xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 3802dba502b91d813c1e563035b876c4e6288166)
1package xiangshan.mem
2
3import chisel3._
4import chisel3.util._
5import utils._
6import xiangshan._
7import xiangshan.cache._
8import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants}
9import xiangshan.backend.LSUOpType
10import xiangshan.backend.roq.RoqLsqIO
11
12
13class SqPtr extends CircularQueuePtr(SqPtr.StoreQueueSize) { }
14
15object SqPtr extends HasXSParameter {
16  def apply(f: Bool, v: UInt): SqPtr = {
17    val ptr = Wire(new SqPtr)
18    ptr.flag := f
19    ptr.value := v
20    ptr
21  }
22}
23
24class SqEnqIO extends XSBundle {
25  val canAccept = Output(Bool())
26  val lqCanAccept = Input(Bool())
27  val needAlloc = Vec(RenameWidth, Input(Bool()))
28  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
29  val resp = Vec(RenameWidth, Output(new SqPtr))
30}
31
32// Store Queue
33class StoreQueue extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper {
34  val io = IO(new Bundle() {
35    val enq = new SqEnqIO
36    val brqRedirect = Input(Valid(new Redirect))
37    val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle)))
38    val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq))
39    val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store
40    val forward = Vec(LoadPipelineWidth, Flipped(new LoadForwardQueryIO))
41    val roq = Flipped(new RoqLsqIO)
42    val uncache = new DCacheWordIO
43    // val refill = Flipped(Valid(new DCacheLineReq ))
44    val exceptionAddr = new ExceptionAddrIO
45    val sqempty = Output(Bool())
46  })
47
48  val difftestIO = IO(new Bundle() {
49    val storeCommit = Output(UInt(2.W))
50    val storeAddr   = Output(Vec(2, UInt(64.W)))
51    val storeData   = Output(Vec(2, UInt(64.W)))
52    val storeMask   = Output(Vec(2, UInt(8.W)))
53  })
54  difftestIO <> DontCare
55
56  // data modules
57  val uop = Reg(Vec(StoreQueueSize, new MicroOp))
58  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
59  val dataModule = Module(new StoreQueueData(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth))
60  dataModule.io := DontCare
61  val paddrModule = Module(new SQPaddrModule(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth))
62  paddrModule.io := DontCare
63  val vaddrModule = Module(new SyncDataModuleTemplate(UInt(VAddrBits.W), StoreQueueSize, numRead = 1, numWrite = StorePipelineWidth))
64  vaddrModule.io := DontCare
65
66  // state & misc
67  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
68  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
69  val writebacked = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been writebacked to CDB
70  val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq
71  val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq
72  val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst
73
74  // ptr
75  require(StoreQueueSize > RenameWidth)
76  val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr))))
77  val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr))))
78  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
79  val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W))
80  val allowEnqueue = RegInit(true.B)
81
82  val enqPtr = enqPtrExt(0).value
83  val deqPtr = deqPtrExt(0).value
84  val cmtPtr = cmtPtrExt(0).value
85
86  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
87  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
88
89  val commitCount = RegNext(io.roq.scommit)
90
91  // Read dataModule
92  // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule
93  // if !sbuffer.fire(), read the same ptr
94  // if sbuffer.fire(), read next
95  val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(),
96    VecInit(deqPtrExt.map(_ + 2.U)),
97    Mux(io.sbuffer(0).fire() || io.mmioStout.fire(),
98      VecInit(deqPtrExt.map(_ + 1.U)),
99      deqPtrExt
100    )
101  ))
102  for (i <- 0 until StorePipelineWidth) {
103    dataModule.io.raddr(i) := deqPtrExtNext(i).value
104    paddrModule.io.raddr(i) := deqPtrExtNext(i).value
105  }
106  vaddrModule.io.raddr(0) := cmtPtr + io.roq.scommit
107
108  /**
109    * Enqueue at dispatch
110    *
111    * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth)
112    */
113  io.enq.canAccept := allowEnqueue
114  for (i <- 0 until RenameWidth) {
115    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
116    val sqIdx = enqPtrExt(offset)
117    val index = sqIdx.value
118    when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid) {
119      uop(index) := io.enq.req(i).bits
120      allocated(index) := true.B
121      datavalid(index) := false.B
122      writebacked(index) := false.B
123      commited(index) := false.B
124      pending(index) := false.B
125    }
126    io.enq.resp(i) := sqIdx
127  }
128  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
129
130  /**
131    * Writeback store from store units
132    *
133    * Most store instructions writeback to regfile in the previous cycle.
134    * However,
135    *   (1) For an mmio instruction with exceptions, we need to mark it as datavalid
136    * (in this way it will trigger an exception when it reaches ROB's head)
137    * instead of pending to avoid sending them to lower level.
138    *   (2) For an mmio instruction without exceptions, we mark it as pending.
139    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
140    * Upon receiving the response, StoreQueue writes back the instruction
141    * through arbiter with store units. It will later commit as normal.
142    */
143  for (i <- 0 until StorePipelineWidth) {
144    dataModule.io.wen(i) := false.B
145    paddrModule.io.wen(i) := false.B
146    val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value
147    when (io.storeIn(i).fire()) {
148      datavalid(stWbIndex) := !io.storeIn(i).bits.mmio
149      writebacked(stWbIndex) := !io.storeIn(i).bits.mmio
150      pending(stWbIndex) := io.storeIn(i).bits.mmio
151
152      val storeWbData = Wire(new SQDataEntry)
153      storeWbData := DontCare
154      storeWbData.mask := io.storeIn(i).bits.mask
155      storeWbData.data := io.storeIn(i).bits.data
156
157      dataModule.io.waddr(i) := stWbIndex
158      dataModule.io.wdata(i) := storeWbData
159      dataModule.io.wen(i) := true.B
160
161      paddrModule.io.waddr(i) := stWbIndex
162      paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr
163      paddrModule.io.wen(i) := true.B
164
165
166      mmio(stWbIndex) := io.storeIn(i).bits.mmio
167
168      XSInfo("store write to sq idx %d pc 0x%x vaddr %x paddr %x data %x mmio %x\n",
169        io.storeIn(i).bits.uop.sqIdx.value,
170        io.storeIn(i).bits.uop.cf.pc,
171        io.storeIn(i).bits.vaddr,
172        io.storeIn(i).bits.paddr,
173        io.storeIn(i).bits.data,
174        io.storeIn(i).bits.mmio
175        )
176    }
177    // vaddrModule write is delayed, as vaddrModule will not be read right after write
178    vaddrModule.io.waddr(i) := RegNext(stWbIndex)
179    vaddrModule.io.wdata(i) := RegNext(io.storeIn(i).bits.vaddr)
180    vaddrModule.io.wen(i) := RegNext(io.storeIn(i).fire())
181  }
182
183  /**
184    * load forward query
185    *
186    * Check store queue for instructions that is older than the load.
187    * The response will be valid at the next cycle after req.
188    */
189  // check over all lq entries and forward data from the first matched store
190  for (i <- 0 until LoadPipelineWidth) {
191    io.forward(i).forwardMask := 0.U(8.W).asBools
192    io.forward(i).forwardData := DontCare
193
194    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
195    // (1) if they have the same flag, we need to check range(tail, sqIdx)
196    // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx)
197    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize))
198    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
199    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
200    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
201    val forwardMask = UIntToMask(io.forward(i).sqIdx.value, StoreQueueSize)
202    val storeWritebackedVec = WireInit(VecInit(Seq.fill(StoreQueueSize)(false.B)))
203    for (j <- 0 until StoreQueueSize) {
204      storeWritebackedVec(j) := datavalid(j) && allocated(j) // all datavalid terms need to be checked
205    }
206    val needForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & storeWritebackedVec.asUInt
207    val needForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & storeWritebackedVec.asUInt
208
209    XSDebug(p"$i f1 ${Binary(needForward1)} f2 ${Binary(needForward2)} " +
210      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
211    )
212
213    // do real fwd query
214    dataModule.io.needForward(i)(0) := needForward1 & paddrModule.io.forwardMmask(i).asUInt
215    dataModule.io.needForward(i)(1) := needForward2 & paddrModule.io.forwardMmask(i).asUInt
216
217    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
218
219    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
220    io.forward(i).forwardData := dataModule.io.forwardData(i)
221  }
222
223  /**
224    * Memory mapped IO / other uncached operations
225    *
226    * States:
227    * (1) writeback from store units: mark as pending
228    * (2) when they reach ROB's head, they can be sent to uncache channel
229    * (3) response from uncache channel: mark as datavalid
230    * (4) writeback to ROB (and other units): mark as writebacked
231    * (5) ROB commits the instruction: same as normal instructions
232    */
233  //(2) when they reach ROB's head, they can be sent to uncache channel
234  val s_idle :: s_req :: s_resp :: s_wait :: Nil = Enum(4)
235  val uncacheState = RegInit(s_idle)
236  switch(uncacheState) {
237    is(s_idle) {
238      when(io.roq.pendingst && pending(deqPtr) && allocated(deqPtr)) {
239        uncacheState := s_req
240      }
241    }
242    is(s_req) {
243      when(io.uncache.req.fire()) {
244        uncacheState := s_resp
245      }
246    }
247    is(s_resp) {
248      when(io.uncache.resp.fire()) {
249        uncacheState := s_wait
250      }
251    }
252    is(s_wait) {
253      when(io.roq.commit) {
254        uncacheState := s_idle // ready for next mmio
255      }
256    }
257  }
258  io.uncache.req.valid := uncacheState === s_req
259
260  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
261  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
262  io.uncache.req.bits.data := dataModule.io.rdata(0).data
263  io.uncache.req.bits.mask := dataModule.io.rdata(0).mask
264
265  io.uncache.req.bits.meta.id       := DontCare
266  io.uncache.req.bits.meta.vaddr    := DontCare
267  io.uncache.req.bits.meta.paddr    := paddrModule.io.rdata(0)
268  io.uncache.req.bits.meta.uop      := uop(deqPtr)
269  io.uncache.req.bits.meta.mmio     := true.B
270  io.uncache.req.bits.meta.tlb_miss := false.B
271  io.uncache.req.bits.meta.mask     := dataModule.io.rdata(0).mask
272  io.uncache.req.bits.meta.replay   := false.B
273
274  when(io.uncache.req.fire()){
275    pending(deqPtr) := false.B
276
277    XSDebug(
278      p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " +
279      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
280      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
281      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
282      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
283    )
284  }
285
286  // (3) response from uncache channel: mark as datavalid
287  io.uncache.resp.ready := true.B
288  when (io.uncache.resp.fire()) {
289    datavalid(deqPtr) := true.B
290  }
291
292  // (4) writeback to ROB (and other units): mark as writebacked
293  io.mmioStout.valid := allocated(deqPtr) && datavalid(deqPtr) && !writebacked(deqPtr)
294  io.mmioStout.bits.uop := uop(deqPtr)
295  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
296  io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr)
297  io.mmioStout.bits.redirectValid := false.B
298  io.mmioStout.bits.redirect := DontCare
299  io.mmioStout.bits.brUpdate := DontCare
300  io.mmioStout.bits.debug.isMMIO := true.B
301  io.mmioStout.bits.debug.isPerfCnt := false.B
302  io.mmioStout.bits.fflags := DontCare
303  when (io.mmioStout.fire()) {
304    writebacked(deqPtr) := true.B
305    allocated(deqPtr) := false.B
306  }
307
308  /**
309    * ROB commits store instructions (mark them as commited)
310    *
311    * (1) When store commits, mark it as commited.
312    * (2) They will not be cancelled and can be sent to lower level.
313    */
314  for (i <- 0 until CommitWidth) {
315    when (commitCount > i.U) {
316      commited(cmtPtrExt(i).value) := true.B
317    }
318  }
319  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
320
321  // Commited stores will not be cancelled and can be sent to lower level.
322  // remove retired insts from sq, add retired store to sbuffer
323  for (i <- 0 until StorePipelineWidth) {
324    // We use RegNext to prepare data for sbuffer
325    val ptr = deqPtrExt(i).value
326    // if !sbuffer.fire(), read the same ptr
327    // if sbuffer.fire(), read next
328    io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr)
329    io.sbuffer(i).bits.cmd  := MemoryOpConstants.M_XWR
330    io.sbuffer(i).bits.addr := paddrModule.io.rdata(i)
331    io.sbuffer(i).bits.data := dataModule.io.rdata(i).data
332    io.sbuffer(i).bits.mask := dataModule.io.rdata(i).mask
333    io.sbuffer(i).bits.meta          := DontCare
334    io.sbuffer(i).bits.meta.tlb_miss := false.B
335    io.sbuffer(i).bits.meta.uop      := DontCare
336    io.sbuffer(i).bits.meta.mmio     := false.B
337    io.sbuffer(i).bits.meta.mask     := io.sbuffer(i).bits.mask
338
339    when (io.sbuffer(i).fire()) {
340      allocated(ptr) := false.B
341      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
342    }
343  }
344  when (io.sbuffer(1).fire()) {
345    assert(io.sbuffer(0).fire())
346  }
347
348  val storeCommit = PopCount(io.sbuffer.map(_.fire()))
349  val waddr = VecInit(io.sbuffer.map(req => SignExt(req.bits.addr, 64)))
350  val wdata = VecInit(io.sbuffer.map(req => req.bits.data & MaskExpand(req.bits.mask)))
351  val wmask = VecInit(io.sbuffer.map(_.bits.mask))
352
353  if (!env.FPGAPlatform) {
354    ExcitingUtils.addSource(RegNext(storeCommit), "difftestStoreCommit", ExcitingUtils.Debug)
355    ExcitingUtils.addSource(RegNext(waddr), "difftestStoreAddr", ExcitingUtils.Debug)
356    ExcitingUtils.addSource(RegNext(wdata), "difftestStoreData", ExcitingUtils.Debug)
357    ExcitingUtils.addSource(RegNext(wmask), "difftestStoreMask", ExcitingUtils.Debug)
358  }
359  if (env.DualCoreDifftest) {
360    difftestIO.storeCommit := RegNext(storeCommit)
361    difftestIO.storeAddr   := RegNext(waddr)
362    difftestIO.storeData   := RegNext(wdata)
363    difftestIO.storeMask   := RegNext(wmask)
364  }
365
366  // Read vaddr for mem exception
367  io.exceptionAddr.vaddr := vaddrModule.io.rdata(0)
368
369  // misprediction recovery / exception redirect
370  // invalidate sq term using robIdx
371  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
372  for (i <- 0 until StoreQueueSize) {
373    needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect) && allocated(i) && !commited(i)
374    when (needCancel(i)) {
375        allocated(i) := false.B
376    }
377  }
378
379  /**
380    * update pointers
381    */
382  val lastCycleRedirect = RegNext(io.brqRedirect.valid)
383  val lastCycleCancelCount = PopCount(RegNext(needCancel))
384  // when io.brqRedirect.valid, we don't allow eneuque even though it may fire.
385  val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid, PopCount(io.enq.req.map(_.valid)), 0.U)
386  when (lastCycleRedirect) {
387    // we recover the pointers in the next cycle after redirect
388    enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount))
389  }.otherwise {
390    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
391  }
392
393  deqPtrExt := deqPtrExtNext
394
395  val lastLastCycleRedirect = RegNext(lastCycleRedirect)
396  val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U))
397  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
398
399  allowEnqueue := validCount + enqNumber <= (StoreQueueSize - RenameWidth).U
400
401  // io.sqempty will be used by sbuffer
402  // We delay it for 1 cycle for better timing
403  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
404  // for 1 cycle will also promise that sq is empty in that cycle
405  io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag)
406
407  // debug info
408  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
409
410  def PrintFlag(flag: Bool, name: String): Unit = {
411    when(flag) {
412      XSDebug(false, true.B, name)
413    }.otherwise {
414      XSDebug(false, true.B, " ")
415    }
416  }
417
418  for (i <- 0 until StoreQueueSize) {
419    if (i % 4 == 0) XSDebug("")
420    XSDebug(false, true.B, "%x ", uop(i).cf.pc)
421    PrintFlag(allocated(i), "a")
422    PrintFlag(allocated(i) && datavalid(i), "v")
423    PrintFlag(allocated(i) && writebacked(i), "w")
424    PrintFlag(allocated(i) && commited(i), "c")
425    PrintFlag(allocated(i) && pending(i), "p")
426    XSDebug(false, true.B, " ")
427    if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n")
428  }
429
430}
431