1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import xiangshan._ 24import xiangshan.cache._ 25import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants} 26import xiangshan.cache.mmu.TlbRequestIO 27import xiangshan.mem._ 28import xiangshan.backend.rob.RobLsqIO 29import xiangshan.backend.fu.HasExceptionNO 30import xiangshan.frontend.FtqPtr 31import xiangshan.backend.fu.fpu.FPU 32 33 34class LqPtr(implicit p: Parameters) extends CircularQueuePtr[LqPtr]( 35 p => p(XSCoreParamsKey).LoadQueueSize 36){ 37 override def cloneType = (new LqPtr).asInstanceOf[this.type] 38} 39 40object LqPtr { 41 def apply(f: Bool, v: UInt)(implicit p: Parameters): LqPtr = { 42 val ptr = Wire(new LqPtr) 43 ptr.flag := f 44 ptr.value := v 45 ptr 46 } 47} 48 49trait HasLoadHelper { this: XSModule => 50 def rdataHelper(uop: MicroOp, rdata: UInt): UInt = { 51 val fpWen = uop.ctrl.fpWen 52 LookupTree(uop.ctrl.fuOpType, List( 53 LSUOpType.lb -> SignExt(rdata(7, 0) , XLEN), 54 LSUOpType.lh -> SignExt(rdata(15, 0), XLEN), 55 /* 56 riscv-spec-20191213: 12.2 NaN Boxing of Narrower Values 57 Any operation that writes a narrower result to an f register must write 58 all 1s to the uppermost FLEN−n bits to yield a legal NaN-boxed value. 59 */ 60 LSUOpType.lw -> Mux(fpWen, FPU.box(rdata, FPU.S), SignExt(rdata(31, 0), XLEN)), 61 LSUOpType.ld -> Mux(fpWen, FPU.box(rdata, FPU.D), SignExt(rdata(63, 0), XLEN)), 62 LSUOpType.lbu -> ZeroExt(rdata(7, 0) , XLEN), 63 LSUOpType.lhu -> ZeroExt(rdata(15, 0), XLEN), 64 LSUOpType.lwu -> ZeroExt(rdata(31, 0), XLEN), 65 )) 66 } 67} 68 69class LqEnqIO(implicit p: Parameters) extends XSBundle { 70 val canAccept = Output(Bool()) 71 val sqCanAccept = Input(Bool()) 72 val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool())) 73 val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp))) 74 val resp = Vec(exuParameters.LsExuCnt, Output(new LqPtr)) 75} 76 77// Load Queue 78class LoadQueue(implicit p: Parameters) extends XSModule 79 with HasDCacheParameters 80 with HasCircularQueuePtrHelper 81 with HasLoadHelper 82 with HasExceptionNO 83{ 84 val io = IO(new Bundle() { 85 val enq = new LqEnqIO 86 val brqRedirect = Flipped(ValidIO(new Redirect)) 87 val loadIn = Vec(LoadPipelineWidth, Flipped(Valid(new LsPipelineBundle))) 88 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 89 val loadDataForwarded = Vec(LoadPipelineWidth, Input(Bool())) 90 val needReplayFromRS = Vec(LoadPipelineWidth, Input(Bool())) 91 val ldout = Vec(2, DecoupledIO(new ExuOutput)) // writeback int load 92 val load_s1 = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) // TODO: to be renamed 93 val loadViolationQuery = Vec(LoadPipelineWidth, Flipped(new LoadViolationQueryIO)) 94 val rob = Flipped(new RobLsqIO) 95 val rollback = Output(Valid(new Redirect)) // replay now starts from load instead of store 96 val dcache = Flipped(ValidIO(new Refill)) // TODO: to be renamed 97 val release = Flipped(ValidIO(new Release)) 98 val uncache = new DCacheWordIO 99 val exceptionAddr = new ExceptionAddrIO 100 val lqFull = Output(Bool()) 101 }) 102 103 println("LoadQueue: size:" + LoadQueueSize) 104 105 val uop = Reg(Vec(LoadQueueSize, new MicroOp)) 106 // val data = Reg(Vec(LoadQueueSize, new LsRobEntry)) 107 val dataModule = Module(new LoadQueueDataWrapper(LoadQueueSize, wbNumRead = LoadPipelineWidth, wbNumWrite = LoadPipelineWidth)) 108 dataModule.io := DontCare 109 val vaddrModule = Module(new SyncDataModuleTemplate(UInt(VAddrBits.W), LoadQueueSize, numRead = 3, numWrite = LoadPipelineWidth)) 110 vaddrModule.io := DontCare 111 val allocated = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // lq entry has been allocated 112 val datavalid = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // data is valid 113 val writebacked = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // inst has been writebacked to CDB 114 val released = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // load data has been released by dcache 115 val miss = Reg(Vec(LoadQueueSize, Bool())) // load inst missed, waiting for miss queue to accept miss request 116 // val listening = Reg(Vec(LoadQueueSize, Bool())) // waiting for refill result 117 val pending = Reg(Vec(LoadQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 118 val refilling = WireInit(VecInit(List.fill(LoadQueueSize)(false.B))) // inst has been writebacked to CDB 119 120 val debug_mmio = Reg(Vec(LoadQueueSize, Bool())) // mmio: inst is an mmio inst 121 val debug_paddr = Reg(Vec(LoadQueueSize, UInt(PAddrBits.W))) // mmio: inst is an mmio inst 122 123 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new LqPtr)))) 124 val deqPtrExt = RegInit(0.U.asTypeOf(new LqPtr)) 125 val deqPtrExtNext = Wire(new LqPtr) 126 val allowEnqueue = RegInit(true.B) 127 128 val enqPtr = enqPtrExt(0).value 129 val deqPtr = deqPtrExt.value 130 131 val deqMask = UIntToMask(deqPtr, LoadQueueSize) 132 val enqMask = UIntToMask(enqPtr, LoadQueueSize) 133 134 val commitCount = RegNext(io.rob.lcommit) 135 136 /** 137 * Enqueue at dispatch 138 * 139 * Currently, LoadQueue only allows enqueue when #emptyEntries > EnqWidth 140 */ 141 io.enq.canAccept := allowEnqueue 142 143 for (i <- 0 until io.enq.req.length) { 144 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 145 val lqIdx = enqPtrExt(offset) 146 val index = lqIdx.value 147 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.sqCanAccept && !io.brqRedirect.valid) { 148 uop(index) := io.enq.req(i).bits 149 allocated(index) := true.B 150 datavalid(index) := false.B 151 writebacked(index) := false.B 152 released(index) := false.B 153 miss(index) := false.B 154 // listening(index) := false.B 155 pending(index) := false.B 156 } 157 io.enq.resp(i) := lqIdx 158 } 159 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 160 161 /** 162 * Writeback load from load units 163 * 164 * Most load instructions writeback to regfile at the same time. 165 * However, 166 * (1) For an mmio instruction with exceptions, it writes back to ROB immediately. 167 * (2) For an mmio instruction without exceptions, it does not write back. 168 * The mmio instruction will be sent to lower level when it reaches ROB's head. 169 * After uncache response, it will write back through arbiter with loadUnit. 170 * (3) For cache misses, it is marked miss and sent to dcache later. 171 * After cache refills, it will write back through arbiter with loadUnit. 172 */ 173 for (i <- 0 until LoadPipelineWidth) { 174 dataModule.io.wb.wen(i) := false.B 175 val loadWbIndex = io.loadIn(i).bits.uop.lqIdx.value 176 when(io.loadIn(i).fire()) { 177 when(io.loadIn(i).bits.miss) { 178 XSInfo(io.loadIn(i).valid, "load miss write to lq idx %d pc 0x%x vaddr %x paddr %x data %x mask %x forwardData %x forwardMask: %x mmio %x\n", 179 io.loadIn(i).bits.uop.lqIdx.asUInt, 180 io.loadIn(i).bits.uop.cf.pc, 181 io.loadIn(i).bits.vaddr, 182 io.loadIn(i).bits.paddr, 183 io.loadIn(i).bits.data, 184 io.loadIn(i).bits.mask, 185 io.loadIn(i).bits.forwardData.asUInt, 186 io.loadIn(i).bits.forwardMask.asUInt, 187 io.loadIn(i).bits.mmio 188 ) 189 }.otherwise { 190 XSInfo(io.loadIn(i).valid, "load hit write to cbd lqidx %d pc 0x%x vaddr %x paddr %x data %x mask %x forwardData %x forwardMask: %x mmio %x\n", 191 io.loadIn(i).bits.uop.lqIdx.asUInt, 192 io.loadIn(i).bits.uop.cf.pc, 193 io.loadIn(i).bits.vaddr, 194 io.loadIn(i).bits.paddr, 195 io.loadIn(i).bits.data, 196 io.loadIn(i).bits.mask, 197 io.loadIn(i).bits.forwardData.asUInt, 198 io.loadIn(i).bits.forwardMask.asUInt, 199 io.loadIn(i).bits.mmio 200 )} 201 datavalid(loadWbIndex) := (!io.loadIn(i).bits.miss || io.loadDataForwarded(i)) && 202 !io.loadIn(i).bits.mmio && // mmio data is not valid until we finished uncache access 203 !io.needReplayFromRS(i) // do not writeback if that inst will be resend from rs 204 writebacked(loadWbIndex) := !io.loadIn(i).bits.miss && !io.loadIn(i).bits.mmio 205 206 val loadWbData = Wire(new LQDataEntry) 207 loadWbData.paddr := io.loadIn(i).bits.paddr 208 loadWbData.mask := io.loadIn(i).bits.mask 209 loadWbData.data := io.loadIn(i).bits.forwardData.asUInt // fwd data 210 loadWbData.fwdMask := io.loadIn(i).bits.forwardMask 211 dataModule.io.wbWrite(i, loadWbIndex, loadWbData) 212 dataModule.io.wb.wen(i) := true.B 213 214 215 debug_mmio(loadWbIndex) := io.loadIn(i).bits.mmio 216 debug_paddr(loadWbIndex) := io.loadIn(i).bits.paddr 217 218 val dcacheMissed = io.loadIn(i).bits.miss && !io.loadIn(i).bits.mmio 219 miss(loadWbIndex) := dcacheMissed && !io.loadDataForwarded(i) && !io.needReplayFromRS(i) 220 pending(loadWbIndex) := io.loadIn(i).bits.mmio 221 uop(loadWbIndex).debugInfo := io.loadIn(i).bits.uop.debugInfo 222 // update replayInst (replay from fetch) bit, 223 // for replayInst may be set to true in load pipeline 224 uop(loadWbIndex).ctrl.replayInst := io.loadIn(i).bits.uop.ctrl.replayInst 225 } 226 // vaddrModule write is delayed, as vaddrModule will not be read right after write 227 vaddrModule.io.waddr(i) := RegNext(loadWbIndex) 228 vaddrModule.io.wdata(i) := RegNext(io.loadIn(i).bits.vaddr) 229 vaddrModule.io.wen(i) := RegNext(io.loadIn(i).fire()) 230 } 231 232 when(io.dcache.valid) { 233 XSDebug("miss resp: paddr:0x%x data %x\n", io.dcache.bits.addr, io.dcache.bits.data) 234 } 235 236 // Refill 64 bit in a cycle 237 // Refill data comes back from io.dcache.resp 238 dataModule.io.refill.valid := io.dcache.valid 239 dataModule.io.refill.paddr := io.dcache.bits.addr 240 dataModule.io.refill.data := io.dcache.bits.data 241 242 (0 until LoadQueueSize).map(i => { 243 dataModule.io.refill.refillMask(i) := allocated(i) && miss(i) 244 when(dataModule.io.refill.valid && dataModule.io.refill.refillMask(i) && dataModule.io.refill.matchMask(i)) { 245 datavalid(i) := true.B 246 miss(i) := false.B 247 refilling(i) := true.B 248 } 249 }) 250 251 // Writeback up to 2 missed load insts to CDB 252 // 253 // Pick 2 missed load (data refilled), write them back to cdb 254 // 2 refilled load will be selected from even/odd entry, separately 255 256 // Stage 0 257 // Generate writeback indexes 258 259 def getEvenBits(input: UInt): UInt = { 260 VecInit((0 until LoadQueueSize/2).map(i => {input(2*i)})).asUInt 261 } 262 def getOddBits(input: UInt): UInt = { 263 VecInit((0 until LoadQueueSize/2).map(i => {input(2*i+1)})).asUInt 264 } 265 266 val loadWbSel = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W))) // index selected last cycle 267 val loadWbSelV = Wire(Vec(LoadPipelineWidth, Bool())) // index selected in last cycle is valid 268 269 val loadWbSelVec = VecInit((0 until LoadQueueSize).map(i => { 270 allocated(i) && !writebacked(i) && (datavalid(i) || refilling(i)) 271 })).asUInt() // use uint instead vec to reduce verilog lines 272 val evenDeqMask = getEvenBits(deqMask) 273 val oddDeqMask = getOddBits(deqMask) 274 // generate lastCycleSelect mask 275 val evenFireMask = getEvenBits(UIntToOH(loadWbSel(0))) 276 val oddFireMask = getOddBits(UIntToOH(loadWbSel(1))) 277 // generate real select vec 278 def toVec(a: UInt): Vec[Bool] = { 279 VecInit(a.asBools) 280 } 281 val loadEvenSelVecFire = getEvenBits(loadWbSelVec) & ~evenFireMask 282 val loadOddSelVecFire = getOddBits(loadWbSelVec) & ~oddFireMask 283 val loadEvenSelVecNotFire = getEvenBits(loadWbSelVec) 284 val loadOddSelVecNotFire = getOddBits(loadWbSelVec) 285 val loadEvenSel = Mux( 286 io.ldout(0).fire(), 287 getFirstOne(toVec(loadEvenSelVecFire), evenDeqMask), 288 getFirstOne(toVec(loadEvenSelVecNotFire), evenDeqMask) 289 ) 290 val loadOddSel= Mux( 291 io.ldout(1).fire(), 292 getFirstOne(toVec(loadOddSelVecFire), oddDeqMask), 293 getFirstOne(toVec(loadOddSelVecNotFire), oddDeqMask) 294 ) 295 296 297 val loadWbSelGen = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W))) 298 val loadWbSelVGen = Wire(Vec(LoadPipelineWidth, Bool())) 299 loadWbSelGen(0) := Cat(loadEvenSel, 0.U(1.W)) 300 loadWbSelVGen(0):= Mux(io.ldout(0).fire(), loadEvenSelVecFire.asUInt.orR, loadEvenSelVecNotFire.asUInt.orR) 301 loadWbSelGen(1) := Cat(loadOddSel, 1.U(1.W)) 302 loadWbSelVGen(1) := Mux(io.ldout(1).fire(), loadOddSelVecFire.asUInt.orR, loadOddSelVecNotFire.asUInt.orR) 303 304 (0 until LoadPipelineWidth).map(i => { 305 loadWbSel(i) := RegNext(loadWbSelGen(i)) 306 loadWbSelV(i) := RegNext(loadWbSelVGen(i), init = false.B) 307 when(io.ldout(i).fire()){ 308 // Mark them as writebacked, so they will not be selected in the next cycle 309 writebacked(loadWbSel(i)) := true.B 310 } 311 }) 312 313 // Stage 1 314 // Use indexes generated in cycle 0 to read data 315 // writeback data to cdb 316 (0 until LoadPipelineWidth).map(i => { 317 // data select 318 dataModule.io.wb.raddr(i) := loadWbSelGen(i) 319 val rdata = dataModule.io.wb.rdata(i).data 320 val seluop = uop(loadWbSel(i)) 321 val func = seluop.ctrl.fuOpType 322 val raddr = dataModule.io.wb.rdata(i).paddr 323 val rdataSel = LookupTree(raddr(2, 0), List( 324 "b000".U -> rdata(63, 0), 325 "b001".U -> rdata(63, 8), 326 "b010".U -> rdata(63, 16), 327 "b011".U -> rdata(63, 24), 328 "b100".U -> rdata(63, 32), 329 "b101".U -> rdata(63, 40), 330 "b110".U -> rdata(63, 48), 331 "b111".U -> rdata(63, 56) 332 )) 333 val rdataPartialLoad = rdataHelper(seluop, rdataSel) 334 335 // writeback missed int/fp load 336 // 337 // Int load writeback will finish (if not blocked) in one cycle 338 io.ldout(i).bits.uop := seluop 339 io.ldout(i).bits.uop.lqIdx := loadWbSel(i).asTypeOf(new LqPtr) 340 io.ldout(i).bits.data := rdataPartialLoad 341 io.ldout(i).bits.redirectValid := false.B 342 io.ldout(i).bits.redirect := DontCare 343 io.ldout(i).bits.debug.isMMIO := debug_mmio(loadWbSel(i)) 344 io.ldout(i).bits.debug.isPerfCnt := false.B 345 io.ldout(i).bits.debug.paddr := debug_paddr(loadWbSel(i)) 346 io.ldout(i).bits.debug.vaddr := vaddrModule.io.rdata(i+1) 347 io.ldout(i).bits.fflags := DontCare 348 io.ldout(i).valid := loadWbSelV(i) 349 350 when(io.ldout(i).fire()) { 351 XSInfo("int load miss write to cbd robidx %d lqidx %d pc 0x%x mmio %x\n", 352 io.ldout(i).bits.uop.robIdx.asUInt, 353 io.ldout(i).bits.uop.lqIdx.asUInt, 354 io.ldout(i).bits.uop.cf.pc, 355 debug_mmio(loadWbSel(i)) 356 ) 357 } 358 359 }) 360 361 /** 362 * Load commits 363 * 364 * When load commited, mark it as !allocated and move deqPtrExt forward. 365 */ 366 (0 until CommitWidth).map(i => { 367 when(commitCount > i.U){ 368 allocated((deqPtrExt+i.U).value) := false.B 369 } 370 }) 371 372 def getFirstOne(mask: Vec[Bool], startMask: UInt) = { 373 val length = mask.length 374 val highBits = (0 until length).map(i => mask(i) & ~startMask(i)) 375 val highBitsUint = Cat(highBits.reverse) 376 PriorityEncoder(Mux(highBitsUint.orR(), highBitsUint, mask.asUInt)) 377 } 378 379 def getOldestInTwo(valid: Seq[Bool], uop: Seq[MicroOp]) = { 380 assert(valid.length == uop.length) 381 assert(valid.length == 2) 382 Mux(valid(0) && valid(1), 383 Mux(isAfter(uop(0).robIdx, uop(1).robIdx), uop(1), uop(0)), 384 Mux(valid(0) && !valid(1), uop(0), uop(1))) 385 } 386 387 def getAfterMask(valid: Seq[Bool], uop: Seq[MicroOp]) = { 388 assert(valid.length == uop.length) 389 val length = valid.length 390 (0 until length).map(i => { 391 (0 until length).map(j => { 392 Mux(valid(i) && valid(j), 393 isAfter(uop(i).robIdx, uop(j).robIdx), 394 Mux(!valid(i), true.B, false.B)) 395 }) 396 }) 397 } 398 399 /** 400 * Store-Load Memory violation detection 401 * 402 * When store writes back, it searches LoadQueue for younger load instructions 403 * with the same load physical address. They loaded wrong data and need re-execution. 404 * 405 * Cycle 0: Store Writeback 406 * Generate match vector for store address with rangeMask(stPtr, enqPtr). 407 * Besides, load instructions in LoadUnit_S1 and S2 are also checked. 408 * Cycle 1: Redirect Generation 409 * There're three possible types of violations, up to 6 possible redirect requests. 410 * Choose the oldest load (part 1). (4 + 2) -> (1 + 2) 411 * Cycle 2: Redirect Fire 412 * Choose the oldest load (part 2). (3 -> 1) 413 * Prepare redirect request according to the detected violation. 414 * Fire redirect request (if valid) 415 */ 416 417 // stage 0: lq l1 wb l1 wb lq 418 // | | | | | | (paddr match) 419 // stage 1: lq l1 wb l1 wb lq 420 // | | | | | | 421 // | |------------| | 422 // | | | 423 // stage 2: lq l1wb lq 424 // | | | 425 // -------------------- 426 // | 427 // rollback req 428 io.load_s1 := DontCare 429 def detectRollback(i: Int) = { 430 val startIndex = io.storeIn(i).bits.uop.lqIdx.value 431 val lqIdxMask = UIntToMask(startIndex, LoadQueueSize) 432 val xorMask = lqIdxMask ^ enqMask 433 val sameFlag = io.storeIn(i).bits.uop.lqIdx.flag === enqPtrExt(0).flag 434 val toEnqPtrMask = Mux(sameFlag, xorMask, ~xorMask) 435 436 // check if load already in lq needs to be rolledback 437 dataModule.io.violation(i).paddr := io.storeIn(i).bits.paddr 438 dataModule.io.violation(i).mask := io.storeIn(i).bits.mask 439 val addrMaskMatch = RegNext(dataModule.io.violation(i).violationMask) 440 val entryNeedCheck = RegNext(VecInit((0 until LoadQueueSize).map(j => { 441 allocated(j) && toEnqPtrMask(j) && (datavalid(j) || miss(j)) 442 }))) 443 val lqViolationVec = VecInit((0 until LoadQueueSize).map(j => { 444 addrMaskMatch(j) && entryNeedCheck(j) 445 })) 446 val lqViolation = lqViolationVec.asUInt().orR() 447 val lqViolationIndex = getFirstOne(lqViolationVec, RegNext(lqIdxMask)) 448 val lqViolationUop = uop(lqViolationIndex) 449 // lqViolationUop.lqIdx.flag := deqMask(lqViolationIndex) ^ deqPtrExt.flag 450 // lqViolationUop.lqIdx.value := lqViolationIndex 451 XSDebug(lqViolation, p"${Binary(Cat(lqViolationVec))}, $startIndex, $lqViolationIndex\n") 452 453 // when l/s writeback to rob together, check if rollback is needed 454 val wbViolationVec = RegNext(VecInit((0 until LoadPipelineWidth).map(j => { 455 io.loadIn(j).valid && 456 isAfter(io.loadIn(j).bits.uop.robIdx, io.storeIn(i).bits.uop.robIdx) && 457 io.storeIn(i).bits.paddr(PAddrBits - 1, 3) === io.loadIn(j).bits.paddr(PAddrBits - 1, 3) && 458 (io.storeIn(i).bits.mask & io.loadIn(j).bits.mask).orR 459 }))) 460 val wbViolation = wbViolationVec.asUInt().orR() 461 val wbViolationUop = getOldestInTwo(wbViolationVec, RegNext(VecInit(io.loadIn.map(_.bits.uop)))) 462 XSDebug(wbViolation, p"${Binary(Cat(wbViolationVec))}, $wbViolationUop\n") 463 464 // check if rollback is needed for load in l1 465 val l1ViolationVec = RegNext(VecInit((0 until LoadPipelineWidth).map(j => { 466 io.load_s1(j).valid && // L1 valid 467 isAfter(io.load_s1(j).uop.robIdx, io.storeIn(i).bits.uop.robIdx) && 468 io.storeIn(i).bits.paddr(PAddrBits - 1, 3) === io.load_s1(j).paddr(PAddrBits - 1, 3) && 469 (io.storeIn(i).bits.mask & io.load_s1(j).mask).orR 470 }))) 471 val l1Violation = l1ViolationVec.asUInt().orR() 472 val l1ViolationUop = getOldestInTwo(l1ViolationVec, RegNext(VecInit(io.load_s1.map(_.uop)))) 473 XSDebug(l1Violation, p"${Binary(Cat(l1ViolationVec))}, $l1ViolationUop\n") 474 475 XSDebug( 476 l1Violation, 477 "need rollback (l1 load) pc %x robidx %d target %x\n", 478 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.robIdx.asUInt, l1ViolationUop.robIdx.asUInt 479 ) 480 XSDebug( 481 lqViolation, 482 "need rollback (ld wb before store) pc %x robidx %d target %x\n", 483 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.robIdx.asUInt, lqViolationUop.robIdx.asUInt 484 ) 485 XSDebug( 486 wbViolation, 487 "need rollback (ld/st wb together) pc %x robidx %d target %x\n", 488 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.robIdx.asUInt, wbViolationUop.robIdx.asUInt 489 ) 490 491 ((lqViolation, lqViolationUop), (wbViolation, wbViolationUop), (l1Violation, l1ViolationUop)) 492 } 493 494 def rollbackSel(a: Valid[MicroOpRbExt], b: Valid[MicroOpRbExt]): ValidIO[MicroOpRbExt] = { 495 Mux( 496 a.valid, 497 Mux( 498 b.valid, 499 Mux(isAfter(a.bits.uop.robIdx, b.bits.uop.robIdx), b, a), // a,b both valid, sel oldest 500 a // sel a 501 ), 502 b // sel b 503 ) 504 } 505 val lastCycleRedirect = RegNext(io.brqRedirect) 506 val lastlastCycleRedirect = RegNext(lastCycleRedirect) 507 508 // S2: select rollback (part1) and generate rollback request 509 // rollback check 510 // Wb/L1 rollback seq check is done in s2 511 val rollbackWb = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 512 val rollbackL1 = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 513 val rollbackL1Wb = Wire(Vec(StorePipelineWidth*2, Valid(new MicroOpRbExt))) 514 // Lq rollback seq check is done in s3 (next stage), as getting rollbackLq MicroOp is slow 515 val rollbackLq = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 516 // store ftq index for store set update 517 val stFtqIdxS2 = Wire(Vec(StorePipelineWidth, new FtqPtr)) 518 val stFtqOffsetS2 = Wire(Vec(StorePipelineWidth, UInt(log2Up(PredictWidth).W))) 519 for (i <- 0 until StorePipelineWidth) { 520 val detectedRollback = detectRollback(i) 521 rollbackLq(i).valid := detectedRollback._1._1 && RegNext(io.storeIn(i).valid) 522 rollbackLq(i).bits.uop := detectedRollback._1._2 523 rollbackLq(i).bits.flag := i.U 524 rollbackWb(i).valid := detectedRollback._2._1 && RegNext(io.storeIn(i).valid) 525 rollbackWb(i).bits.uop := detectedRollback._2._2 526 rollbackWb(i).bits.flag := i.U 527 rollbackL1(i).valid := detectedRollback._3._1 && RegNext(io.storeIn(i).valid) 528 rollbackL1(i).bits.uop := detectedRollback._3._2 529 rollbackL1(i).bits.flag := i.U 530 rollbackL1Wb(2*i) := rollbackL1(i) 531 rollbackL1Wb(2*i+1) := rollbackWb(i) 532 stFtqIdxS2(i) := RegNext(io.storeIn(i).bits.uop.cf.ftqPtr) 533 stFtqOffsetS2(i) := RegNext(io.storeIn(i).bits.uop.cf.ftqOffset) 534 } 535 536 val rollbackL1WbSelected = ParallelOperation(rollbackL1Wb, rollbackSel) 537 val rollbackL1WbVReg = RegNext(rollbackL1WbSelected.valid) 538 val rollbackL1WbReg = RegEnable(rollbackL1WbSelected.bits, rollbackL1WbSelected.valid) 539 val rollbackLq0VReg = RegNext(rollbackLq(0).valid) 540 val rollbackLq0Reg = RegEnable(rollbackLq(0).bits, rollbackLq(0).valid) 541 val rollbackLq1VReg = RegNext(rollbackLq(1).valid) 542 val rollbackLq1Reg = RegEnable(rollbackLq(1).bits, rollbackLq(1).valid) 543 544 // S3: select rollback (part2), generate rollback request, then fire rollback request 545 // Note that we use robIdx - 1.U to flush the load instruction itself. 546 // Thus, here if last cycle's robIdx equals to this cycle's robIdx, it still triggers the redirect. 547 548 // FIXME: this is ugly 549 val rollbackValidVec = Seq(rollbackL1WbVReg, rollbackLq0VReg, rollbackLq1VReg) 550 val rollbackUopExtVec = Seq(rollbackL1WbReg, rollbackLq0Reg, rollbackLq1Reg) 551 552 // select uop in parallel 553 val mask = getAfterMask(rollbackValidVec, rollbackUopExtVec.map(i => i.uop)) 554 val oneAfterZero = mask(1)(0) 555 val rollbackUopExt = Mux(oneAfterZero && mask(2)(0), 556 rollbackUopExtVec(0), 557 Mux(!oneAfterZero && mask(2)(1), rollbackUopExtVec(1), rollbackUopExtVec(2))) 558 val stFtqIdxS3 = RegNext(stFtqIdxS2) 559 val stFtqOffsetS3 = RegNext(stFtqOffsetS2) 560 val rollbackUop = rollbackUopExt.uop 561 val rollbackStFtqIdx = stFtqIdxS3(rollbackUopExt.flag) 562 val rollbackStFtqOffset = stFtqOffsetS3(rollbackUopExt.flag) 563 564 // check if rollback request is still valid in parallel 565 val rollbackValidVecChecked = Wire(Vec(3, Bool())) 566 for(((v, uop), idx) <- rollbackValidVec.zip(rollbackUopExtVec.map(i => i.uop)).zipWithIndex) { 567 rollbackValidVecChecked(idx) := v && 568 (!lastCycleRedirect.valid || isBefore(uop.robIdx, lastCycleRedirect.bits.robIdx)) && 569 (!lastlastCycleRedirect.valid || isBefore(uop.robIdx, lastlastCycleRedirect.bits.robIdx)) 570 } 571 572 io.rollback.bits.robIdx := rollbackUop.robIdx 573 io.rollback.bits.ftqIdx := rollbackUop.cf.ftqPtr 574 io.rollback.bits.stFtqIdx := rollbackStFtqIdx 575 io.rollback.bits.ftqOffset := rollbackUop.cf.ftqOffset 576 io.rollback.bits.stFtqOffset := rollbackStFtqOffset 577 io.rollback.bits.level := RedirectLevel.flush 578 io.rollback.bits.interrupt := DontCare 579 io.rollback.bits.cfiUpdate := DontCare 580 io.rollback.bits.cfiUpdate.target := rollbackUop.cf.pc 581 io.rollback.bits.debug_runahead_checkpoint_id := rollbackUop.debugInfo.runahead_checkpoint_id 582 // io.rollback.bits.pc := DontCare 583 584 io.rollback.valid := rollbackValidVecChecked.asUInt.orR 585 586 when(io.rollback.valid) { 587 // XSDebug("Mem rollback: pc %x robidx %d\n", io.rollback.bits.cfi, io.rollback.bits.robIdx.asUInt) 588 } 589 590 /** 591 * Load-Load Memory violation detection 592 * 593 * When load arrives load_s1, it searches LoadQueue for younger load instructions 594 * with the same load physical address. If younger load has been released (or observed), 595 * the younger load needs to be re-execed. 596 * 597 * For now, if re-exec it found to be needed in load_s1, we mark the older load as replayInst, 598 * the two loads will be replayed if the older load becomes the head of rob. 599 * 600 * When dcache releases a line, mark all writebacked entrys in load queue with 601 * the same line paddr as released. 602 */ 603 604 // Load-Load Memory violation query 605 val deqRightMask = UIntToMask.rightmask(deqPtr, LoadQueueSize) 606 (0 until LoadPipelineWidth).map(i => { 607 dataModule.io.release_violation(i).paddr := io.loadViolationQuery(i).req.bits.paddr 608 io.loadViolationQuery(i).req.ready := true.B 609 io.loadViolationQuery(i).resp.valid := RegNext(io.loadViolationQuery(i).req.fire()) 610 // Generate real violation mask 611 // Note that we use UIntToMask.rightmask here 612 val startIndex = io.loadViolationQuery(i).req.bits.uop.lqIdx.value 613 val lqIdxMask = UIntToMask.rightmask(startIndex, LoadQueueSize) 614 val xorMask = lqIdxMask ^ deqRightMask 615 val sameFlag = io.loadViolationQuery(i).req.bits.uop.lqIdx.flag === deqPtrExt.flag 616 val toDeqPtrMask = Mux(sameFlag, xorMask, ~xorMask) 617 val ldld_violation_mask = WireInit(VecInit((0 until LoadQueueSize).map(j => { 618 dataModule.io.release_violation(i).match_mask(j) && // addr match 619 toDeqPtrMask(j) && // the load is younger than current load 620 allocated(j) && // entry is valid 621 released(j) && // cacheline is released 622 (datavalid(j) || miss(j)) // paddr is valid 623 }))) 624 dontTouch(ldld_violation_mask) 625 ldld_violation_mask.suggestName("ldldViolationMask_" + i) 626 io.loadViolationQuery(i).resp.bits.have_violation := RegNext(ldld_violation_mask.asUInt.orR) 627 }) 628 629 // "released" flag update 630 // 631 // When io.release.valid, it uses the last ld-ld paddr cam port to 632 // update release flag in 1 cycle 633 when(io.release.valid){ 634 // Take over ld-ld paddr cam port 635 dataModule.io.release_violation.takeRight(1)(0).paddr := io.release.bits.paddr 636 io.loadViolationQuery.takeRight(1)(0).req.ready := false.B 637 // If a load needs that cam port, replay it from rs 638 (0 until LoadQueueSize).map(i => { 639 when(dataModule.io.release_violation.takeRight(1)(0).match_mask(i) && allocated(i) && writebacked(i)){ 640 // Note: if a load has missed in dcache and is waiting for refill in load queue, 641 // its released flag still needs to be set as true if addr matches. 642 released(i) := true.B 643 } 644 }) 645 } 646 647 /** 648 * Memory mapped IO / other uncached operations 649 * 650 * States: 651 * (1) writeback from store units: mark as pending 652 * (2) when they reach ROB's head, they can be sent to uncache channel 653 * (3) response from uncache channel: mark as datavalid 654 * (4) writeback to ROB (and other units): mark as writebacked 655 * (5) ROB commits the instruction: same as normal instructions 656 */ 657 //(2) when they reach ROB's head, they can be sent to uncache channel 658 val lqTailMmioPending = WireInit(pending(deqPtr)) 659 val lqTailAllocated = WireInit(allocated(deqPtr)) 660 val s_idle :: s_req :: s_resp :: s_wait :: Nil = Enum(4) 661 val uncacheState = RegInit(s_idle) 662 switch(uncacheState) { 663 is(s_idle) { 664 when(io.rob.pendingld && lqTailMmioPending && lqTailAllocated) { 665 uncacheState := s_req 666 } 667 } 668 is(s_req) { 669 when(io.uncache.req.fire()) { 670 uncacheState := s_resp 671 } 672 } 673 is(s_resp) { 674 when(io.uncache.resp.fire()) { 675 uncacheState := s_wait 676 } 677 } 678 is(s_wait) { 679 when(io.rob.commit) { 680 uncacheState := s_idle // ready for next mmio 681 } 682 } 683 } 684 io.uncache.req.valid := uncacheState === s_req 685 686 dataModule.io.uncache.raddr := deqPtrExtNext.value 687 688 io.uncache.req.bits.cmd := MemoryOpConstants.M_XRD 689 io.uncache.req.bits.addr := dataModule.io.uncache.rdata.paddr 690 io.uncache.req.bits.data := dataModule.io.uncache.rdata.data 691 io.uncache.req.bits.mask := dataModule.io.uncache.rdata.mask 692 693 io.uncache.req.bits.id := DontCare 694 io.uncache.req.bits.instrtype := DontCare 695 696 io.uncache.resp.ready := true.B 697 698 when (io.uncache.req.fire()) { 699 pending(deqPtr) := false.B 700 701 XSDebug("uncache req: pc %x addr %x data %x op %x mask %x\n", 702 uop(deqPtr).cf.pc, 703 io.uncache.req.bits.addr, 704 io.uncache.req.bits.data, 705 io.uncache.req.bits.cmd, 706 io.uncache.req.bits.mask 707 ) 708 } 709 710 // (3) response from uncache channel: mark as datavalid 711 dataModule.io.uncache.wen := false.B 712 when(io.uncache.resp.fire()){ 713 datavalid(deqPtr) := true.B 714 dataModule.io.uncacheWrite(deqPtr, io.uncache.resp.bits.data(XLEN-1, 0)) 715 dataModule.io.uncache.wen := true.B 716 717 XSDebug("uncache resp: data %x\n", io.dcache.bits.data) 718 } 719 720 // Read vaddr for mem exception 721 // no inst will be commited 1 cycle before tval update 722 vaddrModule.io.raddr(0) := (deqPtrExt + commitCount).value 723 io.exceptionAddr.vaddr := vaddrModule.io.rdata(0) 724 725 // Read vaddr for debug trigger 726 (0 until LoadPipelineWidth).map(i => { 727 vaddrModule.io.raddr(i+1) := loadWbSel(i) 728 }) 729 730 731 // misprediction recovery / exception redirect 732 // invalidate lq term using robIdx 733 val needCancel = Wire(Vec(LoadQueueSize, Bool())) 734 for (i <- 0 until LoadQueueSize) { 735 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) 736 when (needCancel(i)) { 737 allocated(i) := false.B 738 } 739 } 740 741 /** 742 * update pointers 743 */ 744 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 745 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 746 val enqNumber = Mux(io.enq.canAccept && io.enq.sqCanAccept && !io.brqRedirect.valid, PopCount(io.enq.req.map(_.valid)), 0.U) 747 when (lastCycleRedirect.valid) { 748 // we recover the pointers in the next cycle after redirect 749 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 750 }.otherwise { 751 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 752 } 753 754 deqPtrExtNext := deqPtrExt + commitCount 755 deqPtrExt := deqPtrExtNext 756 757 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt) 758 759 allowEnqueue := validCount + enqNumber <= (LoadQueueSize - io.enq.req.length).U 760 761 /** 762 * misc 763 */ 764 io.rob.storeDataRobWb := DontCare // will be overwriten by store queue's result 765 766 // perf counter 767 QueuePerf(LoadQueueSize, validCount, !allowEnqueue) 768 io.lqFull := !allowEnqueue 769 XSPerfAccumulate("rollback", io.rollback.valid) // rollback redirect generated 770 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 771 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 772 XSPerfAccumulate("refill", io.dcache.valid) 773 XSPerfAccumulate("writeback_success", PopCount(VecInit(io.ldout.map(i => i.fire())))) 774 XSPerfAccumulate("writeback_blocked", PopCount(VecInit(io.ldout.map(i => i.valid && !i.ready)))) 775 XSPerfAccumulate("utilization_miss", PopCount((0 until LoadQueueSize).map(i => allocated(i) && miss(i)))) 776 777 val perfinfo = IO(new Bundle(){ 778 val perfEvents = Output(new PerfEventsBundle(10)) 779 }) 780 val perfEvents = Seq( 781 ("rollback ", io.rollback.valid ), 782 ("mmioCycle ", uncacheState =/= s_idle ), 783 ("mmio_Cnt ", io.uncache.req.fire() ), 784 ("refill ", io.dcache.valid ), 785 ("writeback_success ", PopCount(VecInit(io.ldout.map(i => i.fire()))) ), 786 ("writeback_blocked ", PopCount(VecInit(io.ldout.map(i => i.valid && !i.ready))) ), 787 ("ltq_1/4_valid ", (validCount < (LoadQueueSize.U/4.U)) ), 788 ("ltq_2/4_valid ", (validCount > (LoadQueueSize.U/4.U)) & (validCount <= (LoadQueueSize.U/2.U)) ), 789 ("ltq_3/4_valid ", (validCount > (LoadQueueSize.U/2.U)) & (validCount <= (LoadQueueSize.U*3.U/4.U))), 790 ("ltq_4/4_valid ", (validCount > (LoadQueueSize.U*3.U/4.U)) ), 791 ) 792 793 for (((perf_out,(perf_name,perf)),i) <- perfinfo.perfEvents.perf_events.zip(perfEvents).zipWithIndex) { 794 perf_out.incr_step := RegNext(perf) 795 } 796 // debug info 797 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt.flag, deqPtr) 798 799 def PrintFlag(flag: Bool, name: String): Unit = { 800 when(flag) { 801 XSDebug(false, true.B, name) 802 }.otherwise { 803 XSDebug(false, true.B, " ") 804 } 805 } 806 807 for (i <- 0 until LoadQueueSize) { 808 XSDebug(i + " pc %x pa %x ", uop(i).cf.pc, debug_paddr(i)) 809 PrintFlag(allocated(i), "a") 810 PrintFlag(allocated(i) && datavalid(i), "v") 811 PrintFlag(allocated(i) && writebacked(i), "w") 812 PrintFlag(allocated(i) && miss(i), "m") 813 PrintFlag(allocated(i) && pending(i), "p") 814 XSDebug(false, true.B, "\n") 815 } 816 817} 818