xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/LoadMisalignBuffer.scala (revision c08f49a0dbf6e9ef292ad0b90193d3946d11b1b6)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import utils._
23import utility._
24import xiangshan._
25import xiangshan.backend.fu.FuConfig._
26import xiangshan.backend.fu.fpu.FPU
27import xiangshan.backend.rob.RobLsqIO
28import xiangshan.cache._
29import xiangshan.frontend.FtqPtr
30import xiangshan.ExceptionNO._
31import xiangshan.cache.wpu.ReplayCarry
32import xiangshan.backend.rob.RobPtr
33import xiangshan.backend.Bundles.{MemExuOutput, DynInst}
34
35class LoadMisalignBuffer(implicit p: Parameters) extends XSModule
36  with HasCircularQueuePtrHelper
37  with HasLoadHelper
38{
39  private val enqPortNum = LoadPipelineWidth
40  private val maxSplitNum = 2
41
42  require(maxSplitNum == 2)
43
44  private val LB = "b00".U(2.W)
45  private val LH = "b01".U(2.W)
46  private val LW = "b10".U(2.W)
47  private val LD = "b11".U(2.W)
48
49  // encode of how many bytes to shift or truncate
50  private val BYTE0 = "b000".U(3.W)
51  private val BYTE1 = "b001".U(3.W)
52  private val BYTE2 = "b010".U(3.W)
53  private val BYTE3 = "b011".U(3.W)
54  private val BYTE4 = "b100".U(3.W)
55  private val BYTE5 = "b101".U(3.W)
56  private val BYTE6 = "b110".U(3.W)
57  private val BYTE7 = "b111".U(3.W)
58
59  def getMask(sizeEncode: UInt) = LookupTree(sizeEncode, List(
60    LB -> 0x1.U, // lb
61    LH -> 0x3.U, // lh
62    LW -> 0xf.U, // lw
63    LD -> 0xff.U  // ld
64  ))
65
66  def getShiftAndTruncateData(shiftEncode: UInt, truncateEncode: UInt, data: UInt) = {
67    val shiftData = LookupTree(shiftEncode, List(
68      BYTE0 -> data(63,    0),
69      BYTE1 -> data(63,    8),
70      BYTE2 -> data(63,   16),
71      BYTE3 -> data(63,   24),
72      BYTE4 -> data(63,   32),
73      BYTE5 -> data(63,   40),
74      BYTE6 -> data(63,   48),
75      BYTE7 -> data(63,   56)
76    ))
77    val truncateData = LookupTree(truncateEncode, List(
78      BYTE0 -> 0.U(XLEN.W), // can not truncate with 0 byte width
79      BYTE1 -> shiftData(7,    0),
80      BYTE2 -> shiftData(15,   0),
81      BYTE3 -> shiftData(23,   0),
82      BYTE4 -> shiftData(31,   0),
83      BYTE5 -> shiftData(39,   0),
84      BYTE6 -> shiftData(47,   0),
85      BYTE7 -> shiftData(55,   0)
86    ))
87    truncateData(XLEN - 1, 0)
88  }
89
90  def selectOldest[T <: LqWriteBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = {
91    assert(valid.length == bits.length)
92    if (valid.length == 0 || valid.length == 1) {
93      (valid, bits)
94    } else if (valid.length == 2) {
95      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
96      for (i <- res.indices) {
97        res(i).valid := valid(i)
98        res(i).bits := bits(i)
99      }
100      val oldest = Mux(valid(0) && valid(1),
101        Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) ||
102          (isNotBefore(bits(0).uop.robIdx, bits(1).uop.robIdx) && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)),
103        Mux(valid(0) && !valid(1), res(0), res(1)))
104      (Seq(oldest.valid), Seq(oldest.bits))
105    } else {
106      val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2))
107      val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2)))
108      selectOldest(left._1 ++ right._1, left._2 ++ right._2)
109    }
110  }
111
112  val io = IO(new Bundle() {
113    val redirect        = Flipped(Valid(new Redirect))
114    val req             = Vec(enqPortNum, Flipped(Valid(new LqWriteBundle)))
115    val rob             = Flipped(new RobLsqIO)
116    val splitLoadReq    = Decoupled(new LsPipelineBundle)
117    val splitLoadResp   = Flipped(Valid(new LqWriteBundle))
118    val writeBack       = Decoupled(new MemExuOutput)
119    val overwriteExpBuf = Output(new XSBundle {
120      val valid  = Bool()
121      val vaddr  = UInt(XLEN.W)
122      val isHyper = Bool()
123      val gpaddr = UInt(XLEN.W)
124      val isForVSnonLeafPTE = Bool()
125    })
126    val flushLdExpBuff  = Output(Bool())
127  })
128
129  io.rob.mmio := 0.U.asTypeOf(Vec(LoadPipelineWidth, Bool()))
130  io.rob.uop  := 0.U.asTypeOf(Vec(LoadPipelineWidth, new DynInst))
131
132  val req_valid = RegInit(false.B)
133  val req = Reg(new LqWriteBundle)
134
135  // enqueue
136  // s1:
137  val s1_req = VecInit(io.req.map(_.bits))
138  val s1_valid = VecInit(io.req.map(x => x.valid))
139
140  // s2: delay 1 cycle
141  val s2_req = RegNext(s1_req)
142  val s2_valid = (0 until enqPortNum).map(i =>
143    RegNext(s1_valid(i)) &&
144    !s2_req(i).uop.robIdx.needFlush(RegNext(io.redirect)) &&
145    !s2_req(i).uop.robIdx.needFlush(io.redirect)
146  )
147  val s2_miss_aligned = s2_req.map(x =>
148    x.uop.exceptionVec(loadAddrMisaligned) && !x.uop.exceptionVec(breakPoint) && !TriggerAction.isDmode(x.uop.trigger)
149  )
150
151  val s2_enqueue = Wire(Vec(enqPortNum, Bool()))
152  for (w <- 0 until enqPortNum) {
153    s2_enqueue(w) := s2_valid(w) && s2_miss_aligned(w)
154  }
155
156  when (req_valid && req.uop.robIdx.needFlush(io.redirect)) {
157    req_valid := s2_enqueue.asUInt.orR
158  } .elsewhen (s2_enqueue.asUInt.orR) {
159    req_valid := req_valid || true.B
160  }
161
162  val reqSel = selectOldest(s2_enqueue, s2_req)
163
164  when (req_valid) {
165    req := Mux(
166      reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)),
167      reqSel._2(0),
168      req)
169  } .elsewhen (s2_enqueue.asUInt.orR) {
170    req := reqSel._2(0)
171  }
172
173  val robMatch = req_valid && io.rob.pendingld && (io.rob.pendingPtr === req.uop.robIdx)
174
175  // buffer control:
176  //  - split miss-aligned load into aligned loads
177  //  - send split load to ldu and get result from ldu
178  //  - merge them and write back to rob
179  val s_idle :: s_split :: s_req :: s_resp :: s_comb :: s_wb :: s_wait :: Nil = Enum(7)
180  val bufferState = RegInit(s_idle)
181  val splitLoadReqs = RegInit(VecInit(List.fill(maxSplitNum)(0.U.asTypeOf(new LsPipelineBundle))))
182  val splitLoadResp = RegInit(VecInit(List.fill(maxSplitNum)(0.U.asTypeOf(new LqWriteBundle))))
183  val unSentLoads = RegInit(0.U(maxSplitNum.W))
184  val curPtr = RegInit(0.U(log2Ceil(maxSplitNum).W))
185
186  // if there is exception or mmio in split load
187  val globalException = RegInit(false.B)
188  val globalMMIO = RegInit(false.B)
189
190  val hasException = ExceptionNO.selectByFu(io.splitLoadResp.bits.uop.exceptionVec, LduCfg).asUInt.orR
191  val isMMIO = io.splitLoadResp.bits.mmio
192
193  switch(bufferState) {
194    is (s_idle) {
195      when (robMatch) {
196        bufferState := s_split
197      }
198    }
199
200    is (s_split) {
201      bufferState := s_req
202    }
203
204    is (s_req) {
205      when (io.splitLoadReq.fire) {
206        bufferState := s_resp
207      }
208    }
209
210    is (s_resp) {
211      when (io.splitLoadResp.valid) {
212        val clearOh = UIntToOH(curPtr)
213        when (hasException || isMMIO) {
214          // commit directly when exception ocurs
215          // if any split load reaches mmio space, delegate to software loadAddrMisaligned exception
216          bufferState := s_wb
217          globalException := hasException
218          globalMMIO := isMMIO
219        } .elsewhen(io.splitLoadResp.bits.rep_info.need_rep || (unSentLoads & ~clearOh).orR) {
220          // need replay or still has unsent requests
221          bufferState := s_req
222        } .otherwise {
223          // merge the split load results
224          bufferState := s_comb
225        }
226      }
227    }
228
229    is (s_comb) {
230      bufferState := s_wb
231    }
232
233    is (s_wb) {
234      when(io.writeBack.fire) {
235        bufferState := s_wait
236      }
237    }
238
239    is (s_wait) {
240      when(io.rob.lcommit =/= 0.U || req.uop.robIdx.needFlush(io.redirect)) {
241        // rob commits the unaligned load or handled the exception, reset all state
242        bufferState := s_idle
243        req_valid := false.B
244        curPtr := 0.U
245        unSentLoads := 0.U
246        globalException := false.B
247        globalMMIO := false.B
248      }
249    }
250  }
251
252  val highAddress = LookupTree(req.uop.fuOpType(1, 0), List(
253    LB -> 0.U,
254    LH -> 1.U,
255    LW -> 3.U,
256    LD -> 7.U
257  )) + req.vaddr(4, 0)
258  // to see if (vaddr + opSize - 1) and vaddr are in the same 16 bytes region
259  val cross16BytesBoundary = req_valid && (highAddress(4) =/= req.vaddr(4))
260  val aligned16BytesAddr   = (req.vaddr >> 4) << 4// req.vaddr & ~("b1111".U)
261  val aligned16BytesSel    = req.vaddr(3, 0)
262
263  // meta of 128 bit load
264  val new128Load = WireInit(0.U.asTypeOf(new LsPipelineBundle))
265  // meta of split loads
266  val lowAddrLoad  = WireInit(0.U.asTypeOf(new LsPipelineBundle))
267  val highAddrLoad = WireInit(0.U.asTypeOf(new LsPipelineBundle))
268  val lowResultShift = RegInit(0.U(3.W)) // how many bytes should we shift right when got result
269  val lowResultWidth = RegInit(0.U(3.W)) // how many bytes should we take from result
270  val highResultShift = RegInit(0.U(3.W))
271  val highResultWidth = RegInit(0.U(3.W))
272
273  when (bufferState === s_split) {
274    when (!cross16BytesBoundary) {
275      // change this unaligned load into a 128 bits load
276      unSentLoads := 1.U
277      curPtr := 0.U
278      new128Load.vaddr := aligned16BytesAddr
279      // new128Load.mask  := (getMask(req.uop.fuOpType(1, 0)) << aligned16BytesSel).asUInt
280      new128Load.mask  := 0xffff.U
281      new128Load.uop   := req.uop
282      new128Load.uop.exceptionVec(loadAddrMisaligned) := false.B
283      new128Load.is128bit := true.B
284      splitLoadReqs(0) := new128Load
285    } .otherwise {
286      // split this unaligned load into `maxSplitNum` aligned loads
287      unSentLoads := Fill(maxSplitNum, 1.U(1.W))
288      curPtr := 0.U
289      lowAddrLoad.uop := req.uop
290      lowAddrLoad.uop.exceptionVec(loadAddrMisaligned) := false.B
291      highAddrLoad.uop := req.uop
292      highAddrLoad.uop.exceptionVec(loadAddrMisaligned) := false.B
293
294      switch (req.uop.fuOpType(1, 0)) {
295        is (LB) {
296          assert(false.B, "lb should not trigger miss align")
297        }
298
299        is (LH) {
300          lowAddrLoad.uop.fuOpType := LB
301          lowAddrLoad.vaddr := req.vaddr
302          lowAddrLoad.mask  := 0x1.U << lowAddrLoad.vaddr(3, 0)
303          lowResultShift    := BYTE0
304          lowResultWidth    := BYTE1
305
306          highAddrLoad.uop.fuOpType := LB
307          highAddrLoad.vaddr := req.vaddr + 1.U
308          highAddrLoad.mask  := 0x1.U << highAddrLoad.vaddr(3, 0)
309          highResultShift    := BYTE0
310          highResultWidth    := BYTE1
311        }
312
313        is (LW) {
314          switch (req.vaddr(1, 0)) {
315            is ("b00".U) {
316              assert(false.B, "should not trigger miss align")
317            }
318
319            is ("b01".U) {
320              lowAddrLoad.uop.fuOpType := LW
321              lowAddrLoad.vaddr := req.vaddr - 1.U
322              lowAddrLoad.mask  := 0xf.U << lowAddrLoad.vaddr(3, 0)
323              lowResultShift    := BYTE1
324              lowResultWidth    := BYTE3
325
326              highAddrLoad.uop.fuOpType := LB
327              highAddrLoad.vaddr := req.vaddr + 3.U
328              highAddrLoad.mask  := 0x1.U << highAddrLoad.vaddr(3, 0)
329              highResultShift    := BYTE0
330              highResultWidth    := BYTE1
331            }
332
333            is ("b10".U) {
334              lowAddrLoad.uop.fuOpType := LH
335              lowAddrLoad.vaddr := req.vaddr
336              lowAddrLoad.mask  := 0x3.U << lowAddrLoad.vaddr(3, 0)
337              lowResultShift    := BYTE0
338              lowResultWidth    := BYTE2
339
340              highAddrLoad.uop.fuOpType := LH
341              highAddrLoad.vaddr := req.vaddr + 2.U
342              highAddrLoad.mask  := 0x3.U << highAddrLoad.vaddr(3, 0)
343              highResultShift    := BYTE0
344              highResultWidth    := BYTE2
345            }
346
347            is ("b11".U) {
348              lowAddrLoad.uop.fuOpType := LB
349              lowAddrLoad.vaddr := req.vaddr
350              lowAddrLoad.mask  := 0x1.U << lowAddrLoad.vaddr(3, 0)
351              lowResultShift    := BYTE0
352              lowResultWidth    := BYTE1
353
354              highAddrLoad.uop.fuOpType := LW
355              highAddrLoad.vaddr := req.vaddr + 1.U
356              highAddrLoad.mask  := 0xf.U << highAddrLoad.vaddr(3, 0)
357              highResultShift    := BYTE0
358              highResultWidth    := BYTE3
359            }
360          }
361        }
362
363        is (LD) {
364          switch (req.vaddr(2, 0)) {
365            is ("b000".U) {
366              assert(false.B, "should not trigger miss align")
367            }
368
369            is ("b001".U) {
370              lowAddrLoad.uop.fuOpType := LD
371              lowAddrLoad.vaddr := req.vaddr - 1.U
372              lowAddrLoad.mask  := 0xff.U << lowAddrLoad.vaddr(3, 0)
373              lowResultShift    := BYTE1
374              lowResultWidth    := BYTE7
375
376              highAddrLoad.uop.fuOpType := LB
377              highAddrLoad.vaddr := req.vaddr + 7.U
378              highAddrLoad.mask  := 0x1.U << highAddrLoad.vaddr(3, 0)
379              highResultShift    := BYTE0
380              highResultWidth    := BYTE1
381            }
382
383            is ("b010".U) {
384              lowAddrLoad.uop.fuOpType := LD
385              lowAddrLoad.vaddr := req.vaddr - 2.U
386              lowAddrLoad.mask  := 0xff.U << lowAddrLoad.vaddr(3, 0)
387              lowResultShift    := BYTE2
388              lowResultWidth    := BYTE6
389
390              highAddrLoad.uop.fuOpType := LH
391              highAddrLoad.vaddr := req.vaddr + 6.U
392              highAddrLoad.mask  := 0x3.U << highAddrLoad.vaddr(3, 0)
393              highResultShift    := BYTE0
394              highResultWidth    := BYTE2
395            }
396
397            is ("b011".U) {
398              lowAddrLoad.uop.fuOpType := LD
399              lowAddrLoad.vaddr := req.vaddr - 3.U
400              lowAddrLoad.mask  := 0xff.U << lowAddrLoad.vaddr(3, 0)
401              lowResultShift    := BYTE3
402              lowResultWidth    := BYTE5
403
404              highAddrLoad.uop.fuOpType := LW
405              highAddrLoad.vaddr := req.vaddr + 5.U
406              highAddrLoad.mask  := 0xf.U << highAddrLoad.vaddr(3, 0)
407              highResultShift    := BYTE0
408              highResultWidth    := BYTE3
409            }
410
411            is ("b100".U) {
412              lowAddrLoad.uop.fuOpType := LW
413              lowAddrLoad.vaddr := req.vaddr
414              lowAddrLoad.mask  := 0xf.U << lowAddrLoad.vaddr(3, 0)
415              lowResultShift    := BYTE0
416              lowResultWidth    := BYTE4
417
418              highAddrLoad.uop.fuOpType := LW
419              highAddrLoad.vaddr := req.vaddr + 4.U
420              highAddrLoad.mask  := 0xf.U << highAddrLoad.vaddr(3, 0)
421              highResultShift    := BYTE0
422              highResultWidth    := BYTE4
423            }
424
425            is ("b101".U) {
426              lowAddrLoad.uop.fuOpType := LW
427              lowAddrLoad.vaddr := req.vaddr - 1.U
428              lowAddrLoad.mask  := 0xf.U << lowAddrLoad.vaddr(3, 0)
429              lowResultShift    := BYTE1
430              lowResultWidth    := BYTE3
431
432              highAddrLoad.uop.fuOpType := LD
433              highAddrLoad.vaddr := req.vaddr + 3.U
434              highAddrLoad.mask  := 0xff.U << highAddrLoad.vaddr(3, 0)
435              highResultShift    := BYTE0
436              highResultWidth    := BYTE5
437            }
438
439            is ("b110".U) {
440              lowAddrLoad.uop.fuOpType := LH
441              lowAddrLoad.vaddr := req.vaddr
442              lowAddrLoad.mask  := 0x3.U << lowAddrLoad.vaddr(3, 0)
443              lowResultShift    := BYTE0
444              lowResultWidth    := BYTE2
445
446              highAddrLoad.uop.fuOpType := LD
447              highAddrLoad.vaddr := req.vaddr + 2.U
448              highAddrLoad.mask  := 0xff.U << highAddrLoad.vaddr(3, 0)
449              highResultShift    := BYTE0
450              highResultWidth    := BYTE6
451            }
452
453            is ("b111".U) {
454              lowAddrLoad.uop.fuOpType := LB
455              lowAddrLoad.vaddr := req.vaddr
456              lowAddrLoad.mask  := 0x1.U << lowAddrLoad.vaddr(3, 0)
457              lowResultShift    := BYTE0
458              lowResultWidth    := BYTE1
459
460              highAddrLoad.uop.fuOpType := LD
461              highAddrLoad.vaddr := req.vaddr + 1.U
462              highAddrLoad.mask  := 0xff.U << highAddrLoad.vaddr(3, 0)
463              highResultShift    := BYTE0
464              highResultWidth    := BYTE7
465            }
466          }
467        }
468      }
469
470      splitLoadReqs(0) := lowAddrLoad
471      splitLoadReqs(1) := highAddrLoad
472    }
473  }
474
475  io.splitLoadReq.valid := req_valid && (bufferState === s_req)
476  io.splitLoadReq.bits  := splitLoadReqs(curPtr)
477
478  when (io.splitLoadResp.valid) {
479    splitLoadResp(curPtr) := io.splitLoadResp.bits
480    when (isMMIO) {
481      unSentLoads := 0.U
482      splitLoadResp(curPtr).uop.exceptionVec := 0.U.asTypeOf(ExceptionVec())
483      // delegate to software
484      splitLoadResp(curPtr).uop.exceptionVec(loadAddrMisaligned) := true.B
485    } .elsewhen (hasException) {
486      unSentLoads := 0.U
487    } .elsewhen (!io.splitLoadResp.bits.rep_info.need_rep) {
488      unSentLoads := unSentLoads & ~UIntToOH(curPtr)
489      curPtr := curPtr + 1.U
490    }
491  }
492
493  val combinedData = RegInit(0.U(XLEN.W))
494
495  when (bufferState === s_comb) {
496    when (!cross16BytesBoundary) {
497      val shiftData = LookupTree(aligned16BytesSel, List(
498        "b0000".U -> splitLoadResp(0).data(63,     0),
499        "b0001".U -> splitLoadResp(0).data(71,     8),
500        "b0010".U -> splitLoadResp(0).data(79,    16),
501        "b0011".U -> splitLoadResp(0).data(87,    24),
502        "b0100".U -> splitLoadResp(0).data(95,    32),
503        "b0101".U -> splitLoadResp(0).data(103,   40),
504        "b0110".U -> splitLoadResp(0).data(111,   48),
505        "b0111".U -> splitLoadResp(0).data(119,   56),
506        "b1000".U -> splitLoadResp(0).data(127,   64),
507        "b1001".U -> splitLoadResp(0).data(127,   72),
508        "b1010".U -> splitLoadResp(0).data(127,   80),
509        "b1011".U -> splitLoadResp(0).data(127,   88),
510        "b1100".U -> splitLoadResp(0).data(127,   96),
511        "b1101".U -> splitLoadResp(0).data(127,  104),
512        "b1110".U -> splitLoadResp(0).data(127,  112),
513        "b1111".U -> splitLoadResp(0).data(127,  120)
514      ))
515      val truncateData = LookupTree(req.uop.fuOpType(1, 0), List(
516        LB -> shiftData(7,  0), // lb
517        LH -> shiftData(15, 0), // lh
518        LW -> shiftData(31, 0), // lw
519        LD -> shiftData(63, 0)  // ld
520      ))
521      combinedData := rdataHelper(req.uop, truncateData(XLEN - 1, 0))
522    } .otherwise {
523      val lowAddrResult = getShiftAndTruncateData(lowResultShift, lowResultWidth, splitLoadResp(0).data)
524                            .asTypeOf(Vec(XLEN / 8, UInt(8.W)))
525      val highAddrResult = getShiftAndTruncateData(highResultShift, highResultWidth, splitLoadResp(1).data)
526                            .asTypeOf(Vec(XLEN / 8, UInt(8.W)))
527      val catResult = Wire(Vec(XLEN / 8, UInt(8.W)))
528      (0 until XLEN / 8) .map {
529        case i => {
530          when (i.U < lowResultWidth) {
531            catResult(i) := lowAddrResult(i)
532          } .otherwise {
533            catResult(i) := highAddrResult(i.U - lowResultWidth)
534          }
535        }
536      }
537      combinedData := rdataHelper(req.uop, (catResult.asUInt)(XLEN - 1, 0))
538    }
539  }
540
541  io.writeBack.valid := req_valid && (bufferState === s_wb)
542  io.writeBack.bits.uop := req.uop
543  io.writeBack.bits.uop.exceptionVec := Mux(
544    globalMMIO || globalException,
545    splitLoadResp(curPtr).uop.exceptionVec,
546    0.U.asTypeOf(ExceptionVec()) // TODO: is this ok?
547  )
548  io.writeBack.bits.uop.flushPipe := Mux(globalMMIO || globalException, false.B, true.B)
549  io.writeBack.bits.uop.replayInst := false.B
550  io.writeBack.bits.data := combinedData
551  io.writeBack.bits.debug.isMMIO := globalMMIO
552  io.writeBack.bits.debug.isPerfCnt := false.B
553  io.writeBack.bits.debug.paddr := req.paddr
554  io.writeBack.bits.debug.vaddr := req.vaddr
555
556  val flush = req_valid && req.uop.robIdx.needFlush(io.redirect)
557
558  when (flush && (bufferState =/= s_idle)) {
559    bufferState := s_idle
560    req_valid := false.B
561    curPtr := 0.U
562    unSentLoads := 0.U
563    globalException := false.B
564    globalMMIO := false.B
565  }
566
567  // NOTE: spectial case (unaligned load cross page, page fault happens in next page)
568  // if exception happens in the higher page address part, overwrite the loadExceptionBuffer vaddr
569  val overwriteExpBuf = GatedValidRegNext(req_valid && cross16BytesBoundary && globalException && (curPtr === 1.U))
570  val overwriteVaddr = GatedRegNext(splitLoadResp(curPtr).vaddr)
571  val overwriteIsHyper = GatedRegNext(splitLoadResp(curPtr).isHyper)
572  val overwriteGpaddr = GatedRegNext(splitLoadResp(curPtr).gpaddr)
573  val overwriteIsForVSnonLeafPTE = GatedRegNext(splitLoadResp(curPtr).isForVSnonLeafPTE)
574
575  io.overwriteExpBuf.valid := overwriteExpBuf
576  io.overwriteExpBuf.vaddr := overwriteVaddr
577  io.overwriteExpBuf.isHyper := overwriteIsHyper
578  io.overwriteExpBuf.gpaddr := overwriteGpaddr
579  io.overwriteExpBuf.isForVSnonLeafPTE := overwriteIsForVSnonLeafPTE
580
581  // when no exception or mmio, flush loadExceptionBuffer at s_wb
582  val flushLdExpBuff = GatedValidRegNext(req_valid && (bufferState === s_wb) && !(globalMMIO || globalException))
583  io.flushLdExpBuff := flushLdExpBuff
584
585  XSPerfAccumulate("alloc",                  RegNext(!req_valid) && req_valid)
586  XSPerfAccumulate("flush",                  flush)
587  XSPerfAccumulate("flush_idle",             flush && (bufferState === s_idle))
588  XSPerfAccumulate("flush_non_idle",         flush && (bufferState =/= s_idle))
589}