1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import utility._ 24import xiangshan._ 25import xiangshan.cache._ 26import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants} 27import xiangshan.backend.rob.{RobLsqIO, RobPtr} 28import difftest._ 29import device.RAMHelper 30 31class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 32 p => p(XSCoreParamsKey).StoreQueueSize 33){ 34} 35 36object SqPtr { 37 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 38 val ptr = Wire(new SqPtr) 39 ptr.flag := f 40 ptr.value := v 41 ptr 42 } 43} 44 45class SqEnqIO(implicit p: Parameters) extends XSBundle { 46 val canAccept = Output(Bool()) 47 val lqCanAccept = Input(Bool()) 48 val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool())) 49 val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp))) 50 val resp = Vec(exuParameters.LsExuCnt, Output(new SqPtr)) 51} 52 53class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 54 val addr = UInt(PAddrBits.W) 55 val vaddr = UInt(VAddrBits.W) 56 val data = UInt(DataBits.W) 57 val mask = UInt((DataBits/8).W) 58 val wline = Bool() 59 val sqPtr = new SqPtr 60} 61 62// Store Queue 63class StoreQueue(implicit p: Parameters) extends XSModule 64 with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents { 65 val io = IO(new Bundle() { 66 val hartId = Input(UInt(8.W)) 67 val enq = new SqEnqIO 68 val brqRedirect = Flipped(ValidIO(new Redirect)) 69 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 70 val storeInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 71 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new ExuOutput))) // store data, send to sq from rs 72 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 73 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddr)) // write committed store to sbuffer 74 val uncacheOutstanding = Input(Bool()) 75 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 76 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 77 val rob = Flipped(new RobLsqIO) 78 val uncache = new UncacheWordIO 79 // val refill = Flipped(Valid(new DCacheLineReq )) 80 val exceptionAddr = new ExceptionAddrIO 81 val sqempty = Output(Bool()) 82 val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store 83 val sqFull = Output(Bool()) 84 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 85 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 86 val storeDataValidVec = Vec(StoreQueueSize, Output(Bool())) 87 }) 88 89 println("StoreQueue: size:" + StoreQueueSize) 90 91 // data modules 92 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 93 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 94 val dataModule = Module(new SQDataModule( 95 numEntries = StoreQueueSize, 96 numRead = EnsbufferWidth, 97 numWrite = StorePipelineWidth, 98 numForward = StorePipelineWidth 99 )) 100 dataModule.io := DontCare 101 val paddrModule = Module(new SQAddrModule( 102 dataWidth = PAddrBits, 103 numEntries = StoreQueueSize, 104 numRead = EnsbufferWidth, 105 numWrite = StorePipelineWidth, 106 numForward = StorePipelineWidth 107 )) 108 paddrModule.io := DontCare 109 val vaddrModule = Module(new SQAddrModule( 110 dataWidth = VAddrBits, 111 numEntries = StoreQueueSize, 112 numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO) 113 numWrite = StorePipelineWidth, 114 numForward = StorePipelineWidth 115 )) 116 vaddrModule.io := DontCare 117 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 118 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 119 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 120 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 121 122 // state & misc 123 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 124 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 125 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 126 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 127 val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob 128 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 129 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 130 val atomic = Reg(Vec(StoreQueueSize, Bool())) 131 132 // ptr 133 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 134 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 135 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 136 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 137 val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 138 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 139 140 val enqPtr = enqPtrExt(0).value 141 val deqPtr = deqPtrExt(0).value 142 val cmtPtr = cmtPtrExt(0).value 143 144 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 145 val allowEnqueue = validCount <= (StoreQueueSize - StorePipelineWidth).U 146 147 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 148 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 149 150 val commitCount = RegNext(io.rob.scommit) 151 152 (0 until StoreQueueSize).map{i => { 153 io.storeDataValidVec(i) := datavalid(i) 154 }} 155 156 // Read dataModule 157 assert(EnsbufferWidth <= 2) 158 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 159 val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire(), 160 VecInit(rdataPtrExt.map(_ + 2.U)), 161 Mux(dataBuffer.io.enq(0).fire() || io.mmioStout.fire(), 162 VecInit(rdataPtrExt.map(_ + 1.U)), 163 rdataPtrExt 164 ) 165 )) 166 167 // deqPtrExtNext traces which inst is about to leave store queue 168 // 169 // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles. 170 // Before data write finish, sbuffer is unable to provide store to load 171 // forward data. As an workaround, deqPtrExt and allocated flag update 172 // is delayed so that load can get the right data from store queue. 173 // 174 // Modify deqPtrExtNext and io.sqDeq with care! 175 val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire()), 176 VecInit(deqPtrExt.map(_ + 2.U)), 177 Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(), 178 VecInit(deqPtrExt.map(_ + 1.U)), 179 deqPtrExt 180 ) 181 ) 182 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire()), 2.U, 183 Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(), 1.U, 0.U) 184 )) 185 assert(!RegNext(RegNext(io.sbuffer(0).fire()) && io.mmioStout.fire())) 186 187 for (i <- 0 until EnsbufferWidth) { 188 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 189 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 190 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 191 } 192 193 // no inst will be committed 1 cycle before tval update 194 vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value 195 196 /** 197 * Enqueue at dispatch 198 * 199 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 200 */ 201 io.enq.canAccept := allowEnqueue 202 val canEnqueue = io.enq.req.map(_.valid) 203 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 204 for (i <- 0 until io.enq.req.length) { 205 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 206 val sqIdx = enqPtrExt(offset) 207 val index = io.enq.req(i).bits.sqIdx.value 208 when (canEnqueue(i) && !enqCancel(i)) { 209 uop(index) := io.enq.req(i).bits 210 // NOTE: the index will be used when replay 211 uop(index).sqIdx := sqIdx 212 allocated(index) := true.B 213 datavalid(index) := false.B 214 addrvalid(index) := false.B 215 committed(index) := false.B 216 pending(index) := false.B 217 218 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 219 XSError(index =/= sqIdx.value, s"must be the same entry $i\n") 220 } 221 io.enq.resp(i) := sqIdx 222 } 223 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 224 225 /** 226 * Update issuePtr when issue from rs 227 */ 228 // update issuePtr 229 val IssuePtrMoveStride = 4 230 require(IssuePtrMoveStride >= 2) 231 232 val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U) 233 val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && addrvalid(ptr.value) && datavalid(ptr.value) && ptr =/= enqPtrExt(0)) 234 val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B)) 235 issuePtrExt := nextIssuePtr 236 237 when (io.brqRedirect.valid) { 238 issuePtrExt := Mux( 239 isAfter(cmtPtrExt(0), deqPtrExt(0)), 240 cmtPtrExt(0), 241 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 242 ) 243 } 244 // send issuePtrExt to rs 245 // io.issuePtrExt := cmtPtrExt(0) 246 io.issuePtrExt := issuePtrExt 247 248 /** 249 * Writeback store from store units 250 * 251 * Most store instructions writeback to regfile in the previous cycle. 252 * However, 253 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 254 * (in this way it will trigger an exception when it reaches ROB's head) 255 * instead of pending to avoid sending them to lower level. 256 * (2) For an mmio instruction without exceptions, we mark it as pending. 257 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 258 * Upon receiving the response, StoreQueue writes back the instruction 259 * through arbiter with store units. It will later commit as normal. 260 */ 261 262 // Write addr to sq 263 for (i <- 0 until StorePipelineWidth) { 264 paddrModule.io.wen(i) := false.B 265 vaddrModule.io.wen(i) := false.B 266 dataModule.io.mask.wen(i) := false.B 267 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 268 when (io.storeIn(i).fire()) { 269 val addr_valid = !io.storeIn(i).bits.miss 270 addrvalid(stWbIndex) := addr_valid //!io.storeIn(i).bits.mmio 271 // pending(stWbIndex) := io.storeIn(i).bits.mmio 272 273 paddrModule.io.waddr(i) := stWbIndex 274 paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr 275 paddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag 276 paddrModule.io.wen(i) := true.B 277 278 vaddrModule.io.waddr(i) := stWbIndex 279 vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr 280 vaddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag 281 vaddrModule.io.wen(i) := true.B 282 283 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 284 285 // mmio(stWbIndex) := io.storeIn(i).bits.mmio 286 287 uop(stWbIndex).ctrl := io.storeIn(i).bits.uop.ctrl 288 uop(stWbIndex).debugInfo := io.storeIn(i).bits.uop.debugInfo 289 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n", 290 io.storeIn(i).bits.uop.sqIdx.value, 291 io.storeIn(i).bits.uop.cf.pc, 292 io.storeIn(i).bits.miss, 293 io.storeIn(i).bits.vaddr, 294 io.storeIn(i).bits.paddr, 295 io.storeIn(i).bits.mmio 296 ) 297 } 298 299 // re-replinish mmio, for pma/pmp will get mmio one cycle later 300 val storeInFireReg = RegNext(io.storeIn(i).fire() && !io.storeIn(i).bits.miss) 301 val stWbIndexReg = RegNext(stWbIndex) 302 when (storeInFireReg) { 303 pending(stWbIndexReg) := io.storeInRe(i).mmio 304 mmio(stWbIndexReg) := io.storeInRe(i).mmio 305 atomic(stWbIndexReg) := io.storeInRe(i).atomic 306 } 307 308 when(vaddrModule.io.wen(i)){ 309 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 310 } 311 } 312 313 // Write data to sq 314 // Now store data pipeline is actually 2 stages 315 for (i <- 0 until StorePipelineWidth) { 316 dataModule.io.data.wen(i) := false.B 317 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 318 // sq data write takes 2 cycles: 319 // sq data write s0 320 when (io.storeDataIn(i).fire()) { 321 // send data write req to data module 322 dataModule.io.data.waddr(i) := stWbIndex 323 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.ctrl.fuOpType === LSUOpType.cbo_zero, 324 0.U, 325 genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0)) 326 ) 327 dataModule.io.data.wen(i) := true.B 328 329 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 330 331 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 332 io.storeDataIn(i).bits.uop.sqIdx.value, 333 io.storeDataIn(i).bits.uop.cf.pc, 334 io.storeDataIn(i).bits.data, 335 dataModule.io.data.wdata(i) 336 ) 337 } 338 // sq data write s1 339 when ( 340 RegNext(io.storeDataIn(i).fire()) 341 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 342 ) { 343 datavalid(RegNext(stWbIndex)) := true.B 344 } 345 } 346 347 // Write mask to sq 348 for (i <- 0 until StorePipelineWidth) { 349 // sq mask write s0 350 when (io.storeMaskIn(i).fire()) { 351 // send data write req to data module 352 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 353 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 354 dataModule.io.mask.wen(i) := true.B 355 } 356 } 357 358 /** 359 * load forward query 360 * 361 * Check store queue for instructions that is older than the load. 362 * The response will be valid at the next cycle after req. 363 */ 364 // check over all lq entries and forward data from the first matched store 365 for (i <- 0 until LoadPipelineWidth) { 366 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 367 // (1) if they have the same flag, we need to check range(tail, sqIdx) 368 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 369 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 370 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 371 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 372 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 373 val forwardMask = io.forward(i).sqIdxMask 374 // all addrvalid terms need to be checked 375 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i)))) 376 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i)))) 377 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i)))) 378 val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt 379 val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt 380 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 381 382 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 383 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 384 ) 385 386 // do real fwd query (cam lookup in load_s1) 387 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 388 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 389 390 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 391 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 392 393 // vaddr cam result does not equal to paddr cam result 394 // replay needed 395 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 396 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 397 val vpmaskNotEqual = ( 398 (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & 399 RegNext(needForward) & 400 RegNext(addrValidVec.asUInt) 401 ) =/= 0.U 402 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 403 when (vaddrMatchFailed) { 404 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 405 RegNext(io.forward(i).uop.cf.pc), 406 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 407 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 408 ); 409 } 410 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 411 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 412 413 // Fast forward mask will be generated immediately (load_s1) 414 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 415 416 // Forward result will be generated 1 cycle later (load_s2) 417 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 418 io.forward(i).forwardData := dataModule.io.forwardData(i) 419 420 // If addr match, data not ready, mark it as dataInvalid 421 // load_s1: generate dataInvalid in load_s1 to set fastUop 422 val dataInvalidMask = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward.asUInt) 423 io.forward(i).dataInvalidFast := dataInvalidMask.orR 424 val dataInvalidMaskReg = RegNext(dataInvalidMask) 425 // load_s2 426 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 427 // check if vaddr forward mismatched 428 io.forward(i).matchInvalid := vaddrMatchFailed 429 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 430 dataInvalidMaskRegWire := dataInvalidMaskReg // make chisel happy 431 io.forward(i).dataInvalidSqIdx := PriorityEncoder(dataInvalidMaskRegWire) 432 } 433 434 /** 435 * Memory mapped IO / other uncached operations 436 * 437 * States: 438 * (1) writeback from store units: mark as pending 439 * (2) when they reach ROB's head, they can be sent to uncache channel 440 * (3) response from uncache channel: mark as datavalidmask.wen 441 * (4) writeback to ROB (and other units): mark as writebacked 442 * (5) ROB commits the instruction: same as normal instructions 443 */ 444 //(2) when they reach ROB's head, they can be sent to uncache channel 445 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 446 val uncacheState = RegInit(s_idle) 447 switch(uncacheState) { 448 is(s_idle) { 449 when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 450 uncacheState := s_req 451 } 452 } 453 is(s_req) { 454 when (io.uncache.req.fire) { 455 when (io.uncacheOutstanding) { 456 uncacheState := s_wb 457 } .otherwise { 458 uncacheState := s_resp 459 } 460 } 461 } 462 is(s_resp) { 463 when(io.uncache.resp.fire()) { 464 uncacheState := s_wb 465 } 466 } 467 is(s_wb) { 468 when (io.mmioStout.fire()) { 469 uncacheState := s_wait 470 } 471 } 472 is(s_wait) { 473 when(commitCount > 0.U) { 474 uncacheState := s_idle // ready for next mmio 475 } 476 } 477 } 478 io.uncache.req.valid := uncacheState === s_req 479 480 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 481 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 482 io.uncache.req.bits.data := dataModule.io.rdata(0).data 483 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 484 485 // CBO op type check can be delayed for 1 cycle, 486 // as uncache op will not start in s_idle 487 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 488 val cbo_mmio_op = 0.U //TODO 489 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 490 when(RegNext(LSUOpType.isCbo(uop(deqPtr).ctrl.fuOpType))){ 491 io.uncache.req.bits.addr := DontCare // TODO 492 io.uncache.req.bits.data := paddrModule.io.rdata(0) 493 io.uncache.req.bits.mask := DontCare // TODO 494 } 495 496 io.uncache.req.bits.id := DontCare 497 io.uncache.req.bits.instrtype := DontCare 498 io.uncache.req.bits.replayCarry := DontCare 499 io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value) 500 501 when(io.uncache.req.fire()){ 502 // mmio store should not be committed until uncache req is sent 503 pending(deqPtr) := false.B 504 505 XSDebug( 506 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 507 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 508 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 509 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 510 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 511 ) 512 } 513 514 // (3) response from uncache channel: mark as datavalid 515 io.uncache.resp.ready := true.B 516 517 // (4) writeback to ROB (and other units): mark as writebacked 518 io.mmioStout.valid := uncacheState === s_wb 519 io.mmioStout.bits.uop := uop(deqPtr) 520 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 521 io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr) 522 io.mmioStout.bits.redirectValid := false.B 523 io.mmioStout.bits.redirect := DontCare 524 io.mmioStout.bits.debug.isMMIO := true.B 525 io.mmioStout.bits.debug.paddr := DontCare 526 io.mmioStout.bits.debug.isPerfCnt := false.B 527 io.mmioStout.bits.fflags := DontCare 528 io.mmioStout.bits.debug.vaddr := DontCare 529 // Remove MMIO inst from store queue after MMIO request is being sent 530 // That inst will be traced by uncache state machine 531 when (io.mmioStout.fire()) { 532 allocated(deqPtr) := false.B 533 } 534 535 /** 536 * ROB commits store instructions (mark them as committed) 537 * 538 * (1) When store commits, mark it as committed. 539 * (2) They will not be cancelled and can be sent to lower level. 540 */ 541 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 542 "should not commit instruction when MMIO has not been finished\n") 543 for (i <- 0 until CommitWidth) { 544 when (commitCount > i.U) { // MMIO inst is not in progress 545 if(i == 0){ 546 // MMIO inst should not update committed flag 547 // Note that commit count has been delayed for 1 cycle 548 when(uncacheState === s_idle){ 549 committed(cmtPtrExt(0).value) := true.B 550 } 551 } else { 552 committed(cmtPtrExt(i).value) := true.B 553 } 554 } 555 } 556 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 557 558 // committed stores will not be cancelled and can be sent to lower level. 559 // remove retired insts from sq, add retired store to sbuffer 560 561 // Read data from data module 562 // As store queue grows larger and larger, time needed to read data from data 563 // module keeps growing higher. Now we give data read a whole cycle. 564 565 val mmioStall = mmio(rdataPtrExt(0).value) 566 for (i <- 0 until EnsbufferWidth) { 567 val ptr = rdataPtrExt(i).value 568 dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall 569 // Note that store data/addr should both be valid after store's commit 570 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr)) 571 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 572 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 573 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 574 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 575 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 576 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 577 } 578 579 // Send data stored in sbufferReqBitsReg to sbuffer 580 for (i <- 0 until EnsbufferWidth) { 581 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 582 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 583 // Write line request should have all 1 mask 584 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR)) 585 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 586 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 587 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 588 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 589 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 590 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline 591 io.sbuffer(i).bits.id := DontCare 592 io.sbuffer(i).bits.instrtype := DontCare 593 io.sbuffer(i).bits.replayCarry := DontCare 594 595 // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles. 596 // Before data write finish, sbuffer is unable to provide store to load 597 // forward data. As an workaround, deqPtrExt and allocated flag update 598 // is delayed so that load can get the right data from store queue. 599 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 600 when (RegNext(io.sbuffer(i).fire())) { 601 allocated(RegEnable(ptr, io.sbuffer(i).fire())) := false.B 602 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 603 } 604 } 605 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 606 if (coreParams.dcacheParametersOpt.isEmpty) { 607 for (i <- 0 until EnsbufferWidth) { 608 val ptr = deqPtrExt(i).value 609 val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024)) 610 fakeRAM.clk := clock 611 fakeRAM.en := allocated(ptr) && committed(ptr) && !mmio(ptr) 612 fakeRAM.rIdx := 0.U 613 fakeRAM.wIdx := (paddrModule.io.rdata(i) - "h80000000".U) >> 3 614 fakeRAM.wdata := dataModule.io.rdata(i).data 615 fakeRAM.wmask := MaskExpand(dataModule.io.rdata(i).mask) 616 fakeRAM.wen := allocated(ptr) && committed(ptr) && !mmio(ptr) 617 } 618 } 619 620 if (env.EnableDifftest) { 621 for (i <- 0 until EnsbufferWidth) { 622 val storeCommit = io.sbuffer(i).fire() 623 val waddr = SignExt(io.sbuffer(i).bits.addr, 64) 624 val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask) 625 val wmask = io.sbuffer(i).bits.mask 626 627 val difftest = Module(new DifftestStoreEvent) 628 difftest.io.clock := clock 629 difftest.io.coreid := io.hartId 630 difftest.io.index := i.U 631 difftest.io.valid := RegNext(RegNext(storeCommit)) 632 difftest.io.storeAddr := RegNext(RegNext(waddr)) 633 difftest.io.storeData := RegNext(RegNext(wdata)) 634 difftest.io.storeMask := RegNext(RegNext(wmask)) 635 } 636 } 637 638 // Read vaddr for mem exception 639 io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth) 640 641 // misprediction recovery / exception redirect 642 // invalidate sq term using robIdx 643 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 644 for (i <- 0 until StoreQueueSize) { 645 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) 646 when (needCancel(i)) { 647 allocated(i) := false.B 648 } 649 } 650 651 /** 652 * update pointers 653 */ 654 val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) 655 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 656 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 657 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 658 when (lastCycleRedirect) { 659 // we recover the pointers in the next cycle after redirect 660 enqPtrExt := VecInit(enqPtrExt.map(_ - (lastCycleCancelCount + lastEnqCancel))) 661 }.otherwise { 662 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 663 } 664 665 deqPtrExt := deqPtrExtNext 666 rdataPtrExt := rdataPtrExtNext 667 668 // val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 669 670 // If redirect at T0, sqCancelCnt is at T2 671 io.sqCancelCnt := RegNext(lastCycleCancelCount + lastEnqCancel) 672 673 // io.sqempty will be used by sbuffer 674 // We delay it for 1 cycle for better timing 675 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 676 // for 1 cycle will also promise that sq is empty in that cycle 677 io.sqempty := RegNext( 678 enqPtrExt(0).value === deqPtrExt(0).value && 679 enqPtrExt(0).flag === deqPtrExt(0).flag 680 ) 681 682 // perf counter 683 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 684 io.sqFull := !allowEnqueue 685 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 686 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 687 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire()) 688 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 689 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 690 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 691 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 692 693 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 694 val perfEvents = Seq( 695 ("mmioCycle ", uncacheState =/= s_idle), 696 ("mmioCnt ", io.uncache.req.fire()), 697 ("mmio_wb_success", io.mmioStout.fire()), 698 ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready), 699 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 700 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 701 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 702 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 703 ) 704 generatePerfEvent() 705 706 // debug info 707 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 708 709 def PrintFlag(flag: Bool, name: String): Unit = { 710 when(flag) { 711 XSDebug(false, true.B, name) 712 }.otherwise { 713 XSDebug(false, true.B, " ") 714 } 715 } 716 717 for (i <- 0 until StoreQueueSize) { 718 XSDebug(i + ": pc %x va %x pa %x data %x ", 719 uop(i).cf.pc, 720 debug_vaddr(i), 721 debug_paddr(i), 722 debug_data(i) 723 ) 724 PrintFlag(allocated(i), "a") 725 PrintFlag(allocated(i) && addrvalid(i), "a") 726 PrintFlag(allocated(i) && datavalid(i), "d") 727 PrintFlag(allocated(i) && committed(i), "c") 728 PrintFlag(allocated(i) && pending(i), "p") 729 PrintFlag(allocated(i) && mmio(i), "m") 730 XSDebug(false, true.B, "\n") 731 } 732 733} 734