPtrExt(i).value) := true.B 430 } 431 } 432 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 433 434 // Commited stores will not be cancelled and can be sent to lower level. 435 // remove retired insts from sq, add retired store to sbuffer 436 for (i <- 0 until StorePipelineWidth) { 437 // We use RegNext to prepare data for sbuffer 438 val ptr = deqPtrExt(i).value 439 // if !sbuffer.fire(), read the same ptr 440 // if sbuffer.fire(), read next 441 io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr) 442 // Note that store data/addr should both be valid after store's commit 443 assert(!io.sbuffer(i).valid || allvalid(ptr)) 444 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 445 io.sbuffer(i).bits.addr := paddrModule.io.rdata(i) 446 io.sbuffer(i).bits.vaddr := vaddrModule.io.rdata(i) 447 io.sbuffer(i).bits.data := dataModule.io.rdata(i).data 448 io.sbuffer(i).bits.mask := dataModule.io.rdata(i).mask 449 io.sbuffer(i).bits.id := DontCare 450 451 when (io.sbuffer(i).fire()) { 452 allocated(ptr) := false.B 453 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 454 } 455 } 456 when (io.sbuffer(1).fire()) { 457 assert(io.sbuffer(0).fire()) 458 } 459 if (useFakeDCache) { 460 for (i <- 0 until StorePipelineWidth) { 461 val ptr = deqPtrExt(i).value 462 val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024)) 463 fakeRAM.clk := clock 464 fakeRAM.en := allocated(ptr) && commited(ptr) && !mmio(ptr) 465 fakeRAM.rIdx := 0.U 466 fakeRAM.wIdx := (paddrModule.io.rdata(i) - "h80000000".U) >> 3 467 fakeRAM.wdata := dataModule.io.rdata(i).data 468 fakeRAM.wmask := MaskExpand(dataModule.io.rdata(i).mask) 469 fakeRAM.wen := allocated(ptr) && commited(ptr) && !mmio(ptr) 470 } 471 } 472 473 if (!env.FPGAPlatform) { 474 for (i <- 0 until StorePipelineWidth) { 475 val storeCommit = io.sbuffer(i).fire() 476 val waddr = SignExt(io.sbuffer(i).bits.addr, 64) 477 val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask) 478 val wmask = io.sbuffer(i).bits.mask 479 480 val difftest = Module(new DifftestStoreEvent) 481 difftest.io.clock := clock 482 difftest.io.coreid := hardId.U 483 difftest.io.index := i.U 484 difftest.io.valid := storeCommit 485 difftest.io.storeAddr := waddr 486 difftest.io.storeData := wdata 487 difftest.io.storeMask := wmask 488 } 489 } 490 491 // Read vaddr for mem exception 492 io.exceptionAddr.vaddr := vaddrModule.io.rdata(StorePipelineWidth) 493 494 // misprediction recovery / exception redirect 495 // invalidate sq term using robIdx 496 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 497 for (i <- 0 until StoreQueueSize) { 498 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect, io.flush) && allocated(i) && !commited(i) 499 when (needCancel(i)) { 500 allocated(i) := false.B 501 } 502 } 503 504 /** 505 * update pointers 506 */ 507 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 508 val lastCycleFlush = RegNext(io.flush) 509 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 510 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 511 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush), PopCount(io.enq.req.map(_.valid)), 0.U) 512 when (lastCycleRedirect || lastCycleFlush) { 513 // we recover the pointers in the next cycle after redirect 514 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 515 }.otherwise { 516 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 517 } 518 519 deqPtrExt := deqPtrExtNext 520 521 val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 522 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 523 524 allowEnqueue := validCount + enqNumber <= (StoreQueueSize - RenameWidth).U 525 526 // io.sqempty will be used by sbuffer 527 // We delay it for 1 cycle for better timing 528 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 529 // for 1 cycle will also promise that sq is empty in that cycle 530 io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag) 531 532 // perf counter 533 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 534 io.sqFull := !allowEnqueue 535 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 536 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 537 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire()) 538 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 539 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 540 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 541 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 542 543 // debug info 544 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 545 546 def PrintFlag(flag: Bool, name: String): Unit = { 547 when(flag) { 548 XSDebug(false, true.B, name) 549 }.otherwise { 550 XSDebug(false, true.B, " ") 551 } 552 } 553 554 for (i <- 0 until StoreQueueSize) { 555 if (i % 4 == 0) XSDebug("") 556 XSDebug(false, true.B, "%x v[%x] p[%x]", 557 uop(i).cf.pc, 558 vaddrModule.io.debug_data(i), 559 paddrModule.io.debug_data(i), 560 ) 561 PrintFlag(allocated(i), "a") 562 PrintFlag(allocated(i) && addrvalid(i), "a") 563 PrintFlag(allocated(i) && datavalid(i), "d") 564 PrintFlag(allocated(i) && commited(i), "c") 565 PrintFlag(allocated(i) && pending(i), "p") 566 PrintFlag(allocated(i) && mmio(i), "m") 567 XSDebug(false, true.B, " ") 568 if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n") 569 } 570 571} 572