1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import xiangshan._ 24import xiangshan.cache._ 25import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants} 26import xiangshan.cache.mmu.TlbRequestIO 27import xiangshan.mem._ 28import xiangshan.backend.roq.RoqLsqIO 29import xiangshan.backend.fu.HasExceptionNO 30import xiangshan.frontend.FtqPtr 31import xiangshan.backend.fu.fpu.FPU 32 33 34class LqPtr(implicit p: Parameters) extends CircularQueuePtr[LqPtr]( 35 p => p(XSCoreParamsKey).LoadQueueSize 36){ 37 override def cloneType = (new LqPtr).asInstanceOf[this.type] 38} 39 40object LqPtr { 41 def apply(f: Bool, v: UInt)(implicit p: Parameters): LqPtr = { 42 val ptr = Wire(new LqPtr) 43 ptr.flag := f 44 ptr.value := v 45 ptr 46 } 47} 48 49trait HasLoadHelper { this: XSModule => 50 def rdataHelper(uop: MicroOp, rdata: UInt): UInt = { 51 val fpWen = uop.ctrl.fpWen 52 LookupTree(uop.ctrl.fuOpType, List( 53 LSUOpType.lb -> SignExt(rdata(7, 0) , XLEN), 54 LSUOpType.lh -> SignExt(rdata(15, 0), XLEN), 55 /* 56 riscv-spec-20191213: 12.2 NaN Boxing of Narrower Values 57 Any operation that writes a narrower result to an f register must write 58 all 1s to the uppermost FLEN−n bits to yield a legal NaN-boxed value. 59 */ 60 LSUOpType.lw -> Mux(fpWen, FPU.box(rdata, FPU.S), SignExt(rdata(31, 0), XLEN)), 61 LSUOpType.ld -> Mux(fpWen, FPU.box(rdata, FPU.D), SignExt(rdata(63, 0), XLEN)), 62 LSUOpType.lbu -> ZeroExt(rdata(7, 0) , XLEN), 63 LSUOpType.lhu -> ZeroExt(rdata(15, 0), XLEN), 64 LSUOpType.lwu -> ZeroExt(rdata(31, 0), XLEN), 65 )) 66 } 67} 68 69class LqEnqIO(implicit p: Parameters) extends XSBundle { 70 val canAccept = Output(Bool()) 71 val sqCanAccept = Input(Bool()) 72 val needAlloc = Vec(RenameWidth, Input(Bool())) 73 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 74 val resp = Vec(RenameWidth, Output(new LqPtr)) 75} 76 77// Load Queue 78class LoadQueue(implicit p: Parameters) extends XSModule 79 with HasDCacheParameters 80 with HasCircularQueuePtrHelper 81 with HasLoadHelper 82 with HasExceptionNO 83{ 84 val io = IO(new Bundle() { 85 val enq = new LqEnqIO 86 val brqRedirect = Flipped(ValidIO(new Redirect)) 87 val flush = Input(Bool()) 88 val loadIn = Vec(LoadPipelineWidth, Flipped(Valid(new LsPipelineBundle))) 89 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 90 val loadDataForwarded = Vec(LoadPipelineWidth, Input(Bool())) 91 val needReplayFromRS = Vec(LoadPipelineWidth, Input(Bool())) 92 val ldout = Vec(2, DecoupledIO(new ExuOutput)) // writeback int load 93 val load_s1 = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 94 val roq = Flipped(new RoqLsqIO) 95 val rollback = Output(Valid(new Redirect)) // replay now starts from load instead of store 96 val dcache = Flipped(ValidIO(new Refill)) 97 val uncache = new DCacheWordIO 98 val exceptionAddr = new ExceptionAddrIO 99 val lqFull = Output(Bool()) 100 }) 101 102 println("LoadQueue: size:" + LoadQueueSize) 103 104 val uop = Reg(Vec(LoadQueueSize, new MicroOp)) 105 // val data = Reg(Vec(LoadQueueSize, new LsRoqEntry)) 106 val dataModule = Module(new LoadQueueData(LoadQueueSize, wbNumRead = LoadPipelineWidth, wbNumWrite = LoadPipelineWidth)) 107 dataModule.io := DontCare 108 val vaddrModule = Module(new SyncDataModuleTemplate(UInt(VAddrBits.W), LoadQueueSize, numRead = 1, numWrite = LoadPipelineWidth)) 109 vaddrModule.io := DontCare 110 val allocated = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // lq entry has been allocated 111 val datavalid = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // data is valid 112 val writebacked = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // inst has been writebacked to CDB 113 val miss = Reg(Vec(LoadQueueSize, Bool())) // load inst missed, waiting for miss queue to accept miss request 114 // val listening = Reg(Vec(LoadQueueSize, Bool())) // waiting for refill result 115 val pending = Reg(Vec(LoadQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 116 val refilling = WireInit(VecInit(List.fill(LoadQueueSize)(false.B))) // inst has been writebacked to CDB 117 118 val debug_mmio = Reg(Vec(LoadQueueSize, Bool())) // mmio: inst is an mmio inst 119 val debug_paddr = Reg(Vec(LoadQueueSize, UInt(PAddrBits.W))) // mmio: inst is an mmio inst 120 121 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new LqPtr)))) 122 val deqPtrExt = RegInit(0.U.asTypeOf(new LqPtr)) 123 val deqPtrExtNext = Wire(new LqPtr) 124 val allowEnqueue = RegInit(true.B) 125 126 val enqPtr = enqPtrExt(0).value 127 val deqPtr = deqPtrExt.value 128 129 val deqMask = UIntToMask(deqPtr, LoadQueueSize) 130 val enqMask = UIntToMask(enqPtr, LoadQueueSize) 131 132 val commitCount = RegNext(io.roq.lcommit) 133 134 /** 135 * Enqueue at dispatch 136 * 137 * Currently, LoadQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 138 */ 139 io.enq.canAccept := allowEnqueue 140 141 for (i <- 0 until RenameWidth) { 142 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 143 val lqIdx = enqPtrExt(offset) 144 val index = lqIdx.value 145 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.sqCanAccept && !(io.brqRedirect.valid || io.flush)) { 146 uop(index) := io.enq.req(i).bits 147 allocated(index) := true.B 148 datavalid(index) := false.B 149 writebacked(index) := false.B 150 miss(index) := false.B 151 // listening(index) := false.B 152 pending(index) := false.B 153 } 154 io.enq.resp(i) := lqIdx 155 } 156 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 157 158 /** 159 * Writeback load from load units 160 * 161 * Most load instructions writeback to regfile at the same time. 162 * However, 163 * (1) For an mmio instruction with exceptions, it writes back to ROB immediately. 164 * (2) For an mmio instruction without exceptions, it does not write back. 165 * The mmio instruction will be sent to lower level when it reaches ROB's head. 166 * After uncache response, it will write back through arbiter with loadUnit. 167 * (3) For cache misses, it is marked miss and sent to dcache later. 168 * After cache refills, it will write back through arbiter with loadUnit. 169 */ 170 for (i <- 0 until LoadPipelineWidth) { 171 dataModule.io.wb.wen(i) := false.B 172 val loadWbIndex = io.loadIn(i).bits.uop.lqIdx.value 173 when(io.loadIn(i).fire()) { 174 when(io.loadIn(i).bits.miss) { 175 XSInfo(io.loadIn(i).valid, "load miss write to lq idx %d pc 0x%x vaddr %x paddr %x data %x mask %x forwardData %x forwardMask: %x mmio %x\n", 176 io.loadIn(i).bits.uop.lqIdx.asUInt, 177 io.loadIn(i).bits.uop.cf.pc, 178 io.loadIn(i).bits.vaddr, 179 io.loadIn(i).bits.paddr, 180 io.loadIn(i).bits.data, 181 io.loadIn(i).bits.mask, 182 io.loadIn(i).bits.forwardData.asUInt, 183 io.loadIn(i).bits.forwardMask.asUInt, 184 io.loadIn(i).bits.mmio 185 ) 186 }.otherwise { 187 XSInfo(io.loadIn(i).valid, "load hit write to cbd lqidx %d pc 0x%x vaddr %x paddr %x data %x mask %x forwardData %x forwardMask: %x mmio %x\n", 188 io.loadIn(i).bits.uop.lqIdx.asUInt, 189 io.loadIn(i).bits.uop.cf.pc, 190 io.loadIn(i).bits.vaddr, 191 io.loadIn(i).bits.paddr, 192 io.loadIn(i).bits.data, 193 io.loadIn(i).bits.mask, 194 io.loadIn(i).bits.forwardData.asUInt, 195 io.loadIn(i).bits.forwardMask.asUInt, 196 io.loadIn(i).bits.mmio 197 )} 198 datavalid(loadWbIndex) := (!io.loadIn(i).bits.miss || io.loadDataForwarded(i)) && 199 !io.loadIn(i).bits.mmio && // mmio data is not valid until we finished uncache access 200 !io.needReplayFromRS(i) // do not writeback if that inst will be resend from rs 201 writebacked(loadWbIndex) := !io.loadIn(i).bits.miss && !io.loadIn(i).bits.mmio 202 203 val loadWbData = Wire(new LQDataEntry) 204 loadWbData.paddr := io.loadIn(i).bits.paddr 205 loadWbData.mask := io.loadIn(i).bits.mask 206 loadWbData.data := io.loadIn(i).bits.forwardData.asUInt // fwd data 207 loadWbData.fwdMask := io.loadIn(i).bits.forwardMask 208 dataModule.io.wbWrite(i, loadWbIndex, loadWbData) 209 dataModule.io.wb.wen(i) := true.B 210 211 212 debug_mmio(loadWbIndex) := io.loadIn(i).bits.mmio 213 debug_paddr(loadWbIndex) := io.loadIn(i).bits.paddr 214 215 val dcacheMissed = io.loadIn(i).bits.miss && !io.loadIn(i).bits.mmio 216 miss(loadWbIndex) := dcacheMissed && !io.loadDataForwarded(i) && !io.needReplayFromRS(i) 217 pending(loadWbIndex) := io.loadIn(i).bits.mmio 218 uop(loadWbIndex).debugInfo.issueTime := io.loadIn(i).bits.uop.debugInfo.issueTime 219 } 220 // vaddrModule write is delayed, as vaddrModule will not be read right after write 221 vaddrModule.io.waddr(i) := RegNext(loadWbIndex) 222 vaddrModule.io.wdata(i) := RegNext(io.loadIn(i).bits.vaddr) 223 vaddrModule.io.wen(i) := RegNext(io.loadIn(i).fire()) 224 } 225 226 when(io.dcache.valid) { 227 XSDebug("miss resp: paddr:0x%x data %x\n", io.dcache.bits.addr, io.dcache.bits.data) 228 } 229 230 // Refill 64 bit in a cycle 231 // Refill data comes back from io.dcache.resp 232 dataModule.io.refill.valid := io.dcache.valid 233 dataModule.io.refill.paddr := io.dcache.bits.addr 234 dataModule.io.refill.data := io.dcache.bits.data 235 236 (0 until LoadQueueSize).map(i => { 237 dataModule.io.refill.refillMask(i) := allocated(i) && miss(i) 238 when(dataModule.io.refill.valid && dataModule.io.refill.refillMask(i) && dataModule.io.refill.matchMask(i)) { 239 datavalid(i) := true.B 240 miss(i) := false.B 241 refilling(i) := true.B 242 } 243 }) 244 245 // Writeback up to 2 missed load insts to CDB 246 // 247 // Pick 2 missed load (data refilled), write them back to cdb 248 // 2 refilled load will be selected from even/odd entry, separately 249 250 // Stage 0 251 // Generate writeback indexes 252 253 def getEvenBits(input: UInt): UInt = { 254 VecInit((0 until LoadQueueSize/2).map(i => {input(2*i)})).asUInt 255 } 256 def getOddBits(input: UInt): UInt = { 257 VecInit((0 until LoadQueueSize/2).map(i => {input(2*i+1)})).asUInt 258 } 259 260 val loadWbSel = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W))) // index selected last cycle 261 val loadWbSelV = Wire(Vec(LoadPipelineWidth, Bool())) // index selected in last cycle is valid 262 263 val loadWbSelVec = VecInit((0 until LoadQueueSize).map(i => { 264 allocated(i) && !writebacked(i) && (datavalid(i) || refilling(i)) 265 })).asUInt() // use uint instead vec to reduce verilog lines 266 val evenDeqMask = getEvenBits(deqMask) 267 val oddDeqMask = getOddBits(deqMask) 268 // generate lastCycleSelect mask 269 val evenSelectMask = Mux(io.ldout(0).fire(), getEvenBits(UIntToOH(loadWbSel(0))), 0.U) 270 val oddSelectMask = Mux(io.ldout(1).fire(), getOddBits(UIntToOH(loadWbSel(1))), 0.U) 271 // generate real select vec 272 val loadEvenSelVec = getEvenBits(loadWbSelVec) & ~evenSelectMask 273 val loadOddSelVec = getOddBits(loadWbSelVec) & ~oddSelectMask 274 275 def toVec(a: UInt): Vec[Bool] = { 276 VecInit(a.asBools) 277 } 278 279 val loadWbSelGen = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W))) 280 val loadWbSelVGen = Wire(Vec(LoadPipelineWidth, Bool())) 281 loadWbSelGen(0) := Cat(getFirstOne(toVec(loadEvenSelVec), evenDeqMask), 0.U(1.W)) 282 loadWbSelVGen(0):= loadEvenSelVec.asUInt.orR 283 loadWbSelGen(1) := Cat(getFirstOne(toVec(loadOddSelVec), oddDeqMask), 1.U(1.W)) 284 loadWbSelVGen(1) := loadOddSelVec.asUInt.orR 285 286 (0 until LoadPipelineWidth).map(i => { 287 loadWbSel(i) := RegNext(loadWbSelGen(i)) 288 loadWbSelV(i) := RegNext(loadWbSelVGen(i), init = false.B) 289 when(io.ldout(i).fire()){ 290 // Mark them as writebacked, so they will not be selected in the next cycle 291 writebacked(loadWbSel(i)) := true.B 292 } 293 }) 294 295 // Stage 1 296 // Use indexes generated in cycle 0 to read data 297 // writeback data to cdb 298 (0 until LoadPipelineWidth).map(i => { 299 // data select 300 dataModule.io.wb.raddr(i) := loadWbSelGen(i) 301 val rdata = dataModule.io.wb.rdata(i).data 302 val seluop = uop(loadWbSel(i)) 303 val func = seluop.ctrl.fuOpType 304 val raddr = dataModule.io.wb.rdata(i).paddr 305 val rdataSel = LookupTree(raddr(2, 0), List( 306 "b000".U -> rdata(63, 0), 307 "b001".U -> rdata(63, 8), 308 "b010".U -> rdata(63, 16), 309 "b011".U -> rdata(63, 24), 310 "b100".U -> rdata(63, 32), 311 "b101".U -> rdata(63, 40), 312 "b110".U -> rdata(63, 48), 313 "b111".U -> rdata(63, 56) 314 )) 315 val rdataPartialLoad = rdataHelper(seluop, rdataSel) 316 317 // writeback missed int/fp load 318 // 319 // Int load writeback will finish (if not blocked) in one cycle 320 io.ldout(i).bits.uop := seluop 321 io.ldout(i).bits.uop.lqIdx := loadWbSel(i).asTypeOf(new LqPtr) 322 io.ldout(i).bits.data := rdataPartialLoad 323 io.ldout(i).bits.redirectValid := false.B 324 io.ldout(i).bits.redirect := DontCare 325 io.ldout(i).bits.debug.isMMIO := debug_mmio(loadWbSel(i)) 326 io.ldout(i).bits.debug.isPerfCnt := false.B 327 io.ldout(i).bits.debug.paddr := debug_paddr(loadWbSel(i)) 328 io.ldout(i).bits.fflags := DontCare 329 io.ldout(i).valid := loadWbSelV(i) 330 331 when(io.ldout(i).fire()) { 332 XSInfo("int load miss write to cbd roqidx %d lqidx %d pc 0x%x mmio %x\n", 333 io.ldout(i).bits.uop.roqIdx.asUInt, 334 io.ldout(i).bits.uop.lqIdx.asUInt, 335 io.ldout(i).bits.uop.cf.pc, 336 debug_mmio(loadWbSel(i)) 337 ) 338 } 339 340 }) 341 342 /** 343 * Load commits 344 * 345 * When load commited, mark it as !allocated and move deqPtrExt forward. 346 */ 347 (0 until CommitWidth).map(i => { 348 when(commitCount > i.U){ 349 allocated((deqPtrExt+i.U).value) := false.B 350 } 351 }) 352 353 def getFirstOne(mask: Vec[Bool], startMask: UInt) = { 354 val length = mask.length 355 val highBits = (0 until length).map(i => mask(i) & ~startMask(i)) 356 val highBitsUint = Cat(highBits.reverse) 357 PriorityEncoder(Mux(highBitsUint.orR(), highBitsUint, mask.asUInt)) 358 } 359 360 def getOldestInTwo(valid: Seq[Bool], uop: Seq[MicroOp]) = { 361 assert(valid.length == uop.length) 362 assert(valid.length == 2) 363 Mux(valid(0) && valid(1), 364 Mux(isAfter(uop(0).roqIdx, uop(1).roqIdx), uop(1), uop(0)), 365 Mux(valid(0) && !valid(1), uop(0), uop(1))) 366 } 367 368 def getAfterMask(valid: Seq[Bool], uop: Seq[MicroOp]) = { 369 assert(valid.length == uop.length) 370 val length = valid.length 371 (0 until length).map(i => { 372 (0 until length).map(j => { 373 Mux(valid(i) && valid(j), 374 isAfter(uop(i).roqIdx, uop(j).roqIdx), 375 Mux(!valid(i), true.B, false.B)) 376 }) 377 }) 378 } 379 380 /** 381 * Memory violation detection 382 * 383 * When store writes back, it searches LoadQueue for younger load instructions 384 * with the same load physical address. They loaded wrong data and need re-execution. 385 * 386 * Cycle 0: Store Writeback 387 * Generate match vector for store address with rangeMask(stPtr, enqPtr). 388 * Besides, load instructions in LoadUnit_S1 and S2 are also checked. 389 * Cycle 1: Redirect Generation 390 * There're three possible types of violations, up to 6 possible redirect requests. 391 * Choose the oldest load (part 1). (4 + 2) -> (1 + 2) 392 * Cycle 2: Redirect Fire 393 * Choose the oldest load (part 2). (3 -> 1) 394 * Prepare redirect request according to the detected violation. 395 * Fire redirect request (if valid) 396 */ 397 398 // stage 0: lq l1 wb l1 wb lq 399 // | | | | | | (paddr match) 400 // stage 1: lq l1 wb l1 wb lq 401 // | | | | | | 402 // | |------------| | 403 // | | | 404 // stage 2: lq l1wb lq 405 // | | | 406 // -------------------- 407 // | 408 // rollback req 409 io.load_s1 := DontCare 410 def detectRollback(i: Int) = { 411 val startIndex = io.storeIn(i).bits.uop.lqIdx.value 412 val lqIdxMask = UIntToMask(startIndex, LoadQueueSize) 413 val xorMask = lqIdxMask ^ enqMask 414 val sameFlag = io.storeIn(i).bits.uop.lqIdx.flag === enqPtrExt(0).flag 415 val toEnqPtrMask = Mux(sameFlag, xorMask, ~xorMask) 416 417 // check if load already in lq needs to be rolledback 418 dataModule.io.violation(i).paddr := io.storeIn(i).bits.paddr 419 dataModule.io.violation(i).mask := io.storeIn(i).bits.mask 420 val addrMaskMatch = RegNext(dataModule.io.violation(i).violationMask) 421 val entryNeedCheck = RegNext(VecInit((0 until LoadQueueSize).map(j => { 422 allocated(j) && toEnqPtrMask(j) && (datavalid(j) || miss(j)) 423 }))) 424 val lqViolationVec = VecInit((0 until LoadQueueSize).map(j => { 425 addrMaskMatch(j) && entryNeedCheck(j) 426 })) 427 val lqViolation = lqViolationVec.asUInt().orR() 428 val lqViolationIndex = getFirstOne(lqViolationVec, RegNext(lqIdxMask)) 429 val lqViolationUop = uop(lqViolationIndex) 430 // lqViolationUop.lqIdx.flag := deqMask(lqViolationIndex) ^ deqPtrExt.flag 431 // lqViolationUop.lqIdx.value := lqViolationIndex 432 XSDebug(lqViolation, p"${Binary(Cat(lqViolationVec))}, $startIndex, $lqViolationIndex\n") 433 434 // when l/s writeback to roq together, check if rollback is needed 435 val wbViolationVec = RegNext(VecInit((0 until LoadPipelineWidth).map(j => { 436 io.loadIn(j).valid && 437 isAfter(io.loadIn(j).bits.uop.roqIdx, io.storeIn(i).bits.uop.roqIdx) && 438 io.storeIn(i).bits.paddr(PAddrBits - 1, 3) === io.loadIn(j).bits.paddr(PAddrBits - 1, 3) && 439 (io.storeIn(i).bits.mask & io.loadIn(j).bits.mask).orR 440 }))) 441 val wbViolation = wbViolationVec.asUInt().orR() 442 val wbViolationUop = getOldestInTwo(wbViolationVec, RegNext(VecInit(io.loadIn.map(_.bits.uop)))) 443 XSDebug(wbViolation, p"${Binary(Cat(wbViolationVec))}, $wbViolationUop\n") 444 445 // check if rollback is needed for load in l1 446 val l1ViolationVec = RegNext(VecInit((0 until LoadPipelineWidth).map(j => { 447 io.load_s1(j).valid && // L1 valid 448 isAfter(io.load_s1(j).uop.roqIdx, io.storeIn(i).bits.uop.roqIdx) && 449 io.storeIn(i).bits.paddr(PAddrBits - 1, 3) === io.load_s1(j).paddr(PAddrBits - 1, 3) && 450 (io.storeIn(i).bits.mask & io.load_s1(j).mask).orR 451 }))) 452 val l1Violation = l1ViolationVec.asUInt().orR() 453 val l1ViolationUop = getOldestInTwo(l1ViolationVec, RegNext(VecInit(io.load_s1.map(_.uop)))) 454 XSDebug(l1Violation, p"${Binary(Cat(l1ViolationVec))}, $l1ViolationUop\n") 455 456 XSDebug( 457 l1Violation, 458 "need rollback (l1 load) pc %x roqidx %d target %x\n", 459 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.roqIdx.asUInt, l1ViolationUop.roqIdx.asUInt 460 ) 461 XSDebug( 462 lqViolation, 463 "need rollback (ld wb before store) pc %x roqidx %d target %x\n", 464 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.roqIdx.asUInt, lqViolationUop.roqIdx.asUInt 465 ) 466 XSDebug( 467 wbViolation, 468 "need rollback (ld/st wb together) pc %x roqidx %d target %x\n", 469 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.roqIdx.asUInt, wbViolationUop.roqIdx.asUInt 470 ) 471 472 ((lqViolation, lqViolationUop), (wbViolation, wbViolationUop), (l1Violation, l1ViolationUop)) 473 } 474 475 def rollbackSel(a: Valid[MicroOpRbExt], b: Valid[MicroOpRbExt]): ValidIO[MicroOpRbExt] = { 476 Mux( 477 a.valid, 478 Mux( 479 b.valid, 480 Mux(isAfter(a.bits.uop.roqIdx, b.bits.uop.roqIdx), b, a), // a,b both valid, sel oldest 481 a // sel a 482 ), 483 b // sel b 484 ) 485 } 486 val lastCycleRedirect = RegNext(io.brqRedirect) 487 val lastlastCycleRedirect = RegNext(lastCycleRedirect) 488 val lastCycleFlush = RegNext(io.flush) 489 val lastlastCycleFlush = RegNext(lastCycleFlush) 490 491 // S2: select rollback (part1) and generate rollback request 492 // rollback check 493 // Wb/L1 rollback seq check is done in s2 494 val rollbackWb = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 495 val rollbackL1 = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 496 val rollbackL1Wb = Wire(Vec(StorePipelineWidth*2, Valid(new MicroOpRbExt))) 497 // Lq rollback seq check is done in s3 (next stage), as getting rollbackLq MicroOp is slow 498 val rollbackLq = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 499 // store ftq index for store set update 500 val stFtqIdxS2 = Wire(Vec(StorePipelineWidth, new FtqPtr)) 501 val stFtqOffsetS2 = Wire(Vec(StorePipelineWidth, UInt(log2Up(PredictWidth).W))) 502 for (i <- 0 until StorePipelineWidth) { 503 val detectedRollback = detectRollback(i) 504 rollbackLq(i).valid := detectedRollback._1._1 && RegNext(io.storeIn(i).valid) 505 rollbackLq(i).bits.uop := detectedRollback._1._2 506 rollbackLq(i).bits.flag := i.U 507 rollbackWb(i).valid := detectedRollback._2._1 && RegNext(io.storeIn(i).valid) 508 rollbackWb(i).bits.uop := detectedRollback._2._2 509 rollbackWb(i).bits.flag := i.U 510 rollbackL1(i).valid := detectedRollback._3._1 && RegNext(io.storeIn(i).valid) 511 rollbackL1(i).bits.uop := detectedRollback._3._2 512 rollbackL1(i).bits.flag := i.U 513 rollbackL1Wb(2*i) := rollbackL1(i) 514 rollbackL1Wb(2*i+1) := rollbackWb(i) 515 stFtqIdxS2(i) := RegNext(io.storeIn(i).bits.uop.cf.ftqPtr) 516 stFtqOffsetS2(i) := RegNext(io.storeIn(i).bits.uop.cf.ftqOffset) 517 } 518 519 val rollbackL1WbSelected = ParallelOperation(rollbackL1Wb, rollbackSel) 520 val rollbackL1WbVReg = RegNext(rollbackL1WbSelected.valid) 521 val rollbackL1WbReg = RegEnable(rollbackL1WbSelected.bits, rollbackL1WbSelected.valid) 522 val rollbackLq0VReg = RegNext(rollbackLq(0).valid) 523 val rollbackLq0Reg = RegEnable(rollbackLq(0).bits, rollbackLq(0).valid) 524 val rollbackLq1VReg = RegNext(rollbackLq(1).valid) 525 val rollbackLq1Reg = RegEnable(rollbackLq(1).bits, rollbackLq(1).valid) 526 527 // S3: select rollback (part2), generate rollback request, then fire rollback request 528 // Note that we use roqIdx - 1.U to flush the load instruction itself. 529 // Thus, here if last cycle's roqIdx equals to this cycle's roqIdx, it still triggers the redirect. 530 531 // FIXME: this is ugly 532 val rollbackValidVec = Seq(rollbackL1WbVReg, rollbackLq0VReg, rollbackLq1VReg) 533 val rollbackUopExtVec = Seq(rollbackL1WbReg, rollbackLq0Reg, rollbackLq1Reg) 534 535 // select uop in parallel 536 val mask = getAfterMask(rollbackValidVec, rollbackUopExtVec.map(i => i.uop)) 537 val oneAfterZero = mask(1)(0) 538 val rollbackUopExt = Mux(oneAfterZero && mask(2)(0), 539 rollbackUopExtVec(0), 540 Mux(!oneAfterZero && mask(2)(1), rollbackUopExtVec(1), rollbackUopExtVec(2))) 541 val stFtqIdxS3 = RegNext(stFtqIdxS2) 542 val stFtqOffsetS3 = RegNext(stFtqOffsetS2) 543 val rollbackUop = rollbackUopExt.uop 544 val rollbackStFtqIdx = stFtqIdxS3(rollbackUopExt.flag) 545 val rollbackStFtqOffset = stFtqOffsetS3(rollbackUopExt.flag) 546 547 // check if rollback request is still valid in parallel 548 val rollbackValidVecChecked = Wire(Vec(3, Bool())) 549 for(((v, uop), idx) <- rollbackValidVec.zip(rollbackUopExtVec.map(i => i.uop)).zipWithIndex) { 550 rollbackValidVecChecked(idx) := v && 551 (!lastCycleRedirect.valid || isBefore(uop.roqIdx, lastCycleRedirect.bits.roqIdx)) && 552 (!lastlastCycleRedirect.valid || isBefore(uop.roqIdx, lastlastCycleRedirect.bits.roqIdx)) 553 } 554 555 io.rollback.bits.roqIdx := rollbackUop.roqIdx 556 io.rollback.bits.ftqIdx := rollbackUop.cf.ftqPtr 557 io.rollback.bits.stFtqIdx := rollbackStFtqIdx 558 io.rollback.bits.ftqOffset := rollbackUop.cf.ftqOffset 559 io.rollback.bits.stFtqOffset := rollbackStFtqOffset 560 io.rollback.bits.level := RedirectLevel.flush 561 io.rollback.bits.interrupt := DontCare 562 io.rollback.bits.cfiUpdate := DontCare 563 io.rollback.bits.cfiUpdate.target := rollbackUop.cf.pc 564 // io.rollback.bits.pc := DontCare 565 566 io.rollback.valid := rollbackValidVecChecked.asUInt.orR && !lastCycleFlush && !lastlastCycleFlush 567 568 when(io.rollback.valid) { 569 // XSDebug("Mem rollback: pc %x roqidx %d\n", io.rollback.bits.cfi, io.rollback.bits.roqIdx.asUInt) 570 } 571 572 /** 573 * Memory mapped IO / other uncached operations 574 * 575 * States: 576 * (1) writeback from store units: mark as pending 577 * (2) when they reach ROB's head, they can be sent to uncache channel 578 * (3) response from uncache channel: mark as datavalid 579 * (4) writeback to ROB (and other units): mark as writebacked 580 * (5) ROB commits the instruction: same as normal instructions 581 */ 582 //(2) when they reach ROB's head, they can be sent to uncache channel 583 val lqTailMmioPending = WireInit(pending(deqPtr)) 584 val lqTailAllocated = WireInit(allocated(deqPtr)) 585 val s_idle :: s_req :: s_resp :: s_wait :: Nil = Enum(4) 586 val uncacheState = RegInit(s_idle) 587 switch(uncacheState) { 588 is(s_idle) { 589 when(io.roq.pendingld && lqTailMmioPending && lqTailAllocated) { 590 uncacheState := s_req 591 } 592 } 593 is(s_req) { 594 when(io.uncache.req.fire()) { 595 uncacheState := s_resp 596 } 597 } 598 is(s_resp) { 599 when(io.uncache.resp.fire()) { 600 uncacheState := s_wait 601 } 602 } 603 is(s_wait) { 604 when(io.roq.commit) { 605 uncacheState := s_idle // ready for next mmio 606 } 607 } 608 } 609 io.uncache.req.valid := uncacheState === s_req 610 611 dataModule.io.uncache.raddr := deqPtrExtNext.value 612 613 io.uncache.req.bits.cmd := MemoryOpConstants.M_XRD 614 io.uncache.req.bits.addr := dataModule.io.uncache.rdata.paddr 615 io.uncache.req.bits.data := dataModule.io.uncache.rdata.data 616 io.uncache.req.bits.mask := dataModule.io.uncache.rdata.mask 617 618 io.uncache.req.bits.id := DontCare 619 620 io.uncache.resp.ready := true.B 621 622 when (io.uncache.req.fire()) { 623 pending(deqPtr) := false.B 624 625 XSDebug("uncache req: pc %x addr %x data %x op %x mask %x\n", 626 uop(deqPtr).cf.pc, 627 io.uncache.req.bits.addr, 628 io.uncache.req.bits.data, 629 io.uncache.req.bits.cmd, 630 io.uncache.req.bits.mask 631 ) 632 } 633 634 // (3) response from uncache channel: mark as datavalid 635 dataModule.io.uncache.wen := false.B 636 when(io.uncache.resp.fire()){ 637 datavalid(deqPtr) := true.B 638 dataModule.io.uncacheWrite(deqPtr, io.uncache.resp.bits.data(XLEN-1, 0)) 639 dataModule.io.uncache.wen := true.B 640 641 XSDebug("uncache resp: data %x\n", io.dcache.bits.data) 642 } 643 644 // Read vaddr for mem exception 645 // no inst will be commited 1 cycle before tval update 646 vaddrModule.io.raddr(0) := (deqPtrExt + commitCount).value 647 io.exceptionAddr.vaddr := vaddrModule.io.rdata(0) 648 649 // misprediction recovery / exception redirect 650 // invalidate lq term using robIdx 651 val needCancel = Wire(Vec(LoadQueueSize, Bool())) 652 for (i <- 0 until LoadQueueSize) { 653 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect, io.flush) && allocated(i) 654 when (needCancel(i)) { 655 allocated(i) := false.B 656 } 657 } 658 659 /** 660 * update pointers 661 */ 662 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 663 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 664 val enqNumber = Mux(io.enq.canAccept && io.enq.sqCanAccept && !(io.brqRedirect.valid || io.flush), PopCount(io.enq.req.map(_.valid)), 0.U) 665 when (lastCycleRedirect.valid || lastCycleFlush) { 666 // we recover the pointers in the next cycle after redirect 667 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 668 }.otherwise { 669 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 670 } 671 672 deqPtrExtNext := deqPtrExt + commitCount 673 deqPtrExt := deqPtrExtNext 674 675 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt) 676 677 allowEnqueue := validCount + enqNumber <= (LoadQueueSize - RenameWidth).U 678 679 /** 680 * misc 681 */ 682 io.roq.storeDataRoqWb := DontCare // will be overwriten by store queue's result 683 684 // perf counter 685 QueuePerf(LoadQueueSize, validCount, !allowEnqueue) 686 io.lqFull := !allowEnqueue 687 XSPerfAccumulate("rollback", io.rollback.valid) // rollback redirect generated 688 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 689 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 690 XSPerfAccumulate("refill", io.dcache.valid) 691 XSPerfAccumulate("writeback_success", PopCount(VecInit(io.ldout.map(i => i.fire())))) 692 XSPerfAccumulate("writeback_blocked", PopCount(VecInit(io.ldout.map(i => i.valid && !i.ready)))) 693 XSPerfAccumulate("utilization_miss", PopCount((0 until LoadQueueSize).map(i => allocated(i) && miss(i)))) 694 695 // debug info 696 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt.flag, deqPtr) 697 698 def PrintFlag(flag: Bool, name: String): Unit = { 699 when(flag) { 700 XSDebug(false, true.B, name) 701 }.otherwise { 702 XSDebug(false, true.B, " ") 703 } 704 } 705 706 for (i <- 0 until LoadQueueSize) { 707 if (i % 4 == 0) XSDebug("") 708 XSDebug(false, true.B, "%x [%x] ", uop(i).cf.pc, debug_paddr(i)) 709 PrintFlag(allocated(i), "a") 710 PrintFlag(allocated(i) && datavalid(i), "v") 711 PrintFlag(allocated(i) && writebacked(i), "w") 712 PrintFlag(allocated(i) && miss(i), "m") 713 // PrintFlag(allocated(i) && listening(i), "l") 714 PrintFlag(allocated(i) && pending(i), "p") 715 XSDebug(false, true.B, " ") 716 if (i % 4 == 3 || i == LoadQueueSize - 1) XSDebug(false, true.B, "\n") 717 } 718 719} 720