1/*************************************************************************************** 2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) 3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences 4* Copyright (c) 2020-2021 Peng Cheng Laboratory 5* 6* XiangShan is licensed under Mulan PSL v2. 7* You can use this software according to the terms and conditions of the Mulan PSL v2. 8* You may obtain a copy of Mulan PSL v2 at: 9* http://license.coscl.org.cn/MulanPSL2 10* 11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 14* 15* See the Mulan PSL v2 for more details. 16***************************************************************************************/ 17 18package xiangshan.mem 19 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import difftest.common.DifftestMem 24import org.chipsalliance.cde.config.Parameters 25import utility._ 26import utils._ 27import xiangshan._ 28import xiangshan.cache._ 29import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants} 30import xiangshan.cache.{CMOReq, CMOResp} 31import xiangshan.backend._ 32import xiangshan.backend.rob.{RobLsqIO, RobPtr} 33import xiangshan.backend.Bundles.{DynInst, MemExuOutput} 34import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields} 35import xiangshan.backend.fu.FuConfig._ 36import xiangshan.backend.fu.FuType 37import xiangshan.ExceptionNO._ 38 39class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 40 p => p(XSCoreParamsKey).StoreQueueSize 41){ 42} 43 44object SqPtr { 45 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 46 val ptr = Wire(new SqPtr) 47 ptr.flag := f 48 ptr.value := v 49 ptr 50 } 51} 52 53class SqEnqIO(implicit p: Parameters) extends MemBlockBundle { 54 val canAccept = Output(Bool()) 55 val lqCanAccept = Input(Bool()) 56 val needAlloc = Vec(LSQEnqWidth, Input(Bool())) 57 val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst))) 58 val resp = Vec(LSQEnqWidth, Output(new SqPtr)) 59} 60 61class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 62 val addr = UInt(PAddrBits.W) 63 val vaddr = UInt(VAddrBits.W) 64 val data = UInt(VLEN.W) 65 val mask = UInt((VLEN/8).W) 66 val wline = Bool() 67 val sqPtr = new SqPtr 68 val prefetch = Bool() 69 val vecValid = Bool() 70 val sqNeedDeq = Bool() 71} 72 73class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 74 // The 1st StorePipelineWidth ports: sta exception generated at s1, except for af 75 // The 2nd StorePipelineWidth ports: sta af generated at s2 76 // The following VecStorePipelineWidth ports: vector st exception 77 // The last port: non-data error generated in SoC 78 val enqPortNum = StorePipelineWidth * 2 + VecStorePipelineWidth + 1 79 80 val io = IO(new Bundle() { 81 val redirect = Flipped(ValidIO(new Redirect)) 82 val storeAddrIn = Vec(enqPortNum, Flipped(ValidIO(new LsPipelineBundle()))) 83 val exceptionAddr = new ExceptionAddrIO 84 }) 85 86 val req_valid = RegInit(false.B) 87 val req = Reg(new LsPipelineBundle()) 88 89 // enqueue 90 // S1: 91 val s1_req = VecInit(io.storeAddrIn.map(_.bits)) 92 val s1_valid = VecInit(io.storeAddrIn.map(x => 93 x.valid && !x.bits.uop.robIdx.needFlush(io.redirect) && ExceptionNO.selectByFu(x.bits.uop.exceptionVec, StaCfg).asUInt.orR 94 )) 95 96 // S2: delay 1 cycle 97 val s2_req = (0 until enqPortNum).map(i => 98 RegEnable(s1_req(i), s1_valid(i))) 99 val s2_valid = (0 until enqPortNum).map(i => 100 RegNext(s1_valid(i)) && !s2_req(i).uop.robIdx.needFlush(io.redirect) 101 ) 102 103 val s2_enqueue = Wire(Vec(enqPortNum, Bool())) 104 for (w <- 0 until enqPortNum) { 105 s2_enqueue(w) := s2_valid(w) 106 } 107 108 when (req_valid && req.uop.robIdx.needFlush(io.redirect)) { 109 req_valid := s2_enqueue.asUInt.orR 110 }.elsewhen (s2_enqueue.asUInt.orR) { 111 req_valid := true.B 112 } 113 114 def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 115 assert(valid.length == bits.length) 116 if (valid.length == 0 || valid.length == 1) { 117 (valid, bits) 118 } else if (valid.length == 2) { 119 val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0))))) 120 for (i <- res.indices) { 121 res(i).valid := valid(i) 122 res(i).bits := bits(i) 123 } 124 val oldest = Mux(valid(0) && valid(1), 125 Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) || 126 (bits(0).uop.robIdx === bits(1).uop.robIdx && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)), 127 Mux(valid(0) && !valid(1), res(0), res(1))) 128 (Seq(oldest.valid), Seq(oldest.bits)) 129 } else { 130 val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2)) 131 val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2))) 132 selectOldest(left._1 ++ right._1, left._2 ++ right._2) 133 } 134 } 135 136 val reqSel = selectOldest(s2_enqueue, s2_req) 137 138 when (req_valid) { 139 req := Mux( 140 reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)), 141 reqSel._2(0), 142 req) 143 } .elsewhen (s2_enqueue.asUInt.orR) { 144 req := reqSel._2(0) 145 } 146 147 io.exceptionAddr.vaddr := req.fullva 148 io.exceptionAddr.vaNeedExt := req.vaNeedExt 149 io.exceptionAddr.isHyper := req.isHyper 150 io.exceptionAddr.gpaddr := req.gpaddr 151 io.exceptionAddr.vstart := req.uop.vpu.vstart 152 io.exceptionAddr.vl := req.uop.vpu.vl 153 io.exceptionAddr.isForVSnonLeafPTE := req.isForVSnonLeafPTE 154 155} 156 157// Store Queue 158class StoreQueue(implicit p: Parameters) extends XSModule 159 with HasDCacheParameters 160 with HasCircularQueuePtrHelper 161 with HasPerfEvents 162 with HasVLSUParameters { 163 val io = IO(new Bundle() { 164 val hartId = Input(UInt(hartIdLen.W)) 165 val enq = new SqEnqIO 166 val brqRedirect = Flipped(ValidIO(new Redirect)) 167 val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO))) 168 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 169 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 170 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs 171 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 172 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer 173 val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer 174 val uncacheOutstanding = Input(Bool()) 175 val cmoOpReq = DecoupledIO(new CMOReq) 176 val cmoOpResp = Flipped(DecoupledIO(new CMOResp)) 177 val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store 178 val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true)) 179 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 180 // TODO: scommit is only for scalar store 181 val rob = Flipped(new RobLsqIO) 182 val uncache = new UncacheWordIO 183 // val refill = Flipped(Valid(new DCacheLineReq )) 184 val exceptionAddr = new ExceptionAddrIO 185 val flushSbuffer = new SbufferFlushBundle 186 val sqEmpty = Output(Bool()) 187 val stAddrReadySqPtr = Output(new SqPtr) 188 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 189 val stDataReadySqPtr = Output(new SqPtr) 190 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 191 val stIssuePtr = Output(new SqPtr) 192 val sqDeqPtr = Output(new SqPtr) 193 val sqFull = Output(Bool()) 194 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 195 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 196 val force_write = Output(Bool()) 197 val maControl = Flipped(new StoreMaBufToSqControlIO) 198 }) 199 200 println("StoreQueue: size:" + StoreQueueSize) 201 202 // data modules 203 val uop = Reg(Vec(StoreQueueSize, new DynInst)) 204 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 205 val dataModule = Module(new SQDataModule( 206 numEntries = StoreQueueSize, 207 numRead = EnsbufferWidth, 208 numWrite = StorePipelineWidth, 209 numForward = LoadPipelineWidth 210 )) 211 dataModule.io := DontCare 212 val paddrModule = Module(new SQAddrModule( 213 dataWidth = PAddrBits, 214 numEntries = StoreQueueSize, 215 numRead = EnsbufferWidth, 216 numWrite = StorePipelineWidth, 217 numForward = LoadPipelineWidth 218 )) 219 paddrModule.io := DontCare 220 val vaddrModule = Module(new SQAddrModule( 221 dataWidth = VAddrBits, 222 numEntries = StoreQueueSize, 223 numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer 224 numWrite = StorePipelineWidth, 225 numForward = LoadPipelineWidth 226 )) 227 vaddrModule.io := DontCare 228 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 229 val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None 230 val exceptionBuffer = Module(new StoreExceptionBuffer) 231 exceptionBuffer.io.redirect := io.brqRedirect 232 exceptionBuffer.io.exceptionAddr.isStore := DontCare 233 // vlsu exception! 234 for (i <- 0 until VecStorePipelineWidth) { 235 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).valid := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception 236 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits := DontCare 237 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.fullva := io.vecFeedback(i).bits.vaddr 238 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.vaNeedExt := io.vecFeedback(i).bits.vaNeedExt 239 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.gpaddr := io.vecFeedback(i).bits.gpaddr 240 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.uopIdx := io.vecFeedback(i).bits.uopidx 241 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.robIdx := io.vecFeedback(i).bits.robidx 242 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart 243 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vl := io.vecFeedback(i).bits.vl 244 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.isForVSnonLeafPTE := io.vecFeedback(i).bits.isForVSnonLeafPTE 245 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.exceptionVec := io.vecFeedback(i).bits.exceptionVec 246 } 247 248 249 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 250 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 251 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 252 253 // state & misc 254 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 255 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 256 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 257 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) 258 val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob 259 val unaligned = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned store 260 val cross16Byte = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned cross 16Byte boundary 261 val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 262 val nc = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // nc: inst is a nc inst 263 val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst 264 val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 265 val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer? 266 val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction 267 val vecLastFlow = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // last uop the last flow of vector store instruction 268 val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob 269 val hasException = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // store has exception, should deq but not write sbuffer 270 val waitStoreS2 = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // wait for mmio and exception result until store_s2 271 // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob 272 // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid 273 val vecExceptionFlag = RegInit(0.U.asTypeOf(Valid(new DynInst))) 274 275 // ptr 276 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 277 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 278 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 279 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 280 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 281 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 282 283 val enqPtr = enqPtrExt(0).value 284 val deqPtr = deqPtrExt(0).value 285 val cmtPtr = cmtPtrExt(0).value 286 287 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 288 val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U 289 290 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 291 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 292 293 val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W)) 294 val scommit = GatedRegNext(io.rob.scommit) 295 val mmioReq = Wire(chiselTypeOf(io.uncache.req)) 296 val ncReq = Wire(chiselTypeOf(io.uncache.req)) 297 val ncResp = Wire(chiselTypeOf(io.uncache.resp)) 298 val ncDoReq = Wire(Bool()) 299 val ncDoResp = Wire(Bool()) 300 val ncReadNextTrigger = Mux(io.uncacheOutstanding, ncDoReq, ncDoResp) 301 // ncDoReq is double RegNexted, as ubuffer data write takes 3 cycles. 302 // TODO lyq: to eliminate coupling by passing signals through ubuffer 303 val ncDeqTrigger = Mux(io.uncacheOutstanding, RegNext(RegNext(ncDoReq)), ncDoResp) 304 val ncPtr = Mux(io.uncacheOutstanding, RegNext(RegNext(io.uncache.req.bits.id)), io.uncache.resp.bits.id) 305 306 // store can be committed by ROB 307 io.rob.mmio := DontCare 308 io.rob.uop := DontCare 309 310 // Read dataModule 311 assert(EnsbufferWidth <= 2) 312 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 313 val rdataPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr)) 314 rdataPtrExtNext := rdataPtrExt.map(i => i + 315 PopCount(dataBuffer.io.enq.map(x=> x.fire && x.bits.sqNeedDeq)) + 316 PopCount(ncReadNextTrigger || io.mmioStout.fire || io.vecmmioStout.fire) 317 ) 318 319 // deqPtrExtNext traces which inst is about to leave store queue 320 // 321 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 322 // Before data write finish, sbuffer is unable to provide store to load 323 // forward data. As an workaround, deqPtrExt and allocated flag update 324 // is delayed so that load can get the right data from store queue. 325 // 326 // Modify deqPtrExtNext and io.sqDeq with care! 327 val deqPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr)) 328 // Only sqNeedDeq can move the ptr 329 deqPtrExtNext := deqPtrExt.map(i => i + 330 RegNext(PopCount(VecInit(io.sbuffer.map(x=> x.fire && x.bits.sqNeedDeq)))) + 331 PopCount(ncDeqTrigger || io.mmioStout.fire || io.vecmmioStout.fire) 332 ) 333 334 io.sqDeq := RegNext( 335 RegNext(PopCount(VecInit(io.sbuffer.map(x=> x.fire && x.bits.sqNeedDeq)))) + 336 PopCount(ncDeqTrigger || io.mmioStout.fire || io.vecmmioStout.fire) 337 ) 338 339 assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire))) 340 341 for (i <- 0 until EnsbufferWidth) { 342 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 343 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 344 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 345 } 346 347 /** 348 * Enqueue at dispatch 349 * 350 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 351 */ 352 io.enq.canAccept := allowEnqueue 353 val canEnqueue = io.enq.req.map(_.valid) 354 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 355 val vStoreFlow = io.enq.req.map(_.bits.numLsElem) 356 val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vLoadFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && canEnqueue(index), vLoadFlowNumItem, 0.U)} 357 val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)} 358 val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1) 359 360 for (i <- 0 until io.enq.req.length) { 361 val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _) 362 val index = io.enq.req(i).bits.sqIdx 363 val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields) 364 when (canEnqueue(i) && !enqCancel(i)) { 365 // The maximum 'numLsElem' number that can be emitted per dispatch port is: 366 // 16 2 2 2 2 2. 367 // Therefore, VecMemLSQEnqIteratorNumberSeq = Seq(16, 2, 2, 2, 2, 2) 368 for (j <- 0 until VecMemLSQEnqIteratorNumberSeq(i)) { 369 when (j.U < validVStoreOffset(i)) { 370 uop((index + j.U).value) := io.enq.req(i).bits 371 // NOTE: the index will be used when replay 372 uop((index + j.U).value).sqIdx := sqIdx + j.U 373 vecLastFlow((index + j.U).value) := Mux((j + 1).U === validVStoreOffset(i), io.enq.req(i).bits.lastUop, false.B) 374 allocated((index + j.U).value) := true.B 375 datavalid((index + j.U).value) := false.B 376 addrvalid((index + j.U).value) := false.B 377 unaligned((index + j.U).value) := false.B 378 cross16Byte((index + j.U).value) := false.B 379 committed((index + j.U).value) := false.B 380 pending((index + j.U).value) := false.B 381 prefetch((index + j.U).value) := false.B 382 nc((index + j.U).value) := false.B 383 mmio((index + j.U).value) := false.B 384 isVec((index + j.U).value) := FuType.isVStore(io.enq.req(i).bits.fuType) 385 vecMbCommit((index + j.U).value) := false.B 386 hasException((index + j.U).value) := false.B 387 waitStoreS2((index + j.U).value) := true.B 388 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 389 XSError(index.value =/= sqIdx.value, s"must be the same entry $i\n") 390 } 391 } 392 } 393 io.enq.resp(i) := sqIdx 394 } 395 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 396 397 /** 398 * Update addr/dataReadyPtr when issue from rs 399 */ 400 // update issuePtr 401 val IssuePtrMoveStride = 4 402 require(IssuePtrMoveStride >= 2) 403 404 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 405 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && 406 (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value)) 407 && ptr =/= enqPtrExt(0)) 408 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 409 addrReadyPtrExt := nextAddrReadyPtr 410 411 val stAddrReadyVecReg = Wire(Vec(StoreQueueSize, Bool())) 412 (0 until StoreQueueSize).map(i => { 413 stAddrReadyVecReg(i) := allocated(i) && (mmio(i) || addrvalid(i) || (isVec(i) && vecMbCommit(i))) 414 }) 415 io.stAddrReadyVec := GatedValidRegNext(stAddrReadyVecReg) 416 417 when (io.brqRedirect.valid) { 418 addrReadyPtrExt := Mux( 419 isAfter(cmtPtrExt(0), deqPtrExt(0)), 420 cmtPtrExt(0), 421 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 422 ) 423 } 424 425 io.stAddrReadySqPtr := addrReadyPtrExt 426 427 // update 428 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 429 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && 430 (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value)) 431 && ptr =/= enqPtrExt(0)) 432 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 433 dataReadyPtrExt := nextDataReadyPtr 434 435 val stDataReadyVecReg = Wire(Vec(StoreQueueSize, Bool())) 436 (0 until StoreQueueSize).map(i => { 437 stDataReadyVecReg(i) := allocated(i) && (mmio(i) || datavalid(i) || (isVec(i) && vecMbCommit(i))) 438 }) 439 io.stDataReadyVec := GatedValidRegNext(stDataReadyVecReg) 440 441 when (io.brqRedirect.valid) { 442 dataReadyPtrExt := Mux( 443 isAfter(cmtPtrExt(0), deqPtrExt(0)), 444 cmtPtrExt(0), 445 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 446 ) 447 } 448 449 io.stDataReadySqPtr := dataReadyPtrExt 450 io.stIssuePtr := enqPtrExt(0) 451 io.sqDeqPtr := deqPtrExt(0) 452 453 /** 454 * Writeback store from store units 455 * 456 * Most store instructions writeback to regfile in the previous cycle. 457 * However, 458 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 459 * (in this way it will trigger an exception when it reaches ROB's head) 460 * instead of pending to avoid sending them to lower level. 461 * (2) For an mmio instruction without exceptions, we mark it as pending. 462 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 463 * Upon receiving the response, StoreQueue writes back the instruction 464 * through arbiter with store units. It will later commit as normal. 465 */ 466 467 // Write addr to sq 468 for (i <- 0 until StorePipelineWidth) { 469 paddrModule.io.wen(i) := false.B 470 vaddrModule.io.wen(i) := false.B 471 dataModule.io.mask.wen(i) := false.B 472 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 473 exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec 474 exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits 475 // will re-enter exceptionbuffer at store_s2 476 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := false.B 477 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := 0.U.asTypeOf(new LsPipelineBundle) 478 479 when (io.storeAddrIn(i).fire && io.storeAddrIn(i).bits.updateAddrValid) { 480 val addr_valid = !io.storeAddrIn(i).bits.miss 481 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 482 nc(stWbIndex) := io.storeAddrIn(i).bits.nc 483 484 } 485 when (io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.isFrmMisAlignBuf) { 486 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 487 unaligned(stWbIndex) := io.storeAddrIn(i).bits.isMisalign 488 cross16Byte(stWbIndex) := io.storeAddrIn(i).bits.isMisalign && !io.storeAddrIn(i).bits.misalignWith16Byte 489 490 paddrModule.io.waddr(i) := stWbIndex 491 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 492 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 493 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 494 paddrModule.io.wen(i) := true.B 495 496 vaddrModule.io.waddr(i) := stWbIndex 497 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 498 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 499 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 500 vaddrModule.io.wen(i) := true.B 501 502 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 503 504 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 505 506 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n", 507 io.storeAddrIn(i).bits.uop.sqIdx.value, 508 io.storeAddrIn(i).bits.uop.pc, 509 io.storeAddrIn(i).bits.miss, 510 io.storeAddrIn(i).bits.vaddr, 511 io.storeAddrIn(i).bits.paddr, 512 io.storeAddrIn(i).bits.mmio, 513 io.storeAddrIn(i).bits.isvec 514 ) 515 } 516 when (io.storeAddrIn(i).fire) { 517 uop(stWbIndex) := io.storeAddrIn(i).bits.uop 518 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 519 } 520 521 // re-replinish mmio, for pma/pmp will get mmio one cycle later 522 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) && io.storeAddrInRe(i).updateAddrValid 523 //val stWbIndexReg = RegNext(stWbIndex) 524 val stWbIndexReg = RegEnable(stWbIndex, io.storeAddrIn(i).fire) 525 when (storeAddrInFireReg) { 526 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 527 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 528 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 529 hasException(stWbIndexReg) := io.storeAddrInRe(i).hasException 530 waitStoreS2(stWbIndexReg) := false.B 531 } 532 // dcache miss info (one cycle later than storeIn) 533 // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger) 534 when (storeAddrInFireReg) { 535 prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss 536 } 537 // enter exceptionbuffer again 538 when (storeAddrInFireReg) { 539 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.storeAddrInRe(i).hasException && !io.storeAddrInRe(i).isvec 540 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := io.storeAddrInRe(i) 541 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.exceptionVec(storeAccessFault) := io.storeAddrInRe(i).af 542 } 543 544 when(vaddrModule.io.wen(i)){ 545 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 546 } 547 } 548 549 // Write data to sq 550 // Now store data pipeline is actually 2 stages 551 for (i <- 0 until StorePipelineWidth) { 552 dataModule.io.data.wen(i) := false.B 553 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 554 val isVec = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType) 555 // sq data write takes 2 cycles: 556 // sq data write s0 557 when (io.storeDataIn(i).fire) { 558 // send data write req to data module 559 dataModule.io.data.waddr(i) := stWbIndex 560 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero, 561 0.U, 562 Mux(isVec, 563 io.storeDataIn(i).bits.data, 564 genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0))) 565 ) 566 dataModule.io.data.wen(i) := true.B 567 568 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 569 570 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 571 io.storeDataIn(i).bits.uop.sqIdx.value, 572 io.storeDataIn(i).bits.uop.pc, 573 io.storeDataIn(i).bits.data, 574 dataModule.io.data.wdata(i) 575 ) 576 } 577 // sq data write s1 578 val lastStWbIndex = RegEnable(stWbIndex, io.storeDataIn(i).fire) 579 when ( 580 RegNext(io.storeDataIn(i).fire) && allocated(lastStWbIndex) 581 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 582 ) { 583 datavalid(lastStWbIndex) := true.B 584 } 585 } 586 587 // Write mask to sq 588 for (i <- 0 until StorePipelineWidth) { 589 // sq mask write s0 590 when (io.storeMaskIn(i).fire) { 591 // send data write req to data module 592 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 593 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 594 dataModule.io.mask.wen(i) := true.B 595 } 596 } 597 598 /** 599 * load forward query 600 * 601 * Check store queue for instructions that is older than the load. 602 * The response will be valid at the next cycle after req. 603 */ 604 // check over all lq entries and forward data from the first matched store 605 for (i <- 0 until LoadPipelineWidth) { 606 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 607 // (1) if they have the same flag, we need to check range(tail, sqIdx) 608 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 609 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 610 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 611 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 612 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 613 val forwardMask = io.forward(i).sqIdxMask 614 // all addrvalid terms need to be checked 615 // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid) 616 val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 617 // vector store will consider all inactive || secondInvalid flows as valid 618 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 619 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j)))) 620 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j)))) 621 622 val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable) 623 val storeSetHitVec = Mux(lfstEnable, 624 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))), 625 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid))) 626 ) 627 628 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 629 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 630 val canForward1 = forwardMask1 & allValidVec.asUInt 631 val canForward2 = forwardMask2 & allValidVec.asUInt 632 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 633 634 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 635 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 636 ) 637 638 // do real fwd query (cam lookup in load_s1) 639 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 640 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 641 642 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 643 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 644 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 645 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 646 647 // vaddr cam result does not equal to paddr cam result 648 // replay needed 649 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 650 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 651 val vpmaskNotEqual = ( 652 (RegEnable(paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) ^ RegEnable(vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)) & 653 RegNext(needForward) & 654 GatedRegNext(addrRealValidVec.asUInt) 655 ) =/= 0.U 656 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 657 when (vaddrMatchFailed) { 658 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 659 RegEnable(io.forward(i).uop.pc, io.forward(i).valid), 660 RegEnable(needForward & paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid), 661 RegEnable(needForward & vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) 662 ); 663 } 664 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 665 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 666 667 // Fast forward mask will be generated immediately (load_s1) 668 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 669 670 // Forward result will be generated 1 cycle later (load_s2) 671 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 672 io.forward(i).forwardData := dataModule.io.forwardData(i) 673 674 //TODO If the previous store appears out of alignment, then simply FF, this is a very unreasonable way to do it. 675 //TODO But for the time being, this is the way to ensure correctness. Such a suitable opportunity to support unaligned forward. 676 // If addr match, data not ready, mark it as dataInvalid 677 // load_s1: generate dataInvalid in load_s1 to set fastUop 678 val dataInvalidMask1 = ((addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt) | unaligned.asUInt & allocated.asUInt) & forwardMask1.asUInt 679 val dataInvalidMask2 = ((addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt) | unaligned.asUInt & allocated.asUInt) & forwardMask2.asUInt 680 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 681 io.forward(i).dataInvalidFast := dataInvalidMask.orR 682 683 // make chisel happy 684 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 685 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 686 // make chisel happy 687 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 688 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 689 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 690 691 // If SSID match, address not ready, mark it as addrInvalid 692 // load_s2: generate addrInvalid 693 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 694 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 695 // make chisel happy 696 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 697 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 698 // make chisel happy 699 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 700 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 701 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 702 703 // load_s2 704 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 705 // check if vaddr forward mismatched 706 io.forward(i).matchInvalid := vaddrMatchFailed 707 708 // data invalid sq index 709 // check whether false fail 710 // check flag 711 val s2_differentFlag = RegNext(differentFlag) 712 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 713 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 714 715 // addr invalid sq index 716 // make chisel happy 717 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 718 addrInvalidMaskRegWire := addrInvalidMaskReg 719 val addrInvalidFlag = addrInvalidMaskRegWire.orR 720 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 721 722 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 723 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 724 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 725 726 // store-set content management 727 // +-----------------------+ 728 // | Search a SSID for the | 729 // | load operation | 730 // +-----------------------+ 731 // | 732 // V 733 // +-------------------+ 734 // | load wait strict? | 735 // +-------------------+ 736 // | 737 // V 738 // +----------------------+ 739 // Set| |Clean 740 // V V 741 // +------------------------+ +------------------------------+ 742 // | Waiting for all older | | Wait until the corresponding | 743 // | stores operations | | older store operations | 744 // +------------------------+ +------------------------------+ 745 746 747 748 when (RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid)) { 749 io.forward(i).addrInvalidSqIdx := RegEnable((io.forward(i).uop.sqIdx - 1.U), io.forward(i).valid) 750 } .elsewhen (addrInvalidFlag) { 751 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 752 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 753 } .otherwise { 754 // may be store inst has been written to sbuffer already. 755 io.forward(i).addrInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid) 756 } 757 io.forward(i).addrInvalid := Mux(RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid), RegNext(hasInvalidAddr), addrInvalidFlag) 758 759 // data invalid sq index 760 // make chisel happy 761 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 762 dataInvalidMaskRegWire := dataInvalidMaskReg 763 val dataInvalidFlag = dataInvalidMaskRegWire.orR 764 765 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 766 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 767 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 768 769 when (dataInvalidFlag) { 770 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 771 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 772 } .otherwise { 773 // may be store inst has been written to sbuffer already. 774 io.forward(i).dataInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid) 775 } 776 } 777 778 /** 779 * Memory mapped IO / other uncached operations / CMO 780 * 781 * States: 782 * (1) writeback from store units: mark as pending 783 * (2) when they reach ROB's head, they can be sent to uncache channel 784 * (3) response from uncache channel: mark as datavalidmask.wen 785 * (4) writeback to ROB (and other units): mark as writebacked 786 * (5) ROB commits the instruction: same as normal instructions 787 */ 788 //(2) when they reach ROB's head, they can be sent to uncache channel 789 // TODO: CAN NOT deal with vector mmio now! 790 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 791 val mmioState = RegInit(s_idle) 792 val uncacheUop = Reg(new DynInst) 793 val cboFlushedSb = RegInit(false.B) 794 val cmoOpCode = uncacheUop.fuOpType(1, 0) 795 val mmioDoReq = io.uncache.req.fire && !io.uncache.req.bits.nc 796 val cboMmioPAddr = Reg(UInt(PAddrBits.W)) 797 switch(mmioState) { 798 is(s_idle) { 799 when(RegNext(io.rob.pendingst && uop(deqPtr).robIdx === io.rob.pendingPtr && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr) && !hasException(deqPtr))) { 800 mmioState := s_req 801 uncacheUop := uop(deqPtr) 802 uncacheUop.exceptionVec := 0.U.asTypeOf(ExceptionVec()) 803 cboFlushedSb := false.B 804 cboMmioPAddr := paddrModule.io.rdata(0) 805 } 806 } 807 is(s_req) { 808 when (mmioDoReq) { 809 mmioState := s_resp 810 } 811 } 812 is(s_resp) { 813 when(io.uncache.resp.fire && !io.uncache.resp.bits.nc) { 814 mmioState := s_wb 815 816 when (io.uncache.resp.bits.nderr) { 817 uncacheUop.exceptionVec(storeAccessFault) := true.B 818 } 819 } 820 } 821 is(s_wb) { 822 when (io.mmioStout.fire || io.vecmmioStout.fire) { 823 when (uncacheUop.exceptionVec(storeAccessFault)) { 824 mmioState := s_idle 825 }.otherwise { 826 mmioState := s_wait 827 } 828 } 829 } 830 is(s_wait) { 831 // A MMIO store can always move cmtPtrExt as it must be ROB head 832 when(scommit > 0.U) { 833 mmioState := s_idle // ready for next mmio 834 } 835 } 836 } 837 838 mmioReq.valid := mmioState === s_req 839 mmioReq.bits := DontCare 840 mmioReq.bits.cmd := MemoryOpConstants.M_XWR 841 mmioReq.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 842 mmioReq.bits.vaddr:= vaddrModule.io.rdata(0) 843 mmioReq.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 844 mmioReq.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 845 mmioReq.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value) 846 mmioReq.bits.nc := false.B 847 mmioReq.bits.id := rdataPtrExt(0).value 848 849 /** 850 * NC Store 851 * (1) req: when it has been commited, it can be sent to lower level. 852 * (2) resp: because SQ data forward is required, it can only be deq when ncResp is received 853 */ 854 // TODO: CAN NOT deal with vector nc now! 855 val nc_idle :: nc_req :: nc_resp :: Nil = Enum(3) 856 val ncState = RegInit(nc_idle) 857 val rptr0 = rdataPtrExt(0).value 858 switch(ncState){ 859 is(nc_idle) { 860 when(nc(rptr0) && allocated(rptr0) && committed(rptr0) && !mmio(rptr0) && !isVec(rptr0)) { 861 ncState := nc_req 862 } 863 } 864 is(nc_req) { 865 when(ncDoReq) { 866 when(io.uncacheOutstanding) { 867 ncState := nc_idle 868 }.otherwise{ 869 ncState := nc_resp 870 } 871 } 872 } 873 is(nc_resp) { 874 when(ncResp.fire) { 875 ncState := nc_idle 876 } 877 } 878 } 879 880 ncDoReq := io.uncache.req.fire && io.uncache.req.bits.nc 881 ncDoResp := ncResp.fire 882 883 ncReq.valid := ncState === nc_req 884 ncReq.bits := DontCare 885 ncReq.bits.cmd := MemoryOpConstants.M_XWR 886 ncReq.bits.addr := paddrModule.io.rdata(0) 887 ncReq.bits.vaddr:= vaddrModule.io.rdata(0) 888 ncReq.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 889 ncReq.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 890 ncReq.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value) 891 ncReq.bits.nc := true.B 892 ncReq.bits.id := rptr0 893 894 ncResp.ready := io.uncache.resp.ready 895 ncResp.valid := io.uncache.resp.fire && io.uncache.resp.bits.nc 896 ncResp.bits <> io.uncache.resp.bits 897 when (ncDeqTrigger) { 898 allocated(ncPtr) := false.B 899 XSDebug("nc fire: ptr %d\n", ncPtr) 900 } 901 902 mmioReq.ready := io.uncache.req.ready 903 ncReq.ready := io.uncache.req.ready && !mmioReq.valid 904 io.uncache.req.valid := mmioReq.valid || ncReq.valid 905 io.uncache.req.bits := Mux(mmioReq.valid, mmioReq.bits, ncReq.bits) 906 907 // CBO op type check can be delayed for 1 cycle, 908 // as uncache op will not start in s_idle 909 val cboMmioAddr = get_block_addr(cboMmioPAddr) 910 val deqCanDoCbo = GatedRegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType) && allocated(deqPtr) && addrvalid(deqPtr)) 911 when (deqCanDoCbo) { 912 // disable uncache channel 913 io.uncache.req.valid := false.B 914 915 when (io.cmoOpReq.fire) { 916 mmioState := s_resp 917 } 918 919 when (mmioState === s_resp) { 920 when (io.cmoOpResp.fire) { 921 mmioState := s_wb 922 } 923 } 924 } 925 926 io.cmoOpReq.valid := deqCanDoCbo && cboFlushedSb && (mmioState === s_req) 927 io.cmoOpReq.bits.opcode := cmoOpCode 928 io.cmoOpReq.bits.address := cboMmioAddr 929 930 io.cmoOpResp.ready := deqCanDoCbo && (mmioState === s_resp) 931 932 io.flushSbuffer.valid := deqCanDoCbo && !cboFlushedSb && (mmioState === s_req) && !io.flushSbuffer.empty 933 934 when(deqCanDoCbo && !cboFlushedSb && (mmioState === s_req) && io.flushSbuffer.empty) { 935 cboFlushedSb := true.B 936 } 937 938 when(mmioDoReq){ 939 // mmio store should not be committed until uncache req is sent 940 pending(deqPtr) := false.B 941 942 XSDebug( 943 p"uncache mmio req: pc ${Hexadecimal(uop(deqPtr).pc)} " + 944 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 945 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 946 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 947 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 948 ) 949 } 950 951 // (3) response from uncache channel: mark as datavalid 952 io.uncache.resp.ready := true.B 953 954 // (4) scalar store: writeback to ROB (and other units): mark as writebacked 955 io.mmioStout.valid := mmioState === s_wb && !isVec(deqPtr) 956 io.mmioStout.bits.uop := uncacheUop 957 io.mmioStout.bits.uop.exceptionVec := ExceptionNO.selectByFu(uncacheUop.exceptionVec, StaCfg) 958 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 959 io.mmioStout.bits.uop.flushPipe := deqCanDoCbo // flush Pipeline to keep order in CMO 960 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 961 io.mmioStout.bits.isFromLoadUnit := DontCare 962 io.mmioStout.bits.debug.isMMIO := true.B 963 io.mmioStout.bits.debug.isNC := false.B 964 io.mmioStout.bits.debug.paddr := DontCare 965 io.mmioStout.bits.debug.isPerfCnt := false.B 966 io.mmioStout.bits.debug.vaddr := DontCare 967 // Remove MMIO inst from store queue after MMIO request is being sent 968 // That inst will be traced by uncache state machine 969 when (io.mmioStout.fire) { 970 allocated(deqPtr) := false.B 971 } 972 973 exceptionBuffer.io.storeAddrIn.last.valid := io.mmioStout.fire 974 exceptionBuffer.io.storeAddrIn.last.bits := DontCare 975 exceptionBuffer.io.storeAddrIn.last.bits.fullva := vaddrModule.io.rdata.head 976 exceptionBuffer.io.storeAddrIn.last.bits.vaNeedExt := true.B 977 exceptionBuffer.io.storeAddrIn.last.bits.uop := uncacheUop 978 979 // (4) or vector store: 980 // TODO: implement it! 981 io.vecmmioStout := DontCare 982 io.vecmmioStout.valid := false.B //mmioState === s_wb && isVec(deqPtr) 983 io.vecmmioStout.bits.uop := uop(deqPtr) 984 io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0) 985 io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 986 io.vecmmioStout.bits.debug.isMMIO := true.B 987 io.vecmmioStout.bits.debug.isNC := false.B 988 io.vecmmioStout.bits.debug.paddr := DontCare 989 io.vecmmioStout.bits.debug.isPerfCnt := false.B 990 io.vecmmioStout.bits.debug.vaddr := DontCare 991 // Remove MMIO inst from store queue after MMIO request is being sent 992 // That inst will be traced by uncache state machine 993 when (io.vecmmioStout.fire) { 994 allocated(deqPtr) := false.B 995 } 996 997 /** 998 * ROB commits store instructions (mark them as committed) 999 * 1000 * (1) When store commits, mark it as committed. 1001 * (2) They will not be cancelled and can be sent to lower level. 1002 */ 1003 XSError(mmioState =/= s_idle && mmioState =/= s_wait && commitCount > 0.U, 1004 "should not commit instruction when MMIO has not been finished\n") 1005 1006 val commitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B))) 1007 val needCancel = Wire(Vec(StoreQueueSize, Bool())) // Will be assigned later 1008 1009 if (backendParams.debugEn){ dontTouch(commitVec) } 1010 1011 // TODO: Deal with vector store mmio 1012 for (i <- 0 until CommitWidth) { 1013 // don't mark misalign store as committed 1014 when ( 1015 allocated(cmtPtrExt(i).value) && 1016 isNotAfter(uop(cmtPtrExt(i).value).robIdx, GatedRegNext(io.rob.pendingPtr)) && 1017 !needCancel(cmtPtrExt(i).value) && 1018 (!waitStoreS2(cmtPtrExt(i).value) || isVec(cmtPtrExt(i).value))) { 1019 if (i == 0){ 1020 // TODO: fixme for vector mmio 1021 when ((mmioState === s_idle) || (mmioState === s_wait && scommit > 0.U)){ 1022 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 1023 committed(cmtPtrExt(0).value) := true.B 1024 commitVec(0) := true.B 1025 } 1026 } 1027 } else { 1028 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 1029 committed(cmtPtrExt(i).value) := commitVec(i - 1) || committed(cmtPtrExt(i).value) 1030 commitVec(i) := commitVec(i - 1) 1031 } 1032 } 1033 } 1034 } 1035 1036 commitCount := PopCount(commitVec) 1037 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 1038 1039 /** 1040 * committed stores will not be cancelled and can be sent to lower level. 1041 * 1042 * 1. Store NC: Read data to uncache 1043 * implement as above 1044 * 1045 * 2. Store Cache: Read data from data module 1046 * remove retired insts from sq, add retired store to sbuffer. 1047 * as store queue grows larger and larger, time needed to read data from data 1048 * module keeps growing higher. Now we give data read a whole cycle. 1049 */ 1050 1051 //TODO An unaligned command can only be sent out if the databuffer can enter more than two. 1052 //TODO For now, hardcode the number of ENQs for the databuffer. 1053 val canDeqMisaligned = dataBuffer.io.enq(0).ready && dataBuffer.io.enq(1).ready 1054 val firstWithMisalign = unaligned(rdataPtrExt(0).value) 1055 val firstWithCross16Byte = cross16Byte(rdataPtrExt(0).value) 1056 1057 val isCross4KPage = io.maControl.toStoreQueue.crossPageWithHit 1058 val isCross4KPageCanDeq = io.maControl.toStoreQueue.crossPageCanDeq 1059 // When encountering a cross page store, a request needs to be sent to storeMisalignBuffer for the high page table's paddr. 1060 io.maControl.toStoreMisalignBuffer.sqPtr := rdataPtrExt(0) 1061 io.maControl.toStoreMisalignBuffer.doDeq := isCross4KPage && isCross4KPageCanDeq && dataBuffer.io.enq(0).fire 1062 io.maControl.toStoreMisalignBuffer.uop := uop(rdataPtrExt(0).value) 1063 for (i <- 0 until EnsbufferWidth) { 1064 val ptr = rdataPtrExt(i).value 1065 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1066 val ncStall = if(i == 0) nc(rdataPtrExt(0).value) else (nc(rdataPtrExt(i).value) || nc(rdataPtrExt(i-1).value)) 1067 val exceptionValid = if(i == 0) hasException(rdataPtrExt(0).value) else { 1068 hasException(rdataPtrExt(i).value) || (hasException(rdataPtrExt(i-1).value) && uop(rdataPtrExt(i).value).robIdx === uop(rdataPtrExt(i-1).value).robIdx) 1069 } 1070 val vecNotAllMask = dataModule.io.rdata(i).mask.orR 1071 // Vector instructions that prevent triggered exceptions from being written to the 'databuffer'. 1072 val vecHasExceptionFlagValid = vecExceptionFlag.valid && isVec(ptr) && vecExceptionFlag.bits.robIdx === uop(ptr).robIdx 1073 1074 // Only the first interface can write unaligned directives. 1075 // Simplified design, even if the two ports have exceptions, but still only one unaligned dequeue. 1076 val assert_flag = WireInit(false.B) 1077 when(firstWithMisalign && firstWithCross16Byte) { 1078 dataBuffer.io.enq(0).valid := canDeqMisaligned && allocated(rdataPtrExt(0).value) && committed(rdataPtrExt(0).value) && 1079 ((!isVec(rdataPtrExt(0).value) && allvalid(rdataPtrExt(0).value) || vecMbCommit(rdataPtrExt(0).value)) && 1080 (!isCross4KPage || isCross4KPageCanDeq) || hasException(rdataPtrExt(0).value)) && !ncStall 1081 1082 dataBuffer.io.enq(1).valid := canDeqMisaligned && allocated(rdataPtrExt(0).value) && committed(rdataPtrExt(0).value) && 1083 (!isVec(rdataPtrExt(0).value) && allvalid(rdataPtrExt(0).value) || vecMbCommit(rdataPtrExt(0).value)) && 1084 (!isCross4KPage || isCross4KPageCanDeq) && !hasException(rdataPtrExt(0).value) && !ncStall 1085 assert_flag := dataBuffer.io.enq(1).valid 1086 }.otherwise { 1087 if (i == 0) { 1088 dataBuffer.io.enq(i).valid := ( 1089 allocated(ptr) && committed(ptr) 1090 && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) 1091 && !mmioStall && !ncStall 1092 && (!unaligned(ptr) || !cross16Byte(ptr) && (allvalid(ptr) || hasException(ptr))) 1093 ) 1094 } 1095 else { 1096 dataBuffer.io.enq(i).valid := ( 1097 allocated(ptr) && committed(ptr) 1098 && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) 1099 && !mmioStall && !ncStall 1100 && (!unaligned(ptr) || !cross16Byte(ptr) && (allvalid(ptr) || hasException(ptr))) 1101 ) 1102 } 1103 } 1104 1105 val misalignAddrLow = vaddrModule.io.rdata(0)(2, 0) 1106 val cross16ByteAddrLow4bit = vaddrModule.io.rdata(0)(3, 0) 1107 val addrLow4bit = vaddrModule.io.rdata(i)(3, 0) 1108 1109 // For unaligned, we need to generate a base-aligned mask in storeunit and then do a shift split in StoreQueue. 1110 val Cross16ByteMask = Wire(UInt(32.W)) 1111 val Cross16ByteData = Wire(UInt(256.W)) 1112 Cross16ByteMask := dataModule.io.rdata(0).mask << cross16ByteAddrLow4bit 1113 Cross16ByteData := dataModule.io.rdata(0).data << (cross16ByteAddrLow4bit << 3) 1114 1115 val paddrLow = Cat(paddrModule.io.rdata(0)(paddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) 1116 val paddrHigh = Cat(paddrModule.io.rdata(0)(paddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) + 8.U 1117 1118 val vaddrLow = Cat(vaddrModule.io.rdata(0)(vaddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) 1119 val vaddrHigh = Cat(vaddrModule.io.rdata(0)(vaddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) + 8.U 1120 1121 val maskLow = Cross16ByteMask(15, 0) 1122 val maskHigh = Cross16ByteMask(31, 16) 1123 1124 val dataLow = Cross16ByteData(127, 0) 1125 val dataHigh = Cross16ByteData(255, 128) 1126 1127 val toSbufferVecValid = (!isVec(ptr) || (vecMbCommit(ptr) && allvalid(ptr) && vecNotAllMask)) && !exceptionValid && !vecHasExceptionFlagValid 1128 when(canDeqMisaligned && firstWithMisalign && firstWithCross16Byte) { 1129 when(isCross4KPage && isCross4KPageCanDeq) { 1130 if (i == 0) { 1131 dataBuffer.io.enq(i).bits.addr := paddrLow 1132 dataBuffer.io.enq(i).bits.vaddr := vaddrLow 1133 dataBuffer.io.enq(i).bits.data := dataLow 1134 dataBuffer.io.enq(i).bits.mask := maskLow 1135 dataBuffer.io.enq(i).bits.wline := false.B 1136 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(0) 1137 dataBuffer.io.enq(i).bits.prefetch := false.B 1138 dataBuffer.io.enq(i).bits.sqNeedDeq := true.B 1139 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1140 } 1141 else { 1142 dataBuffer.io.enq(i).bits.addr := io.maControl.toStoreQueue.paddr 1143 dataBuffer.io.enq(i).bits.vaddr := vaddrHigh 1144 dataBuffer.io.enq(i).bits.data := dataHigh 1145 dataBuffer.io.enq(i).bits.mask := maskHigh 1146 dataBuffer.io.enq(i).bits.wline := false.B 1147 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(0) 1148 dataBuffer.io.enq(i).bits.prefetch := false.B 1149 dataBuffer.io.enq(i).bits.sqNeedDeq := false.B 1150 dataBuffer.io.enq(i).bits.vecValid := dataBuffer.io.enq(0).bits.vecValid 1151 } 1152 } .otherwise { 1153 if (i == 0) { 1154 dataBuffer.io.enq(i).bits.addr := paddrLow 1155 dataBuffer.io.enq(i).bits.vaddr := vaddrLow 1156 dataBuffer.io.enq(i).bits.data := dataLow 1157 dataBuffer.io.enq(i).bits.mask := maskLow 1158 dataBuffer.io.enq(i).bits.wline := false.B 1159 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(0) 1160 dataBuffer.io.enq(i).bits.prefetch := false.B 1161 dataBuffer.io.enq(i).bits.sqNeedDeq := true.B 1162 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1163 } 1164 else { 1165 dataBuffer.io.enq(i).bits.addr := paddrHigh 1166 dataBuffer.io.enq(i).bits.vaddr := vaddrHigh 1167 dataBuffer.io.enq(i).bits.data := dataHigh 1168 dataBuffer.io.enq(i).bits.mask := maskHigh 1169 dataBuffer.io.enq(i).bits.wline := false.B 1170 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(0) 1171 dataBuffer.io.enq(i).bits.prefetch := false.B 1172 dataBuffer.io.enq(i).bits.sqNeedDeq := false.B 1173 dataBuffer.io.enq(i).bits.vecValid := dataBuffer.io.enq(0).bits.vecValid 1174 } 1175 } 1176 1177 1178 }.elsewhen(!cross16Byte(ptr) && unaligned(ptr)) { 1179 dataBuffer.io.enq(i).bits.addr := Cat(paddrModule.io.rdata(i)(PAddrBits - 1, 4), 0.U(4.W)) 1180 dataBuffer.io.enq(i).bits.vaddr := Cat(vaddrModule.io.rdata(i)(VAddrBits - 1, 4), 0.U(4.W)) 1181 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data << (addrLow4bit << 3) 1182 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 1183 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 1184 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 1185 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 1186 dataBuffer.io.enq(i).bits.sqNeedDeq := true.B 1187 // when scalar has exception, will also not write into sbuffer 1188 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1189 }.otherwise { 1190 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 1191 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 1192 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 1193 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 1194 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 1195 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 1196 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 1197 dataBuffer.io.enq(i).bits.sqNeedDeq := true.B 1198 // when scalar has exception, will also not write into sbuffer 1199 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1200 1201 } 1202 1203 // Note that store data/addr should both be valid after store's commit 1204 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || hasException(ptr) || (allocated(ptr) && vecMbCommit(ptr)) || assert_flag) 1205 } 1206 1207 // Send data stored in sbufferReqBitsReg to sbuffer 1208 for (i <- 0 until EnsbufferWidth) { 1209 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 1210 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 1211 io.sbuffer(i).bits := DontCare 1212 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 1213 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 1214 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 1215 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 1216 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 1217 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline && dataBuffer.io.deq(i).bits.vecValid 1218 io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch 1219 io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid 1220 io.sbuffer(i).bits.sqNeedDeq := dataBuffer.io.deq(i).bits.sqNeedDeq 1221 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 1222 // Before data write finish, sbuffer is unable to provide store to load 1223 // forward data. As an workaround, deqPtrExt and allocated flag update 1224 // is delayed so that load can get the right data from store queue. 1225 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 1226 when (RegNext(io.sbuffer(i).fire && io.sbuffer(i).bits.sqNeedDeq)) { 1227 allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B 1228 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 1229 } 1230 } 1231 1232 // All vector instruction uop normally dequeue, but the Uop after the exception is raised does not write to the 'sbuffer'. 1233 // Flags are used to record whether there are any exceptions when the queue is displayed. 1234 // This is determined each time a write is made to the 'databuffer', prevent subsequent uop of the same instruction from writing to the 'dataBuffer'. 1235 val vecCommitHasException = (0 until EnsbufferWidth).map{ i => 1236 val ptr = rdataPtrExt(i).value 1237 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1238 val ncStall = if(i == 0) nc(rdataPtrExt(0).value) else (nc(rdataPtrExt(i).value) || nc(rdataPtrExt(i-1).value)) 1239 val exceptionVliad = isVec(ptr) && hasException(ptr) && dataBuffer.io.enq(i).fire 1240 (exceptionVliad, uop(ptr), vecLastFlow(ptr)) 1241 } 1242 1243 val vecCommitHasExceptionValid = vecCommitHasException.map(_._1) 1244 val vecCommitHasExceptionUop = vecCommitHasException.map(_._2) 1245 val vecCommitHasExceptionLastFlow = vecCommitHasException.map(_._3) 1246 val vecCommitHasExceptionValidOR = vecCommitHasExceptionValid.reduce(_ || _) 1247 // Just select the last Uop tah has an exception. 1248 val vecCommitHasExceptionSelectUop = ParallelPosteriorityMux(vecCommitHasExceptionValid, vecCommitHasExceptionUop) 1249 // If the last flow with an exception is the LastFlow of this instruction, the flag is not set. 1250 // compare robidx to select the last flow 1251 require(EnsbufferWidth == 2, "The vector store exception handle process only support EnsbufferWidth == 2 yet.") 1252 val robidxEQ = dataBuffer.io.enq(0).fire && dataBuffer.io.enq(1).fire && 1253 uop(rdataPtrExt(0).value).robIdx === uop(rdataPtrExt(1).value).robIdx 1254 val robidxNE = dataBuffer.io.enq(0).fire && dataBuffer.io.enq(1).fire && ( 1255 uop(rdataPtrExt(0).value).robIdx =/= uop(rdataPtrExt(1).value).robIdx 1256 ) 1257 val onlyCommit0 = dataBuffer.io.enq(0).fire && !dataBuffer.io.enq(1).fire 1258 1259 val vecCommitLastFlow = 1260 // robidx equal => check if 1 is last flow 1261 robidxEQ && vecCommitHasExceptionLastFlow(1) || 1262 // robidx not equal => 0 must be the last flow, just check if 1 is last flow when 1 has exception 1263 robidxNE && (vecCommitHasExceptionValid(1) && vecCommitHasExceptionLastFlow(1) || !vecCommitHasExceptionValid(1)) || 1264 onlyCommit0 && vecCommitHasExceptionLastFlow(0) 1265 1266 1267 val vecExceptionFlagCancel = (0 until EnsbufferWidth).map{ i => 1268 val ptr = rdataPtrExt(i).value 1269 val vecLastFlowCommit = vecLastFlow(ptr) && (uop(ptr).robIdx === vecExceptionFlag.bits.robIdx) && dataBuffer.io.enq(i).fire 1270 vecLastFlowCommit 1271 }.reduce(_ || _) 1272 1273 // When a LastFlow with an exception instruction is commited, clear the flag. 1274 when(!vecExceptionFlag.valid && vecCommitHasExceptionValidOR && !vecCommitLastFlow) { 1275 vecExceptionFlag.valid := true.B 1276 vecExceptionFlag.bits := vecCommitHasExceptionSelectUop 1277 }.elsewhen(vecExceptionFlag.valid && vecExceptionFlagCancel) { 1278 vecExceptionFlag.valid := false.B 1279 vecExceptionFlag.bits := 0.U.asTypeOf(new DynInst) 1280 } 1281 1282 // A dumb defensive code. The flag should not be placed for a long period of time. 1283 // A relatively large timeout period, not have any special meaning. 1284 // If an assert appears and you confirm that it is not a Bug: Increase the timeout or remove the assert. 1285 TimeOutAssert(vecExceptionFlag.valid, 3000, "vecExceptionFlag timeout, Plase check for bugs or add timeouts.") 1286 1287 // Initialize when unenabled difftest. 1288 for (i <- 0 until EnsbufferWidth) { 1289 io.sbufferVecDifftestInfo(i) := DontCare 1290 } 1291 // Consistent with the logic above. 1292 // Only the vector store difftest required signal is separated from the rtl code. 1293 if (env.EnableDifftest) { 1294 for (i <- 0 until EnsbufferWidth) { 1295 val ptr = dataBuffer.io.enq(i).bits.sqPtr.value 1296 difftestBuffer.get.io.enq(i).valid := dataBuffer.io.enq(i).valid 1297 difftestBuffer.get.io.enq(i).bits := uop(ptr) 1298 } 1299 for (i <- 0 until EnsbufferWidth) { 1300 io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid 1301 difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready 1302 1303 io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits 1304 } 1305 1306 // commit cbo.inval to difftest 1307 val cmoInvalEvent = DifftestModule(new DiffCMOInvalEvent) 1308 cmoInvalEvent.coreid := io.hartId 1309 cmoInvalEvent.valid := io.mmioStout.fire && deqCanDoCbo && LSUOpType.isCboInval(uop(deqPtr).fuOpType) 1310 cmoInvalEvent.addr := cboMmioAddr 1311 } 1312 1313 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 1314 if (coreParams.dcacheParametersOpt.isEmpty) { 1315 for (i <- 0 until EnsbufferWidth) { 1316 val ptr = deqPtrExt(i).value 1317 val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8) 1318 val wen = allocated(ptr) && committed(ptr) && !mmio(ptr) 1319 val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt 1320 val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0)) 1321 val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0)) 1322 when (wen) { 1323 ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools) 1324 } 1325 } 1326 } 1327 1328 // Read vaddr for mem exception 1329 io.exceptionAddr.vaddr := exceptionBuffer.io.exceptionAddr.vaddr 1330 io.exceptionAddr.vaNeedExt := exceptionBuffer.io.exceptionAddr.vaNeedExt 1331 io.exceptionAddr.isHyper := exceptionBuffer.io.exceptionAddr.isHyper 1332 io.exceptionAddr.gpaddr := exceptionBuffer.io.exceptionAddr.gpaddr 1333 io.exceptionAddr.vstart := exceptionBuffer.io.exceptionAddr.vstart 1334 io.exceptionAddr.vl := exceptionBuffer.io.exceptionAddr.vl 1335 io.exceptionAddr.isForVSnonLeafPTE := exceptionBuffer.io.exceptionAddr.isForVSnonLeafPTE 1336 1337 // vector commit or replay from 1338 val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool()))) 1339 val vecCommit = Wire(Vec(StoreQueueSize, Bool())) 1340 for (i <- 0 until StoreQueueSize) { 1341 val fbk = io.vecFeedback 1342 for (j <- 0 until VecStorePipelineWidth) { 1343 vecCommittmp(i)(j) := fbk(j).valid && (fbk(j).bits.isCommit || fbk(j).bits.isFlush) && 1344 uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx && allocated(i) 1345 } 1346 vecCommit(i) := vecCommittmp(i).reduce(_ || _) 1347 1348 when (vecCommit(i)) { 1349 vecMbCommit(i) := true.B 1350 } 1351 } 1352 1353 // For vector, when there is a store across pages with the same uop in storeMisalignBuffer, storequeue needs to mark this item as committed. 1354 // TODO FIXME Can vecMbCommit be removed? 1355 when(io.maControl.toStoreQueue.withSameUop && allvalid(rdataPtrExt(0).value)) { 1356 vecMbCommit(rdataPtrExt(0).value) := true.B 1357 } 1358 1359 // misprediction recovery / exception redirect 1360 // invalidate sq term using robIdx 1361 for (i <- 0 until StoreQueueSize) { 1362 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) && 1363 (!isVec(i) || !(uop(i).robIdx === io.brqRedirect.bits.robIdx)) 1364 when (needCancel(i)) { 1365 allocated(i) := false.B 1366 } 1367 } 1368 1369 /** 1370* update pointers 1371**/ 1372 val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) => 1373 v && x.bits.robIdx.needFlush(io.brqRedirect) 1374 } 1375 val enqCancelNum = enqCancelValid.zip(io.enq.req).map{case (v, req) => 1376 Mux(v, req.bits.numLsElem, 0.U) 1377 } 1378 val lastEnqCancel = RegEnable(enqCancelNum.reduce(_ + _), io.brqRedirect.valid) // 1 cycle after redirect 1379 1380 val lastCycleCancelCount = PopCount(RegEnable(needCancel, io.brqRedirect.valid)) // 1 cycle after redirect 1381 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 1382 val enqNumber = validVStoreFlow.reduce(_ + _) 1383 1384 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 1385 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, 0.U, lastCycleRedirect) // 2 cycle after redirect 1386 1387 when (lastlastCycleRedirect) { 1388 // we recover the pointers in 2 cycle after redirect for better timing 1389 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 1390 }.otherwise { 1391 // lastCycleRedirect.valid or nornal case 1392 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 1393 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 1394 } 1395 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 1396 1397 deqPtrExt := deqPtrExtNext 1398 rdataPtrExt := rdataPtrExtNext 1399 1400 // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U)) 1401 1402 // If redirect at T0, sqCancelCnt is at T2 1403 io.sqCancelCnt := redirectCancelCount 1404 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1405 ForceWriteUpper := Constantin.createRecord(s"ForceWriteUpper_${p(XSCoreParamsKey).HartId}", initValue = 60) 1406 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1407 ForceWriteLower := Constantin.createRecord(s"ForceWriteLower_${p(XSCoreParamsKey).HartId}", initValue = 55) 1408 1409 val valid_cnt = PopCount(allocated) 1410 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 1411 1412 // io.sqempty will be used by sbuffer 1413 // We delay it for 1 cycle for better timing 1414 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 1415 // for 1 cycle will also promise that sq is empty in that cycle 1416 io.sqEmpty := RegNext( 1417 enqPtrExt(0).value === deqPtrExt(0).value && 1418 enqPtrExt(0).flag === deqPtrExt(0).flag 1419 ) 1420 // perf counter 1421 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 1422 val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i)))) 1423 QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue) 1424 io.sqFull := !allowEnqueue 1425 XSPerfAccumulate("mmioCycle", mmioState =/= s_idle) // lq is busy dealing with uncache req 1426 XSPerfAccumulate("mmioCnt", mmioDoReq) 1427 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire) 1428 XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)) 1429 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 1430 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 1431 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 1432 1433 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 1434 val perfEvents = Seq( 1435 ("mmioCycle ", mmioState =/= s_idle), 1436 ("mmioCnt ", mmioDoReq), 1437 ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire), 1438 ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)), 1439 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 1440 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 1441 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 1442 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 1443 ) 1444 generatePerfEvent() 1445 1446 // debug info 1447 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 1448 1449 def PrintFlag(flag: Bool, name: String): Unit = { 1450 when(flag) { 1451 XSDebug(false, true.B, name) 1452 }.otherwise { 1453 XSDebug(false, true.B, " ") 1454 } 1455 } 1456 1457 for (i <- 0 until StoreQueueSize) { 1458 XSDebug(s"$i: pc %x va %x pa %x data %x ", 1459 uop(i).pc, 1460 debug_vaddr(i), 1461 debug_paddr(i), 1462 debug_data(i) 1463 ) 1464 PrintFlag(allocated(i), "a") 1465 PrintFlag(allocated(i) && addrvalid(i), "a") 1466 PrintFlag(allocated(i) && datavalid(i), "d") 1467 PrintFlag(allocated(i) && committed(i), "c") 1468 PrintFlag(allocated(i) && pending(i), "p") 1469 PrintFlag(allocated(i) && mmio(i), "m") 1470 XSDebug(false, true.B, "\n") 1471 } 1472 1473} 1474