1package xiangshan.mem 2 3import chisel3._ 4import chisel3.util._ 5import utils._ 6import xiangshan._ 7import xiangshan.cache._ 8import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants} 9import xiangshan.backend.LSUOpType 10import xiangshan.backend.roq.RoqPtr 11 12 13class SqPtr extends CircularQueuePtr(SqPtr.StoreQueueSize) { } 14 15object SqPtr extends HasXSParameter { 16 def apply(f: Bool, v: UInt): SqPtr = { 17 val ptr = Wire(new SqPtr) 18 ptr.flag := f 19 ptr.value := v 20 ptr 21 } 22} 23 24class SqEnqIO extends XSBundle { 25 val canAccept = Output(Bool()) 26 val lqCanAccept = Input(Bool()) 27 val needAlloc = Vec(RenameWidth, Input(Bool())) 28 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 29 val resp = Vec(RenameWidth, Output(new SqPtr)) 30} 31 32// Store Queue 33class StoreQueue extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 34 val io = IO(new Bundle() { 35 val enq = new SqEnqIO 36 val brqRedirect = Input(Valid(new Redirect)) 37 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 38 val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq)) 39 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 40 val forward = Vec(LoadPipelineWidth, Flipped(new LoadForwardQueryIO)) 41 val commits = Flipped(new RoqCommitIO) 42 val uncache = new DCacheWordIO 43 val roqDeqPtr = Input(new RoqPtr) 44 // val refill = Flipped(Valid(new DCacheLineReq )) 45 val exceptionAddr = new ExceptionAddrIO 46 }) 47 48 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 49 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 50 val dataModule = Module(new LSQueueData(StoreQueueSize, StorePipelineWidth)) 51 dataModule.io := DontCare 52 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 53 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 54 val writebacked = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been writebacked to CDB 55 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq 56 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 57 58 require(StoreQueueSize > RenameWidth) 59 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr)))) 60 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 61 val enqPtr = enqPtrExt(0).value 62 val deqPtr = deqPtrExt(0).value 63 64 val tailMask = UIntToMask(deqPtr, StoreQueueSize) 65 val headMask = UIntToMask(enqPtr, StoreQueueSize) 66 67 /** 68 * Enqueue at dispatch 69 * 70 * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 71 */ 72 val validEntries = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 73 val firedDispatch = io.enq.req.map(_.valid) 74 io.enq.canAccept := validEntries <= (StoreQueueSize - RenameWidth).U 75 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(firedDispatch))}\n") 76 for (i <- 0 until RenameWidth) { 77 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 78 val sqIdx = enqPtrExt(offset) 79 val index = sqIdx.value 80 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid) { 81 uop(index) := io.enq.req(i).bits 82 allocated(index) := true.B 83 datavalid(index) := false.B 84 writebacked(index) := false.B 85 commited(index) := false.B 86 pending(index) := false.B 87 } 88 io.enq.resp(i) := sqIdx 89 } 90 91 when (Cat(firedDispatch).orR && io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid) { 92 val enqNumber = PopCount(firedDispatch) 93 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 94 XSInfo("dispatched %d insts to sq\n", enqNumber) 95 } 96 97 /** 98 * Writeback store from store units 99 * 100 * Most store instructions writeback to regfile in the previous cycle. 101 * However, 102 * (1) For an mmio instruction with exceptions, we need to mark it as datavalid 103 * (in this way it will trigger an exception when it reaches ROB's head) 104 * instead of pending to avoid sending them to lower level. 105 * (2) For an mmio instruction without exceptions, we mark it as pending. 106 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 107 * Upon receiving the response, StoreQueue writes back the instruction 108 * through arbiter with store units. It will later commit as normal. 109 */ 110 for (i <- 0 until StorePipelineWidth) { 111 dataModule.io.wb(i).wen := false.B 112 when(io.storeIn(i).fire()) { 113 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 114 val hasException = io.storeIn(i).bits.uop.cf.exceptionVec.asUInt.orR 115 val hasWritebacked = !io.storeIn(i).bits.mmio || hasException 116 datavalid(stWbIndex) := hasWritebacked 117 writebacked(stWbIndex) := hasWritebacked 118 pending(stWbIndex) := !hasWritebacked // valid mmio require 119 120 val storeWbData = Wire(new LsqEntry) 121 storeWbData := DontCare 122 storeWbData.paddr := io.storeIn(i).bits.paddr 123 storeWbData.vaddr := io.storeIn(i).bits.vaddr 124 storeWbData.mask := io.storeIn(i).bits.mask 125 storeWbData.data := io.storeIn(i).bits.data 126 storeWbData.mmio := io.storeIn(i).bits.mmio 127 storeWbData.exception := io.storeIn(i).bits.uop.cf.exceptionVec.asUInt 128 129 dataModule.io.wbWrite(i, stWbIndex, storeWbData) 130 dataModule.io.wb(i).wen := true.B 131 132 XSInfo("store write to sq idx %d pc 0x%x vaddr %x paddr %x data %x mmio %x roll %x exc %x\n", 133 io.storeIn(i).bits.uop.sqIdx.value, 134 io.storeIn(i).bits.uop.cf.pc, 135 io.storeIn(i).bits.vaddr, 136 io.storeIn(i).bits.paddr, 137 io.storeIn(i).bits.data, 138 io.storeIn(i).bits.mmio, 139 io.storeIn(i).bits.rollback, 140 io.storeIn(i).bits.uop.cf.exceptionVec.asUInt 141 ) 142 } 143 } 144 145 /** 146 * load forward query 147 * 148 * Check store queue for instructions that is older than the load. 149 * The response will be valid at the next cycle after req. 150 */ 151 // check over all lq entries and forward data from the first matched store 152 for (i <- 0 until LoadPipelineWidth) { 153 io.forward(i).forwardMask := 0.U(8.W).asBools 154 io.forward(i).forwardData := DontCare 155 156 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 157 // (1) if they have the same flag, we need to check range(tail, sqIdx) 158 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 159 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 160 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 161 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 162 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 163 val forwardMask = UIntToMask(io.forward(i).sqIdx.value, StoreQueueSize) 164 val storeWritebackedVec = WireInit(VecInit(Seq.fill(StoreQueueSize)(false.B))) 165 for (j <- 0 until StoreQueueSize) { 166 storeWritebackedVec(j) := datavalid(j) && allocated(j) // all datavalid terms need to be checked 167 } 168 val needForward1 = Mux(differentFlag, ~tailMask, tailMask ^ forwardMask) & storeWritebackedVec.asUInt 169 val needForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & storeWritebackedVec.asUInt 170 171 XSDebug(p"$i f1 ${Binary(needForward1)} f2 ${Binary(needForward2)} " + 172 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 173 ) 174 175 // do real fwd query 176 dataModule.io.forwardQuery( 177 channel = i, 178 paddr = io.forward(i).paddr, 179 needForward1 = needForward1, 180 needForward2 = needForward2 181 ) 182 183 io.forward(i).forwardMask := dataModule.io.forward(i).forwardMask 184 io.forward(i).forwardData := dataModule.io.forward(i).forwardData 185 } 186 187 /** 188 * Memory mapped IO / other uncached operations 189 * 190 * States: 191 * (1) writeback from store units: mark as pending 192 * (2) when they reach ROB's head, they can be sent to uncache channel 193 * (3) response from uncache channel: mark as datavalid 194 * (4) writeback to ROB (and other units): mark as writebacked 195 * (5) ROB commits the instruction: same as normal instructions 196 */ 197 //(2) when they reach ROB's head, they can be sent to uncache channel 198 io.uncache.req.valid := pending(deqPtr) && allocated(deqPtr) && 199 io.commits.info(0).commitType === CommitType.STORE && 200 io.roqDeqPtr === uop(deqPtr).roqIdx && 201 !io.commits.isWalk 202 203 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 204 io.uncache.req.bits.addr := dataModule.io.rdata(deqPtr).paddr 205 io.uncache.req.bits.data := dataModule.io.rdata(deqPtr).data 206 io.uncache.req.bits.mask := dataModule.io.rdata(deqPtr).mask 207 208 io.uncache.req.bits.meta.id := DontCare // TODO: // FIXME 209 io.uncache.req.bits.meta.vaddr := DontCare 210 io.uncache.req.bits.meta.paddr := dataModule.io.rdata(deqPtr).paddr 211 io.uncache.req.bits.meta.uop := uop(deqPtr) 212 io.uncache.req.bits.meta.mmio := true.B 213 io.uncache.req.bits.meta.tlb_miss := false.B 214 io.uncache.req.bits.meta.mask := dataModule.io.rdata(deqPtr).mask 215 io.uncache.req.bits.meta.replay := false.B 216 217 when(io.uncache.req.fire()){ 218 pending(deqPtr) := false.B 219 220 XSDebug( 221 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 222 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 223 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 224 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 225 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 226 ) 227 } 228 229 // (3) response from uncache channel: mark as datavalid 230 io.uncache.resp.ready := true.B 231 when (io.uncache.resp.fire()) { 232 datavalid(deqPtr) := true.B 233 } 234 235 // (4) writeback to ROB (and other units): mark as writebacked 236 io.mmioStout.valid := allocated(deqPtr) && datavalid(deqPtr) && !writebacked(deqPtr) 237 io.mmioStout.bits.uop := uop(deqPtr) 238 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 239 io.mmioStout.bits.uop.cf.exceptionVec := dataModule.io.rdata(deqPtr).exception.asBools 240 io.mmioStout.bits.data := dataModule.io.rdata(deqPtr).data 241 io.mmioStout.bits.redirectValid := false.B 242 io.mmioStout.bits.redirect := DontCare 243 io.mmioStout.bits.brUpdate := DontCare 244 io.mmioStout.bits.debug.isMMIO := true.B 245 io.mmioStout.bits.fflags := DontCare 246 when (io.mmioStout.fire()) { 247 writebacked(deqPtr) := true.B 248 allocated(deqPtr) := false.B 249 deqPtrExt := VecInit(deqPtrExt.map(_ + 1.U)) 250 } 251 252 /** 253 * ROB commits store instructions (mark them as commited) 254 * 255 * (1) When store commits, mark it as commited. 256 * (2) They will not be cancelled and can be sent to lower level. 257 */ 258 for (i <- 0 until CommitWidth) { 259 val storeCommit = !io.commits.isWalk && io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE 260 when (storeCommit) { 261 commited(io.commits.info(i).sqIdx.value) := true.B 262 XSDebug("store commit %d: idx %d\n", i.U, io.commits.info(i).sqIdx.value) 263 } 264 } 265 266 // Commited stores will not be cancelled and can be sent to lower level. 267 // remove retired insts from sq, add retired store to sbuffer 268 for (i <- 0 until StorePipelineWidth) { 269 val ptr = deqPtrExt(i).value 270 val mmio = dataModule.io.rdata(ptr).mmio 271 io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio 272 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 273 io.sbuffer(i).bits.addr := dataModule.io.rdata(ptr).paddr 274 io.sbuffer(i).bits.data := dataModule.io.rdata(ptr).data 275 io.sbuffer(i).bits.mask := dataModule.io.rdata(ptr).mask 276 io.sbuffer(i).bits.meta := DontCare 277 io.sbuffer(i).bits.meta.tlb_miss := false.B 278 io.sbuffer(i).bits.meta.uop := DontCare 279 io.sbuffer(i).bits.meta.mmio := mmio 280 io.sbuffer(i).bits.meta.mask := dataModule.io.rdata(ptr).mask 281 282 when (io.sbuffer(i).fire()) { 283 allocated(ptr) := false.B 284 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 285 } 286 } 287 // note that sbuffer will not accept req(1) if req(0) is not accepted. 288 when (Cat(io.sbuffer.map(_.fire())).orR) { 289 val stepForward = Mux(io.sbuffer(1).fire(), 2.U, 1.U) 290 deqPtrExt := VecInit(deqPtrExt.map(_ + stepForward)) 291 when (io.sbuffer(1).fire()) { 292 assert(io.sbuffer(0).fire()) 293 } 294 } 295 if (!env.FPGAPlatform) { 296 val storeCommit = PopCount(io.sbuffer.map(_.fire())) 297 val waddr = VecInit(io.sbuffer.map(req => SignExt(req.bits.addr, 64))) 298 val wdata = VecInit(io.sbuffer.map(req => req.bits.data & MaskExpand(req.bits.mask))) 299 val wmask = VecInit(io.sbuffer.map(_.bits.mask)) 300 301 ExcitingUtils.addSource(RegNext(storeCommit), "difftestStoreCommit", ExcitingUtils.Debug) 302 ExcitingUtils.addSource(RegNext(waddr), "difftestStoreAddr", ExcitingUtils.Debug) 303 ExcitingUtils.addSource(RegNext(wdata), "difftestStoreData", ExcitingUtils.Debug) 304 ExcitingUtils.addSource(RegNext(wmask), "difftestStoreMask", ExcitingUtils.Debug) 305 } 306 307 // Read vaddr for mem exception 308 io.exceptionAddr.vaddr := dataModule.io.rdata(io.exceptionAddr.lsIdx.sqIdx.value).vaddr 309 310 // misprediction recovery / exception redirect 311 // invalidate sq term using robIdx 312 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 313 for (i <- 0 until StoreQueueSize) { 314 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect) && allocated(i) && !commited(i) 315 when (needCancel(i)) { 316 allocated(i) := false.B 317 } 318 } 319 // we recover the pointers in the next cycle after redirect 320 val lastCycleRedirectValid = RegNext(io.brqRedirect.valid) 321 val needCancelCount = PopCount(RegNext(needCancel)) 322 when (lastCycleRedirectValid) { 323 enqPtrExt := VecInit(enqPtrExt.map(_ - needCancelCount)) 324 } 325 326 // debug info 327 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 328 329 def PrintFlag(flag: Bool, name: String): Unit = { 330 when(flag) { 331 XSDebug(false, true.B, name) 332 }.otherwise { 333 XSDebug(false, true.B, " ") 334 } 335 } 336 337 for (i <- 0 until StoreQueueSize) { 338 if (i % 4 == 0) XSDebug("") 339 XSDebug(false, true.B, "%x [%x] ", uop(i).cf.pc, dataModule.io.rdata(i).paddr) 340 PrintFlag(allocated(i), "a") 341 PrintFlag(allocated(i) && datavalid(i), "v") 342 PrintFlag(allocated(i) && writebacked(i), "w") 343 PrintFlag(allocated(i) && commited(i), "c") 344 PrintFlag(allocated(i) && pending(i), "p") 345 XSDebug(false, true.B, " ") 346 if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n") 347 } 348 349} 350