xref: /XiangShan/src/main/scala/xiangshan/frontend/IFU.scala (revision 92f36649e98514157a60868316419fa7b016adff)
1/***************************************************************************************
2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC)
3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences
4* Copyright (c) 2020-2021 Peng Cheng Laboratory
5*
6* XiangShan is licensed under Mulan PSL v2.
7* You can use this software according to the terms and conditions of the Mulan PSL v2.
8* You may obtain a copy of Mulan PSL v2 at:
9*          http://license.coscl.org.cn/MulanPSL2
10*
11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
14*
15* See the Mulan PSL v2 for more details.
16***************************************************************************************/
17
18package xiangshan.frontend
19
20import chisel3._
21import chisel3.util._
22import org.chipsalliance.cde.config.Parameters
23import utility._
24import utility.ChiselDB
25import xiangshan._
26import xiangshan.backend.GPAMemEntry
27import xiangshan.cache.mmu._
28import xiangshan.frontend.icache._
29
30trait HasInstrMMIOConst extends HasXSParameter with HasIFUConst {
31  def mmioBusWidth = 64
32  def mmioBusBytes = mmioBusWidth / 8
33  def maxInstrLen  = 32
34}
35
36trait HasIFUConst extends HasXSParameter {
37  def addrAlign(addr: UInt, bytes: Int, highest: Int): UInt =
38    Cat(addr(highest - 1, log2Ceil(bytes)), 0.U(log2Ceil(bytes).W))
39  def fetchQueueSize = 2
40
41  def getBasicBlockIdx(pc: UInt, start: UInt): UInt = {
42    val byteOffset = pc - start
43    (byteOffset - instBytes.U)(log2Ceil(PredictWidth), instOffsetBits)
44  }
45}
46
47class IfuToFtqIO(implicit p: Parameters) extends XSBundle {
48  val pdWb = Valid(new PredecodeWritebackBundle)
49}
50
51class IfuToBackendIO(implicit p: Parameters) extends XSBundle {
52  // write to backend gpaddr mem
53  val gpaddrMem_wen   = Output(Bool())
54  val gpaddrMem_waddr = Output(UInt(log2Ceil(FtqSize).W)) // Ftq Ptr
55  // 2 gpaddrs, correspond to startAddr & nextLineAddr in bundle FtqICacheInfo
56  // TODO: avoid cross page entry in Ftq
57  val gpaddrMem_wdata = Output(new GPAMemEntry)
58}
59
60class FtqInterface(implicit p: Parameters) extends XSBundle {
61  val fromFtq = Flipped(new FtqToIfuIO)
62  val toFtq   = new IfuToFtqIO
63}
64
65class UncacheInterface(implicit p: Parameters) extends XSBundle {
66  val fromUncache = Flipped(DecoupledIO(new InsUncacheResp))
67  val toUncache   = DecoupledIO(new InsUncacheReq)
68}
69
70class NewIFUIO(implicit p: Parameters) extends XSBundle {
71  val ftqInter        = new FtqInterface
72  val icacheInter     = Flipped(new IFUICacheIO)
73  val icacheStop      = Output(Bool())
74  val icachePerfInfo  = Input(new ICachePerfInfo)
75  val toIbuffer       = Decoupled(new FetchToIBuffer)
76  val toBackend       = new IfuToBackendIO
77  val uncacheInter    = new UncacheInterface
78  val frontendTrigger = Flipped(new FrontendTdataDistributeIO)
79  val rob_commits     = Flipped(Vec(CommitWidth, Valid(new RobCommitInfo)))
80  val iTLBInter       = new TlbRequestIO
81  val pmp             = new ICachePMPBundle
82  val mmioCommitRead  = new mmioCommitRead
83  val csr_fsIsOff     = Input(Bool())
84}
85
86// record the situation in which fallThruAddr falls into
87// the middle of an RVI inst
88class LastHalfInfo(implicit p: Parameters) extends XSBundle {
89  val valid    = Bool()
90  val middlePC = UInt(VAddrBits.W)
91  def matchThisBlock(startAddr: UInt) = valid && middlePC === startAddr
92}
93
94class IfuToPreDecode(implicit p: Parameters) extends XSBundle {
95  val data            = if (HasCExtension) Vec(PredictWidth + 1, UInt(16.W)) else Vec(PredictWidth, UInt(32.W))
96  val frontendTrigger = new FrontendTdataDistributeIO
97  val pc              = Vec(PredictWidth, UInt(VAddrBits.W))
98}
99
100class IfuToPredChecker(implicit p: Parameters) extends XSBundle {
101  val ftqOffset  = Valid(UInt(log2Ceil(PredictWidth).W))
102  val jumpOffset = Vec(PredictWidth, UInt(XLEN.W))
103  val target     = UInt(VAddrBits.W)
104  val instrRange = Vec(PredictWidth, Bool())
105  val instrValid = Vec(PredictWidth, Bool())
106  val pds        = Vec(PredictWidth, new PreDecodeInfo)
107  val pc         = Vec(PredictWidth, UInt(VAddrBits.W))
108  val fire_in    = Bool()
109}
110
111class FetchToIBufferDB extends Bundle {
112  val start_addr   = UInt(39.W)
113  val instr_count  = UInt(32.W)
114  val exception    = Bool()
115  val is_cache_hit = Bool()
116}
117
118class IfuWbToFtqDB extends Bundle {
119  val start_addr        = UInt(39.W)
120  val is_miss_pred      = Bool()
121  val miss_pred_offset  = UInt(32.W)
122  val checkJalFault     = Bool()
123  val checkRetFault     = Bool()
124  val checkTargetFault  = Bool()
125  val checkNotCFIFault  = Bool()
126  val checkInvalidTaken = Bool()
127}
128
129class NewIFU(implicit p: Parameters) extends XSModule
130    with HasICacheParameters
131    with HasXSParameter
132    with HasIFUConst
133    with HasPdConst
134    with HasCircularQueuePtrHelper
135    with HasPerfEvents
136    with HasTlbConst {
137  val io                       = IO(new NewIFUIO)
138  val (toFtq, fromFtq)         = (io.ftqInter.toFtq, io.ftqInter.fromFtq)
139  val fromICache               = io.icacheInter.resp
140  val (toUncache, fromUncache) = (io.uncacheInter.toUncache, io.uncacheInter.fromUncache)
141
142  def isCrossLineReq(start: UInt, end: UInt): Bool = start(blockOffBits) ^ end(blockOffBits)
143
144  def numOfStage = 3
145  // equal lower_result overflow bit
146  def PcCutPoint = (VAddrBits / 4) - 1
147  def CatPC(low: UInt, high: UInt, high1: UInt): UInt =
148    Mux(
149      low(PcCutPoint),
150      Cat(high1, low(PcCutPoint - 1, 0)),
151      Cat(high, low(PcCutPoint - 1, 0))
152    )
153  def CatPC(lowVec: Vec[UInt], high: UInt, high1: UInt): Vec[UInt] = VecInit(lowVec.map(CatPC(_, high, high1)))
154  require(numOfStage > 1, "BPU numOfStage must be greater than 1")
155  val topdown_stages = RegInit(VecInit(Seq.fill(numOfStage)(0.U.asTypeOf(new FrontendTopDownBundle))))
156  // bubble events in IFU, only happen in stage 1
157  val icacheMissBubble = Wire(Bool())
158  val itlbMissBubble   = Wire(Bool())
159
160  // only driven by clock, not valid-ready
161  topdown_stages(0) := fromFtq.req.bits.topdown_info
162  for (i <- 1 until numOfStage) {
163    topdown_stages(i) := topdown_stages(i - 1)
164  }
165  when(icacheMissBubble) {
166    topdown_stages(1).reasons(TopDownCounters.ICacheMissBubble.id) := true.B
167  }
168  when(itlbMissBubble) {
169    topdown_stages(1).reasons(TopDownCounters.ITLBMissBubble.id) := true.B
170  }
171  io.toIbuffer.bits.topdown_info := topdown_stages(numOfStage - 1)
172  when(fromFtq.topdown_redirect.valid) {
173    // only redirect from backend, IFU redirect itself is handled elsewhere
174    when(fromFtq.topdown_redirect.bits.debugIsCtrl) {
175      /*
176      for (i <- 0 until numOfStage) {
177        topdown_stages(i).reasons(TopDownCounters.ControlRedirectBubble.id) := true.B
178      }
179      io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.ControlRedirectBubble.id) := true.B
180       */
181      when(fromFtq.topdown_redirect.bits.ControlBTBMissBubble) {
182        for (i <- 0 until numOfStage) {
183          topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B
184        }
185        io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.BTBMissBubble.id) := true.B
186      }.elsewhen(fromFtq.topdown_redirect.bits.TAGEMissBubble) {
187        for (i <- 0 until numOfStage) {
188          topdown_stages(i).reasons(TopDownCounters.TAGEMissBubble.id) := true.B
189        }
190        io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.TAGEMissBubble.id) := true.B
191      }.elsewhen(fromFtq.topdown_redirect.bits.SCMissBubble) {
192        for (i <- 0 until numOfStage) {
193          topdown_stages(i).reasons(TopDownCounters.SCMissBubble.id) := true.B
194        }
195        io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.SCMissBubble.id) := true.B
196      }.elsewhen(fromFtq.topdown_redirect.bits.ITTAGEMissBubble) {
197        for (i <- 0 until numOfStage) {
198          topdown_stages(i).reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B
199        }
200        io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B
201      }.elsewhen(fromFtq.topdown_redirect.bits.RASMissBubble) {
202        for (i <- 0 until numOfStage) {
203          topdown_stages(i).reasons(TopDownCounters.RASMissBubble.id) := true.B
204        }
205        io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.RASMissBubble.id) := true.B
206      }
207    }.elsewhen(fromFtq.topdown_redirect.bits.debugIsMemVio) {
208      for (i <- 0 until numOfStage) {
209        topdown_stages(i).reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B
210      }
211      io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B
212    }.otherwise {
213      for (i <- 0 until numOfStage) {
214        topdown_stages(i).reasons(TopDownCounters.OtherRedirectBubble.id) := true.B
215      }
216      io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.OtherRedirectBubble.id) := true.B
217    }
218  }
219
220  class TlbExept(implicit p: Parameters) extends XSBundle {
221    val pageFault   = Bool()
222    val accessFault = Bool()
223    val mmio        = Bool()
224  }
225
226  val preDecoder = Module(new PreDecode)
227
228  val predChecker     = Module(new PredChecker)
229  val frontendTrigger = Module(new FrontendTrigger)
230  val (checkerIn, checkerOutStage1, checkerOutStage2) =
231    (predChecker.io.in, predChecker.io.out.stage1Out, predChecker.io.out.stage2Out)
232
233  /**
234    ******************************************************************************
235    * IFU Stage 0
236    * - send cacheline fetch request to ICacheMainPipe
237    ******************************************************************************
238    */
239
240  val f0_valid      = fromFtq.req.valid
241  val f0_ftq_req    = fromFtq.req.bits
242  val f0_doubleLine = fromFtq.req.bits.crossCacheline
243  val f0_vSetIdx    = VecInit(get_idx(f0_ftq_req.startAddr), get_idx(f0_ftq_req.nextlineStart))
244  val f0_fire       = fromFtq.req.fire
245
246  val f0_flush, f1_flush, f2_flush, f3_flush                                     = WireInit(false.B)
247  val from_bpu_f0_flush, from_bpu_f1_flush, from_bpu_f2_flush, from_bpu_f3_flush = WireInit(false.B)
248
249  from_bpu_f0_flush := fromFtq.flushFromBpu.shouldFlushByStage2(f0_ftq_req.ftqIdx) ||
250    fromFtq.flushFromBpu.shouldFlushByStage3(f0_ftq_req.ftqIdx)
251
252  val wb_redirect, mmio_redirect, backend_redirect = WireInit(false.B)
253  val f3_wb_not_flush                              = WireInit(false.B)
254
255  backend_redirect := fromFtq.redirect.valid
256  f3_flush         := backend_redirect || (wb_redirect && !f3_wb_not_flush)
257  f2_flush         := backend_redirect || mmio_redirect || wb_redirect
258  f1_flush         := f2_flush || from_bpu_f1_flush
259  f0_flush         := f1_flush || from_bpu_f0_flush
260
261  val f1_ready, f2_ready, f3_ready = WireInit(false.B)
262
263  fromFtq.req.ready := f1_ready && io.icacheInter.icacheReady
264
265  when(wb_redirect) {
266    when(f3_wb_not_flush) {
267      topdown_stages(2).reasons(TopDownCounters.BTBMissBubble.id) := true.B
268    }
269    for (i <- 0 until numOfStage - 1) {
270      topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B
271    }
272  }
273
274  /** <PERF> f0 fetch bubble */
275
276  XSPerfAccumulate("fetch_bubble_ftq_not_valid", !fromFtq.req.valid && fromFtq.req.ready)
277  // XSPerfAccumulate("fetch_bubble_pipe_stall",    f0_valid && toICache(0).ready && toICache(1).ready && !f1_ready )
278  // XSPerfAccumulate("fetch_bubble_icache_0_busy",   f0_valid && !toICache(0).ready  )
279  // XSPerfAccumulate("fetch_bubble_icache_1_busy",   f0_valid && !toICache(1).ready  )
280  XSPerfAccumulate("fetch_flush_backend_redirect", backend_redirect)
281  XSPerfAccumulate("fetch_flush_wb_redirect", wb_redirect)
282  XSPerfAccumulate("fetch_flush_bpu_f1_flush", from_bpu_f1_flush)
283  XSPerfAccumulate("fetch_flush_bpu_f0_flush", from_bpu_f0_flush)
284
285  /**
286    ******************************************************************************
287    * IFU Stage 1
288    * - calculate pc/half_pc/cut_ptr for every instruction
289    ******************************************************************************
290    */
291
292  val f1_valid   = RegInit(false.B)
293  val f1_ftq_req = RegEnable(f0_ftq_req, f0_fire)
294  // val f1_situation  = RegEnable(f0_situation,  f0_fire)
295  val f1_doubleLine = RegEnable(f0_doubleLine, f0_fire)
296  val f1_vSetIdx    = RegEnable(f0_vSetIdx, f0_fire)
297  val f1_fire       = f1_valid && f2_ready
298
299  f1_ready := f1_fire || !f1_valid
300
301  from_bpu_f1_flush := fromFtq.flushFromBpu.shouldFlushByStage3(f1_ftq_req.ftqIdx) && f1_valid
302  // from_bpu_f1_flush := false.B
303
304  when(f1_flush)(f1_valid := false.B)
305    .elsewhen(f0_fire && !f0_flush)(f1_valid := true.B)
306    .elsewhen(f1_fire)(f1_valid := false.B)
307
308  val f1_pc_high       = f1_ftq_req.startAddr(VAddrBits - 1, PcCutPoint)
309  val f1_pc_high_plus1 = f1_pc_high + 1.U
310
311  /**
312   * In order to reduce power consumption, avoid calculating the full PC value in the first level.
313   * code of original logic, this code has been deprecated
314   * val f1_pc                 = VecInit(f1_pc_lower_result.map{ i =>
315   *  Mux(i(f1_pc_adder_cut_point), Cat(f1_pc_high_plus1,i(f1_pc_adder_cut_point-1,0)), Cat(f1_pc_high,i(f1_pc_adder_cut_point-1,0)))})
316   */
317  val f1_pc_lower_result = VecInit((0 until PredictWidth).map(i =>
318    Cat(0.U(1.W), f1_ftq_req.startAddr(PcCutPoint - 1, 0)) + (i * 2).U
319  )) // cat with overflow bit
320
321  val f1_pc = CatPC(f1_pc_lower_result, f1_pc_high, f1_pc_high_plus1)
322
323  val f1_half_snpc_lower_result = VecInit((0 until PredictWidth).map(i =>
324    Cat(0.U(1.W), f1_ftq_req.startAddr(PcCutPoint - 1, 0)) + ((i + 2) * 2).U
325  )) // cat with overflow bit
326  val f1_half_snpc = CatPC(f1_half_snpc_lower_result, f1_pc_high, f1_pc_high_plus1)
327
328  if (env.FPGAPlatform) {
329    val f1_pc_diff        = VecInit((0 until PredictWidth).map(i => f1_ftq_req.startAddr + (i * 2).U))
330    val f1_half_snpc_diff = VecInit((0 until PredictWidth).map(i => f1_ftq_req.startAddr + ((i + 2) * 2).U))
331
332    XSError(
333      f1_pc.zip(f1_pc_diff).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _),
334      "f1_half_snpc adder cut fail"
335    )
336    XSError(
337      f1_half_snpc.zip(f1_half_snpc_diff).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _),
338      "f1_half_snpc adder cut fail"
339    )
340  }
341
342  val f1_cut_ptr = if (HasCExtension)
343    VecInit((0 until PredictWidth + 1).map(i => Cat(0.U(2.W), f1_ftq_req.startAddr(blockOffBits - 1, 1)) + i.U))
344  else VecInit((0 until PredictWidth).map(i => Cat(0.U(2.W), f1_ftq_req.startAddr(blockOffBits - 1, 2)) + i.U))
345
346  /**
347    ******************************************************************************
348    * IFU Stage 2
349    * - icache response data (latched for pipeline stop)
350    * - generate exceprion bits for every instruciton (page fault/access fault/mmio)
351    * - generate predicted instruction range (1 means this instruciton is in this fetch packet)
352    * - cut data from cachlines to packet instruction code
353    * - instruction predecode and RVC expand
354    ******************************************************************************
355    */
356
357  val icacheRespAllValid = WireInit(false.B)
358
359  val f2_valid   = RegInit(false.B)
360  val f2_ftq_req = RegEnable(f1_ftq_req, f1_fire)
361  // val f2_situation  = RegEnable(f1_situation,  f1_fire)
362  val f2_doubleLine = RegEnable(f1_doubleLine, f1_fire)
363  val f2_vSetIdx    = RegEnable(f1_vSetIdx, f1_fire)
364  val f2_fire       = f2_valid && f3_ready && icacheRespAllValid
365
366  f2_ready := f2_fire || !f2_valid
367  // TODO: addr compare may be timing critical
368  val f2_icache_all_resp_wire =
369    fromICache(0).valid && (fromICache(0).bits.vaddr === f2_ftq_req.startAddr) && ((fromICache(1).valid && (fromICache(
370      1
371    ).bits.vaddr === f2_ftq_req.nextlineStart)) || !f2_doubleLine)
372  val f2_icache_all_resp_reg = RegInit(false.B)
373
374  icacheRespAllValid := f2_icache_all_resp_reg || f2_icache_all_resp_wire
375
376  icacheMissBubble := io.icacheInter.topdownIcacheMiss
377  itlbMissBubble   := io.icacheInter.topdownItlbMiss
378
379  io.icacheStop := !f3_ready
380
381  when(f2_flush)(f2_icache_all_resp_reg := false.B)
382    .elsewhen(f2_valid && f2_icache_all_resp_wire && !f3_ready)(f2_icache_all_resp_reg := true.B)
383    .elsewhen(f2_fire && f2_icache_all_resp_reg)(f2_icache_all_resp_reg := false.B)
384
385  when(f2_flush)(f2_valid := false.B)
386    .elsewhen(f1_fire && !f1_flush)(f2_valid := true.B)
387    .elsewhen(f2_fire)(f2_valid := false.B)
388
389  val f2_exception_in     = VecInit((0 until PortNumber).map(i => fromICache(i).bits.exception))
390  val f2_backendException = fromICache(0).bits.backendException
391  // paddr and gpaddr of [startAddr, nextLineAddr]
392  val f2_paddrs            = VecInit((0 until PortNumber).map(i => fromICache(i).bits.paddr))
393  val f2_gpaddr            = fromICache(0).bits.gpaddr
394  val f2_isForVSnonLeafPTE = fromICache(0).bits.isForVSnonLeafPTE
395
396  // FIXME: raise af if one fetch block crosses the cacheable-noncacheable boundary, might not correct
397  val f2_mmio_mismatch_exception = VecInit(Seq.fill(2)(Mux(
398    // not double-line, skip check
399    !fromICache(1).valid ||
400      // is double-line, ask for consistent pmp_mmio and itlb_pbmt value
401      fromICache(0).bits.pmp_mmio === fromICache(1).bits.pmp_mmio &&
402      fromICache(0).bits.itlb_pbmt === fromICache(1).bits.itlb_pbmt,
403    ExceptionType.none,
404    ExceptionType.af
405  )))
406
407  // merge exceptions
408  val f2_exception = ExceptionType.merge(f2_exception_in, f2_mmio_mismatch_exception)
409
410  // we need only the first port, as the second is asked to be the same
411  val f2_pmp_mmio  = fromICache(0).bits.pmp_mmio
412  val f2_itlb_pbmt = fromICache(0).bits.itlb_pbmt
413
414  /**
415    * reduce the number of registers, origin code
416    * f2_pc = RegEnable(f1_pc, f1_fire)
417    */
418  val f2_pc_lower_result = RegEnable(f1_pc_lower_result, f1_fire)
419  val f2_pc_high         = RegEnable(f1_pc_high, f1_fire)
420  val f2_pc_high_plus1   = RegEnable(f1_pc_high_plus1, f1_fire)
421  val f2_pc              = CatPC(f2_pc_lower_result, f2_pc_high, f2_pc_high_plus1)
422
423  val f2_cut_ptr      = RegEnable(f1_cut_ptr, f1_fire)
424  val f2_resend_vaddr = RegEnable(f1_ftq_req.startAddr + 2.U, f1_fire)
425
426  def isNextLine(pc: UInt, startAddr: UInt) =
427    startAddr(blockOffBits) ^ pc(blockOffBits)
428
429  def isLastInLine(pc: UInt) =
430    pc(blockOffBits - 1, 0) === "b111110".U
431
432  val f2_foldpc = VecInit(f2_pc.map(i => XORFold(i(VAddrBits - 1, 1), MemPredPCWidth)))
433  val f2_jump_range =
434    Fill(PredictWidth, !f2_ftq_req.ftqOffset.valid) | Fill(PredictWidth, 1.U(1.W)) >> ~f2_ftq_req.ftqOffset.bits
435  val f2_ftr_range = Fill(PredictWidth, f2_ftq_req.ftqOffset.valid) | Fill(PredictWidth, 1.U(1.W)) >> ~getBasicBlockIdx(
436    f2_ftq_req.nextStartAddr,
437    f2_ftq_req.startAddr
438  )
439  val f2_instr_range = f2_jump_range & f2_ftr_range
440  val f2_exception_vec = VecInit((0 until PredictWidth).map(i =>
441    MuxCase(
442      ExceptionType.none,
443      Seq(
444        !isNextLine(f2_pc(i), f2_ftq_req.startAddr)                   -> f2_exception(0),
445        (isNextLine(f2_pc(i), f2_ftq_req.startAddr) && f2_doubleLine) -> f2_exception(1)
446      )
447    )
448  ))
449  val f2_perf_info = io.icachePerfInfo
450
451  def cut(cacheline: UInt, cutPtr: Vec[UInt]): Vec[UInt] = {
452    require(HasCExtension)
453    // if(HasCExtension){
454    val result  = Wire(Vec(PredictWidth + 1, UInt(16.W)))
455    val dataVec = cacheline.asTypeOf(Vec(blockBytes, UInt(16.W))) // 32 16-bit data vector
456    (0 until PredictWidth + 1).foreach(i =>
457      result(i) := dataVec(cutPtr(i)) // the max ptr is 3*blockBytes/4-1
458    )
459    result
460    // } else {
461    //   val result   = Wire(Vec(PredictWidth, UInt(32.W)) )
462    //   val dataVec  = cacheline.asTypeOf(Vec(blockBytes * 2/ 4, UInt(32.W)))
463    //   (0 until PredictWidth).foreach( i =>
464    //     result(i) := dataVec(cutPtr(i))
465    //   )
466    //   result
467    // }
468  }
469
470  val f2_cache_response_data = fromICache.map(_.bits.data)
471  /* NOTE: the following `Cat(_data(0), _data(0))` *is* intentional, _data(1) is technically useless in current design.
472   * Explanation:
473   * In the old design, IFU is responsible for selecting requested data from two adjacent cachelines,
474   *    so IFU has to receive 2*64B (2cacheline * 64B) data from ICache, and do `Cat(_data(1), _data(0))` here.
475   * However, a fetch block is 34B at max, sending 2*64B is quiet a waste of power.
476   * In current design (2024.06~), ICacheDataArray is responsible for selecting data from two adjacent cachelines,
477   *    so IFU only need to receive 40B (5bank * 8B) valid data, and use only the first port is enough.
478   * For example, when pc falls on the 6th bank in cacheline0(so this is a doubleline request):
479   *                                MSB                                         LSB
480   *                  cacheline 1 || 1-7 | 1-6 | 1-5 | 1-4 | 1-3 | 1-2 | 1-1 | 1-0 ||
481   *                  cacheline 0 || 0-7 | 0-6 | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | 0-0 ||
482   *    and ICacheDataArray will respond:
483   *      fromICache(0).bits.data || 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 ||
484   *    therefore simply make a copy of the response and `Cat` together, and obtain the requested data from centre:
485   *          f2_data_2_cacheline || 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 | 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 ||
486   *                                             requested data: ^-----------------------------^
487   * For another example, pc falls on the 1st bank in cacheline 0, we have:
488   *      fromICache(0).bits.data || xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx ||
489   *          f2_data_2_cacheline || xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx | xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx ||
490   *                                                                           requested data: ^-----------------------------^
491   * Each "| x-y |" block is a 8B bank from cacheline(x).bank(y)
492   * Please also refer to:
493   * - DataArray selects data:
494   * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICache.scala#L355-L381
495   * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICache.scala#L149-L161
496   * - ICache respond to IFU:
497   * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICacheMainPipe.scala#L473
498   */
499  val f2_data_2_cacheline = Cat(f2_cache_response_data(0), f2_cache_response_data(0))
500
501  val f2_cut_data = cut(f2_data_2_cacheline, f2_cut_ptr)
502
503  /** predecode (include RVC expander) */
504  // preDecoderRegIn.data := f2_reg_cut_data
505  // preDecoderRegInIn.frontendTrigger := io.frontendTrigger
506  // preDecoderRegInIn.csrTriggerEnable := io.csrTriggerEnable
507  // preDecoderRegIn.pc  := f2_pc
508
509  val preDecoderIn = preDecoder.io.in
510  preDecoderIn.valid                := f2_valid
511  preDecoderIn.bits.data            := f2_cut_data
512  preDecoderIn.bits.frontendTrigger := io.frontendTrigger
513  preDecoderIn.bits.pc              := f2_pc
514  val preDecoderOut = preDecoder.io.out
515
516  // val f2_expd_instr     = preDecoderOut.expInstr
517  val f2_instr        = preDecoderOut.instr
518  val f2_pd           = preDecoderOut.pd
519  val f2_jump_offset  = preDecoderOut.jumpOffset
520  val f2_hasHalfValid = preDecoderOut.hasHalfValid
521  /* if there is a cross-page RVI instruction, and the former page has no exception,
522   * whether it has exception is actually depends on the latter page
523   */
524  val f2_crossPage_exception_vec = VecInit((0 until PredictWidth).map { i =>
525    Mux(
526      isLastInLine(f2_pc(i)) && !f2_pd(i).isRVC && f2_doubleLine && !ExceptionType.hasException(f2_exception(0)),
527      f2_exception(1),
528      ExceptionType.none
529    )
530  })
531  XSPerfAccumulate("fetch_bubble_icache_not_resp", f2_valid && !icacheRespAllValid)
532
533  /**
534    ******************************************************************************
535    * IFU Stage 3
536    * - handle MMIO instruciton
537    *  -send request to Uncache fetch Unit
538    *  -every packet include 1 MMIO instruction
539    *  -MMIO instructions will stop fetch pipeline until commiting from RoB
540    *  -flush to snpc (send ifu_redirect to Ftq)
541    * - Ibuffer enqueue
542    * - check predict result in Frontend (jalFault/retFault/notCFIFault/invalidTakenFault/targetFault)
543    * - handle last half RVI instruction
544    ******************************************************************************
545    */
546
547  val expanders = Seq.fill(PredictWidth)(Module(new RVCExpander))
548
549  val f3_valid   = RegInit(false.B)
550  val f3_ftq_req = RegEnable(f2_ftq_req, f2_fire)
551  // val f3_situation      = RegEnable(f2_situation,  f2_fire)
552  val f3_doubleLine = RegEnable(f2_doubleLine, f2_fire)
553  val f3_fire       = io.toIbuffer.fire
554
555  val f3_cut_data = RegEnable(f2_cut_data, f2_fire)
556
557  val f3_exception        = RegEnable(f2_exception, f2_fire)
558  val f3_pmp_mmio         = RegEnable(f2_pmp_mmio, f2_fire)
559  val f3_itlb_pbmt        = RegEnable(f2_itlb_pbmt, f2_fire)
560  val f3_backendException = RegEnable(f2_backendException, f2_fire)
561
562  val f3_instr = RegEnable(f2_instr, f2_fire)
563
564  expanders.zipWithIndex.foreach { case (expander, i) =>
565    expander.io.in      := f3_instr(i)
566    expander.io.fsIsOff := io.csr_fsIsOff
567  }
568  // Use expanded instruction only when input is legal.
569  // Otherwise use origin illegal RVC instruction.
570  val f3_expd_instr = VecInit(expanders.map { expander: RVCExpander =>
571    Mux(expander.io.ill, expander.io.in, expander.io.out.bits)
572  })
573  val f3_ill = VecInit(expanders.map(_.io.ill))
574
575  val f3_pd_wire                 = RegEnable(f2_pd, f2_fire)
576  val f3_pd                      = WireInit(f3_pd_wire)
577  val f3_jump_offset             = RegEnable(f2_jump_offset, f2_fire)
578  val f3_exception_vec           = RegEnable(f2_exception_vec, f2_fire)
579  val f3_crossPage_exception_vec = RegEnable(f2_crossPage_exception_vec, f2_fire)
580
581  val f3_pc_lower_result = RegEnable(f2_pc_lower_result, f2_fire)
582  val f3_pc_high         = RegEnable(f2_pc_high, f2_fire)
583  val f3_pc_high_plus1   = RegEnable(f2_pc_high_plus1, f2_fire)
584  val f3_pc              = CatPC(f3_pc_lower_result, f3_pc_high, f3_pc_high_plus1)
585
586  val f3_pc_last_lower_result_plus2 = RegEnable(f2_pc_lower_result(PredictWidth - 1) + 2.U, f2_fire)
587  val f3_pc_last_lower_result_plus4 = RegEnable(f2_pc_lower_result(PredictWidth - 1) + 4.U, f2_fire)
588  // val f3_half_snpc      = RegEnable(f2_half_snpc,   f2_fire)
589
590  /**
591    ***********************************************************************
592    * Half snpc(i) is larger than pc(i) by 4. Using pc to calculate half snpc may be a good choice.
593    ***********************************************************************
594    */
595  val f3_half_snpc = Wire(Vec(PredictWidth, UInt(VAddrBits.W)))
596  for (i <- 0 until PredictWidth) {
597    if (i == (PredictWidth - 2)) {
598      f3_half_snpc(i) := CatPC(f3_pc_last_lower_result_plus2, f3_pc_high, f3_pc_high_plus1)
599    } else if (i == (PredictWidth - 1)) {
600      f3_half_snpc(i) := CatPC(f3_pc_last_lower_result_plus4, f3_pc_high, f3_pc_high_plus1)
601    } else {
602      f3_half_snpc(i) := f3_pc(i + 2)
603    }
604  }
605
606  val f3_instr_range       = RegEnable(f2_instr_range, f2_fire)
607  val f3_foldpc            = RegEnable(f2_foldpc, f2_fire)
608  val f3_hasHalfValid      = RegEnable(f2_hasHalfValid, f2_fire)
609  val f3_paddrs            = RegEnable(f2_paddrs, f2_fire)
610  val f3_gpaddr            = RegEnable(f2_gpaddr, f2_fire)
611  val f3_isForVSnonLeafPTE = RegEnable(f2_isForVSnonLeafPTE, f2_fire)
612  val f3_resend_vaddr      = RegEnable(f2_resend_vaddr, f2_fire)
613
614  // Expand 1 bit to prevent overflow when assert
615  val f3_ftq_req_startAddr     = Cat(0.U(1.W), f3_ftq_req.startAddr)
616  val f3_ftq_req_nextStartAddr = Cat(0.U(1.W), f3_ftq_req.nextStartAddr)
617  // brType, isCall and isRet generation is delayed to f3 stage
618  val f3Predecoder = Module(new F3Predecoder)
619
620  f3Predecoder.io.in.instr := f3_instr
621
622  f3_pd.zipWithIndex.map { case (pd, i) =>
623    pd.brType := f3Predecoder.io.out.pd(i).brType
624    pd.isCall := f3Predecoder.io.out.pd(i).isCall
625    pd.isRet  := f3Predecoder.io.out.pd(i).isRet
626  }
627
628  val f3PdDiff = f3_pd_wire.zip(f3_pd).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _)
629  XSError(f3_valid && f3PdDiff, "f3 pd diff")
630
631  when(f3_valid && !f3_ftq_req.ftqOffset.valid) {
632    assert(
633      f3_ftq_req_startAddr + (2 * PredictWidth).U >= f3_ftq_req_nextStartAddr,
634      s"More tha ${2 * PredictWidth} Bytes fetch is not allowed!"
635    )
636  }
637
638  /*** MMIO State Machine***/
639  val f3_mmio_data                  = Reg(Vec(2, UInt(16.W)))
640  val mmio_is_RVC                   = RegInit(false.B)
641  val mmio_resend_addr              = RegInit(0.U(PAddrBits.W))
642  val mmio_resend_exception         = RegInit(0.U(ExceptionType.width.W))
643  val mmio_resend_gpaddr            = RegInit(0.U(GPAddrBits.W))
644  val mmio_resend_isForVSnonLeafPTE = RegInit(false.B)
645
646  // last instuction finish
647  val is_first_instr = RegInit(true.B)
648
649  /*** Determine whether the MMIO instruction is executable based on the previous prediction block ***/
650  io.mmioCommitRead.mmioFtqPtr := RegNext(f3_ftq_req.ftqIdx - 1.U)
651
652  val m_idle :: m_waitLastCmt :: m_sendReq :: m_waitResp :: m_sendTLB :: m_tlbResp :: m_sendPMP :: m_resendReq :: m_waitResendResp :: m_waitCommit :: m_commited :: Nil =
653    Enum(11)
654  val mmio_state = RegInit(m_idle)
655
656  // do mmio fetch only when pmp/pbmt shows it is a uncacheable address and no exception occurs
657  /* FIXME: we do not distinguish pbmt is NC or IO now
658   *        but we actually can do speculative execution if pbmt is NC, maybe fix this later for performance
659   */
660  val f3_req_is_mmio =
661    f3_valid && (f3_pmp_mmio || Pbmt.isUncache(f3_itlb_pbmt)) && !ExceptionType.hasException(f3_exception)
662  val mmio_commit = VecInit(io.rob_commits.map { commit =>
663    commit.valid && commit.bits.ftqIdx === f3_ftq_req.ftqIdx && commit.bits.ftqOffset === 0.U
664  }).asUInt.orR
665  val f3_mmio_req_commit = f3_req_is_mmio && mmio_state === m_commited
666
667  val f3_mmio_to_commit      = f3_req_is_mmio && mmio_state === m_waitCommit
668  val f3_mmio_to_commit_next = RegNext(f3_mmio_to_commit)
669  val f3_mmio_can_go         = f3_mmio_to_commit && !f3_mmio_to_commit_next
670
671  val fromFtqRedirectReg = Wire(fromFtq.redirect.cloneType)
672  fromFtqRedirectReg.bits := RegEnable(
673    fromFtq.redirect.bits,
674    0.U.asTypeOf(fromFtq.redirect.bits),
675    fromFtq.redirect.valid
676  )
677  fromFtqRedirectReg.valid := RegNext(fromFtq.redirect.valid, init = false.B)
678  val mmioF3Flush           = RegNext(f3_flush, init = false.B)
679  val f3_ftq_flush_self     = fromFtqRedirectReg.valid && RedirectLevel.flushItself(fromFtqRedirectReg.bits.level)
680  val f3_ftq_flush_by_older = fromFtqRedirectReg.valid && isBefore(fromFtqRedirectReg.bits.ftqIdx, f3_ftq_req.ftqIdx)
681
682  val f3_need_not_flush = f3_req_is_mmio && fromFtqRedirectReg.valid && !f3_ftq_flush_self && !f3_ftq_flush_by_older
683
684  /**
685    **********************************************************************************
686    * We want to defer instruction fetching when encountering MMIO instructions to ensure that the MMIO region is not negatively impacted.
687    * This is the exception when the first instruction is an MMIO instruction.
688    **********************************************************************************
689    */
690  when(is_first_instr && f3_fire) {
691    is_first_instr := false.B
692  }
693
694  when(f3_flush && !f3_req_is_mmio)(f3_valid := false.B)
695    .elsewhen(mmioF3Flush && f3_req_is_mmio && !f3_need_not_flush)(f3_valid := false.B)
696    .elsewhen(f2_fire && !f2_flush)(f3_valid := true.B)
697    .elsewhen(io.toIbuffer.fire && !f3_req_is_mmio)(f3_valid := false.B)
698    .elsewhen(f3_req_is_mmio && f3_mmio_req_commit)(f3_valid := false.B)
699
700  val f3_mmio_use_seq_pc = RegInit(false.B)
701
702  val (redirect_ftqIdx, redirect_ftqOffset) = (fromFtqRedirectReg.bits.ftqIdx, fromFtqRedirectReg.bits.ftqOffset)
703  val redirect_mmio_req =
704    fromFtqRedirectReg.valid && redirect_ftqIdx === f3_ftq_req.ftqIdx && redirect_ftqOffset === 0.U
705
706  when(RegNext(f2_fire && !f2_flush) && f3_req_is_mmio)(f3_mmio_use_seq_pc := true.B)
707    .elsewhen(redirect_mmio_req)(f3_mmio_use_seq_pc := false.B)
708
709  f3_ready := (io.toIbuffer.ready && (f3_mmio_req_commit || !f3_req_is_mmio)) || !f3_valid
710
711  // mmio state machine
712  switch(mmio_state) {
713    is(m_idle) {
714      when(f3_req_is_mmio) {
715        mmio_state := m_waitLastCmt
716      }
717    }
718
719    is(m_waitLastCmt) {
720      when(is_first_instr) {
721        mmio_state := m_sendReq
722      }.otherwise {
723        mmio_state := Mux(io.mmioCommitRead.mmioLastCommit, m_sendReq, m_waitLastCmt)
724      }
725    }
726
727    is(m_sendReq) {
728      mmio_state := Mux(toUncache.fire, m_waitResp, m_sendReq)
729    }
730
731    is(m_waitResp) {
732      when(fromUncache.fire) {
733        val isRVC      = fromUncache.bits.data(1, 0) =/= 3.U
734        val needResend = !isRVC && f3_paddrs(0)(2, 1) === 3.U
735        mmio_state      := Mux(needResend, m_sendTLB, m_waitCommit)
736        mmio_is_RVC     := isRVC
737        f3_mmio_data(0) := fromUncache.bits.data(15, 0)
738        f3_mmio_data(1) := fromUncache.bits.data(31, 16)
739      }
740    }
741
742    is(m_sendTLB) {
743      mmio_state := Mux(io.iTLBInter.req.fire, m_tlbResp, m_sendTLB)
744    }
745
746    is(m_tlbResp) {
747      when(io.iTLBInter.resp.fire) {
748        // we are using a blocked tlb, so resp.fire must have !resp.bits.miss
749        assert(!io.iTLBInter.resp.bits.miss, "blocked mode iTLB miss when resp.fire")
750        val tlb_exception = ExceptionType.fromTlbResp(io.iTLBInter.resp.bits)
751        // if itlb re-check respond pbmt mismatch with previous check, must be access fault
752        val pbmt_mismatch_exception = Mux(
753          io.iTLBInter.resp.bits.pbmt(0) =/= f3_itlb_pbmt,
754          ExceptionType.af,
755          ExceptionType.none
756        )
757        val exception = ExceptionType.merge(tlb_exception, pbmt_mismatch_exception)
758        // if tlb has exception, abort checking pmp, just send instr & exception to ibuffer and wait for commit
759        mmio_state := Mux(ExceptionType.hasException(exception), m_waitCommit, m_sendPMP)
760        // also save itlb response
761        mmio_resend_addr              := io.iTLBInter.resp.bits.paddr(0)
762        mmio_resend_exception         := exception
763        mmio_resend_gpaddr            := io.iTLBInter.resp.bits.gpaddr(0)
764        mmio_resend_isForVSnonLeafPTE := io.iTLBInter.resp.bits.isForVSnonLeafPTE(0)
765      }
766    }
767
768    is(m_sendPMP) {
769      val pmp_exception = ExceptionType.fromPMPResp(io.pmp.resp)
770      // if pmp re-check respond mismatch with previous check, must be access fault
771      val mmio_mismatch_exception = Mux(
772        io.pmp.resp.mmio =/= f3_pmp_mmio,
773        ExceptionType.af,
774        ExceptionType.none
775      )
776      val exception = ExceptionType.merge(pmp_exception, mmio_mismatch_exception)
777      // if pmp has exception, abort sending request, just send instr & exception to ibuffer and wait for commit
778      mmio_state := Mux(ExceptionType.hasException(exception), m_waitCommit, m_resendReq)
779      // also save pmp response
780      mmio_resend_exception := exception
781    }
782
783    is(m_resendReq) {
784      mmio_state := Mux(toUncache.fire, m_waitResendResp, m_resendReq)
785    }
786
787    is(m_waitResendResp) {
788      when(fromUncache.fire) {
789        mmio_state      := m_waitCommit
790        f3_mmio_data(1) := fromUncache.bits.data(15, 0)
791      }
792    }
793
794    is(m_waitCommit) {
795      mmio_state := Mux(mmio_commit, m_commited, m_waitCommit)
796    }
797
798    // normal mmio instruction
799    is(m_commited) {
800      mmio_state                    := m_idle
801      mmio_is_RVC                   := false.B
802      mmio_resend_addr              := 0.U
803      mmio_resend_exception         := ExceptionType.none
804      mmio_resend_gpaddr            := 0.U
805      mmio_resend_isForVSnonLeafPTE := false.B
806    }
807  }
808
809  // Exception or flush by older branch prediction
810  // Condition is from RegNext(fromFtq.redirect), 1 cycle after backend rediect
811  when(f3_ftq_flush_self || f3_ftq_flush_by_older) {
812    mmio_state                    := m_idle
813    mmio_is_RVC                   := false.B
814    mmio_resend_addr              := 0.U
815    mmio_resend_exception         := ExceptionType.none
816    mmio_resend_gpaddr            := 0.U
817    mmio_resend_isForVSnonLeafPTE := false.B
818    f3_mmio_data.map(_ := 0.U)
819  }
820
821  toUncache.valid     := ((mmio_state === m_sendReq) || (mmio_state === m_resendReq)) && f3_req_is_mmio
822  toUncache.bits.addr := Mux(mmio_state === m_resendReq, mmio_resend_addr, f3_paddrs(0))
823  fromUncache.ready   := true.B
824
825  // send itlb request in m_sendTLB state
826  io.iTLBInter.req.valid                   := (mmio_state === m_sendTLB) && f3_req_is_mmio
827  io.iTLBInter.req.bits.size               := 3.U
828  io.iTLBInter.req.bits.vaddr              := f3_resend_vaddr
829  io.iTLBInter.req.bits.debug.pc           := f3_resend_vaddr
830  io.iTLBInter.req.bits.cmd                := TlbCmd.exec
831  io.iTLBInter.req.bits.isPrefetch         := false.B
832  io.iTLBInter.req.bits.kill               := false.B // IFU use itlb for mmio, doesn't need sync, set it to false
833  io.iTLBInter.req.bits.no_translate       := false.B
834  io.iTLBInter.req.bits.fullva             := 0.U
835  io.iTLBInter.req.bits.checkfullva        := false.B
836  io.iTLBInter.req.bits.hyperinst          := DontCare
837  io.iTLBInter.req.bits.hlvx               := DontCare
838  io.iTLBInter.req.bits.memidx             := DontCare
839  io.iTLBInter.req.bits.debug.robIdx       := DontCare
840  io.iTLBInter.req.bits.debug.isFirstIssue := DontCare
841  io.iTLBInter.req.bits.pmp_addr           := DontCare
842  // whats the difference between req_kill and req.bits.kill?
843  io.iTLBInter.req_kill := false.B
844  // wait for itlb response in m_tlbResp state
845  io.iTLBInter.resp.ready := (mmio_state === m_tlbResp) && f3_req_is_mmio
846
847  io.pmp.req.valid     := (mmio_state === m_sendPMP) && f3_req_is_mmio
848  io.pmp.req.bits.addr := mmio_resend_addr
849  io.pmp.req.bits.size := 3.U
850  io.pmp.req.bits.cmd  := TlbCmd.exec
851
852  val f3_lastHalf = RegInit(0.U.asTypeOf(new LastHalfInfo))
853
854  val f3_predecode_range = VecInit(preDecoderOut.pd.map(inst => inst.valid)).asUInt
855  val f3_mmio_range      = VecInit((0 until PredictWidth).map(i => if (i == 0) true.B else false.B))
856  val f3_instr_valid     = Wire(Vec(PredictWidth, Bool()))
857
858  /*** prediction result check   ***/
859  checkerIn.ftqOffset  := f3_ftq_req.ftqOffset
860  checkerIn.jumpOffset := f3_jump_offset
861  checkerIn.target     := f3_ftq_req.nextStartAddr
862  checkerIn.instrRange := f3_instr_range.asTypeOf(Vec(PredictWidth, Bool()))
863  checkerIn.instrValid := f3_instr_valid.asTypeOf(Vec(PredictWidth, Bool()))
864  checkerIn.pds        := f3_pd
865  checkerIn.pc         := f3_pc
866  checkerIn.fire_in    := RegNext(f2_fire, init = false.B)
867
868  /*** handle half RVI in the last 2 Bytes  ***/
869
870  def hasLastHalf(idx: UInt) =
871    // !f3_pd(idx).isRVC && checkerOutStage1.fixedRange(idx) && f3_instr_valid(idx) && !checkerOutStage1.fixedTaken(idx) && !checkerOutStage2.fixedMissPred(idx) && ! f3_req_is_mmio
872    !f3_pd(idx).isRVC && checkerOutStage1.fixedRange(idx) && f3_instr_valid(idx) && !checkerOutStage1.fixedTaken(
873      idx
874    ) && !f3_req_is_mmio
875
876  val f3_last_validIdx = ParallelPosteriorityEncoder(checkerOutStage1.fixedRange)
877
878  val f3_hasLastHalf    = hasLastHalf((PredictWidth - 1).U)
879  val f3_false_lastHalf = hasLastHalf(f3_last_validIdx)
880  val f3_false_snpc     = f3_half_snpc(f3_last_validIdx)
881
882  val f3_lastHalf_mask    = VecInit((0 until PredictWidth).map(i => if (i == 0) false.B else true.B)).asUInt
883  val f3_lastHalf_disable = RegInit(false.B)
884
885  when(f3_flush || (f3_fire && f3_lastHalf_disable)) {
886    f3_lastHalf_disable := false.B
887  }
888
889  when(f3_flush) {
890    f3_lastHalf.valid := false.B
891  }.elsewhen(f3_fire) {
892    f3_lastHalf.valid    := f3_hasLastHalf && !f3_lastHalf_disable
893    f3_lastHalf.middlePC := f3_ftq_req.nextStartAddr
894  }
895
896  f3_instr_valid := Mux(f3_lastHalf.valid, f3_hasHalfValid, VecInit(f3_pd.map(inst => inst.valid)))
897
898  /*** frontend Trigger  ***/
899  frontendTrigger.io.pds  := f3_pd
900  frontendTrigger.io.pc   := f3_pc
901  frontendTrigger.io.data := f3_cut_data
902
903  frontendTrigger.io.frontendTrigger := io.frontendTrigger
904
905  val f3_triggered       = frontendTrigger.io.triggered
906  val f3_toIbuffer_valid = f3_valid && (!f3_req_is_mmio || f3_mmio_can_go) && !f3_flush
907
908  /*** send to Ibuffer  ***/
909  io.toIbuffer.valid          := f3_toIbuffer_valid
910  io.toIbuffer.bits.instrs    := f3_expd_instr
911  io.toIbuffer.bits.valid     := f3_instr_valid.asUInt
912  io.toIbuffer.bits.enqEnable := checkerOutStage1.fixedRange.asUInt & f3_instr_valid.asUInt
913  io.toIbuffer.bits.pd        := f3_pd
914  io.toIbuffer.bits.ftqPtr    := f3_ftq_req.ftqIdx
915  io.toIbuffer.bits.pc        := f3_pc
916  // Find last using PriorityMux
917  io.toIbuffer.bits.isLastInFtqEntry := Reverse(PriorityEncoderOH(Reverse(io.toIbuffer.bits.enqEnable))).asBools
918  io.toIbuffer.bits.ftqOffset.zipWithIndex.map { case (a, i) =>
919    a.bits := i.U; a.valid := checkerOutStage1.fixedTaken(i) && !f3_req_is_mmio
920  }
921  io.toIbuffer.bits.foldpc        := f3_foldpc
922  io.toIbuffer.bits.exceptionType := ExceptionType.merge(f3_exception_vec, f3_crossPage_exception_vec)
923  // backendException only needs to be set for the first instruction.
924  // Other instructions in the same block may have pf or af set,
925  // which is a side effect of the first instruction and actually not necessary.
926  io.toIbuffer.bits.backendException := (0 until PredictWidth).map {
927    case 0 => f3_backendException
928    case _ => false.B
929  }
930  io.toIbuffer.bits.crossPageIPFFix := f3_crossPage_exception_vec.map(ExceptionType.hasException)
931  io.toIbuffer.bits.illegalInstr    := f3_ill
932  io.toIbuffer.bits.triggered       := f3_triggered
933
934  when(f3_lastHalf.valid) {
935    io.toIbuffer.bits.enqEnable := checkerOutStage1.fixedRange.asUInt & f3_instr_valid.asUInt & f3_lastHalf_mask
936    io.toIbuffer.bits.valid     := f3_lastHalf_mask & f3_instr_valid.asUInt
937  }
938
939  /** to backend */
940  // f3_gpaddr is valid iff gpf is detected
941  io.toBackend.gpaddrMem_wen := f3_toIbuffer_valid && Mux(
942    f3_req_is_mmio,
943    mmio_resend_exception === ExceptionType.gpf,
944    f3_exception.map(_ === ExceptionType.gpf).reduce(_ || _)
945  )
946  io.toBackend.gpaddrMem_waddr        := f3_ftq_req.ftqIdx.value
947  io.toBackend.gpaddrMem_wdata.gpaddr := Mux(f3_req_is_mmio, mmio_resend_gpaddr, f3_gpaddr)
948  io.toBackend.gpaddrMem_wdata.isForVSnonLeafPTE := Mux(
949    f3_req_is_mmio,
950    mmio_resend_isForVSnonLeafPTE,
951    f3_isForVSnonLeafPTE
952  )
953
954  // Write back to Ftq
955  val f3_cache_fetch     = f3_valid && !(f2_fire && !f2_flush)
956  val finishFetchMaskReg = RegNext(f3_cache_fetch)
957
958  val mmioFlushWb        = Wire(Valid(new PredecodeWritebackBundle))
959  val f3_mmio_missOffset = Wire(ValidUndirectioned(UInt(log2Ceil(PredictWidth).W)))
960  f3_mmio_missOffset.valid := f3_req_is_mmio
961  f3_mmio_missOffset.bits  := 0.U
962
963  // Send mmioFlushWb back to FTQ 1 cycle after uncache fetch return
964  // When backend redirect, mmio_state reset after 1 cycle.
965  // In this case, mask .valid to avoid overriding backend redirect
966  mmioFlushWb.valid := (f3_req_is_mmio && mmio_state === m_waitCommit && RegNext(fromUncache.fire) &&
967    f3_mmio_use_seq_pc && !f3_ftq_flush_self && !f3_ftq_flush_by_older)
968  mmioFlushWb.bits.pc := f3_pc
969  mmioFlushWb.bits.pd := f3_pd
970  mmioFlushWb.bits.pd.zipWithIndex.map { case (instr, i) => instr.valid := f3_mmio_range(i) }
971  mmioFlushWb.bits.ftqIdx     := f3_ftq_req.ftqIdx
972  mmioFlushWb.bits.ftqOffset  := f3_ftq_req.ftqOffset.bits
973  mmioFlushWb.bits.misOffset  := f3_mmio_missOffset
974  mmioFlushWb.bits.cfiOffset  := DontCare
975  mmioFlushWb.bits.target     := Mux(mmio_is_RVC, f3_ftq_req.startAddr + 2.U, f3_ftq_req.startAddr + 4.U)
976  mmioFlushWb.bits.jalTarget  := DontCare
977  mmioFlushWb.bits.instrRange := f3_mmio_range
978
979  val mmioRVCExpander = Module(new RVCExpander)
980  mmioRVCExpander.io.in      := Mux(f3_req_is_mmio, Cat(f3_mmio_data(1), f3_mmio_data(0)), 0.U)
981  mmioRVCExpander.io.fsIsOff := io.csr_fsIsOff
982
983  /** external predecode for MMIO instruction */
984  when(f3_req_is_mmio) {
985    val inst         = Cat(f3_mmio_data(1), f3_mmio_data(0))
986    val currentIsRVC = isRVC(inst)
987
988    val brType :: isCall :: isRet :: Nil = brInfo(inst)
989    val jalOffset                        = jal_offset(inst, currentIsRVC)
990    val brOffset                         = br_offset(inst, currentIsRVC)
991
992    io.toIbuffer.bits.instrs(0) := Mux(mmioRVCExpander.io.ill, mmioRVCExpander.io.in, mmioRVCExpander.io.out.bits)
993
994    io.toIbuffer.bits.pd(0).valid  := true.B
995    io.toIbuffer.bits.pd(0).isRVC  := currentIsRVC
996    io.toIbuffer.bits.pd(0).brType := brType
997    io.toIbuffer.bits.pd(0).isCall := isCall
998    io.toIbuffer.bits.pd(0).isRet  := isRet
999
1000    io.toIbuffer.bits.exceptionType(0)   := mmio_resend_exception
1001    io.toIbuffer.bits.crossPageIPFFix(0) := ExceptionType.hasException(mmio_resend_exception)
1002    io.toIbuffer.bits.illegalInstr(0)    := mmioRVCExpander.io.ill
1003
1004    io.toIbuffer.bits.enqEnable := f3_mmio_range.asUInt
1005
1006    mmioFlushWb.bits.pd(0).valid  := true.B
1007    mmioFlushWb.bits.pd(0).isRVC  := currentIsRVC
1008    mmioFlushWb.bits.pd(0).brType := brType
1009    mmioFlushWb.bits.pd(0).isCall := isCall
1010    mmioFlushWb.bits.pd(0).isRet  := isRet
1011  }
1012
1013  mmio_redirect := (f3_req_is_mmio && mmio_state === m_waitCommit && RegNext(fromUncache.fire) && f3_mmio_use_seq_pc)
1014
1015  XSPerfAccumulate("fetch_bubble_ibuffer_not_ready", io.toIbuffer.valid && !io.toIbuffer.ready)
1016
1017  /**
1018    ******************************************************************************
1019    * IFU Write Back Stage
1020    * - write back predecode information to Ftq to update
1021    * - redirect if found fault prediction
1022    * - redirect if has false hit last half (last PC is not start + 32 Bytes, but in the midle of an notCFI RVI instruction)
1023    ******************************************************************************
1024    */
1025  val wb_enable  = RegNext(f2_fire && !f2_flush) && !f3_req_is_mmio && !f3_flush
1026  val wb_valid   = RegNext(wb_enable, init = false.B)
1027  val wb_ftq_req = RegEnable(f3_ftq_req, wb_enable)
1028
1029  val wb_check_result_stage1 = RegEnable(checkerOutStage1, wb_enable)
1030  val wb_check_result_stage2 = checkerOutStage2
1031  val wb_instr_range         = RegEnable(io.toIbuffer.bits.enqEnable, wb_enable)
1032
1033  val wb_pc_lower_result = RegEnable(f3_pc_lower_result, wb_enable)
1034  val wb_pc_high         = RegEnable(f3_pc_high, wb_enable)
1035  val wb_pc_high_plus1   = RegEnable(f3_pc_high_plus1, wb_enable)
1036  val wb_pc              = CatPC(wb_pc_lower_result, wb_pc_high, wb_pc_high_plus1)
1037
1038  // val wb_pc             = RegEnable(f3_pc, wb_enable)
1039  val wb_pd          = RegEnable(f3_pd, wb_enable)
1040  val wb_instr_valid = RegEnable(f3_instr_valid, wb_enable)
1041
1042  /* false hit lastHalf */
1043  val wb_lastIdx        = RegEnable(f3_last_validIdx, wb_enable)
1044  val wb_false_lastHalf = RegEnable(f3_false_lastHalf, wb_enable) && wb_lastIdx =/= (PredictWidth - 1).U
1045  val wb_false_target   = RegEnable(f3_false_snpc, wb_enable)
1046
1047  val wb_half_flush  = wb_false_lastHalf
1048  val wb_half_target = wb_false_target
1049
1050  /* false oversize */
1051  val lastIsRVC = wb_instr_range.asTypeOf(Vec(PredictWidth, Bool())).last && wb_pd.last.isRVC
1052  val lastIsRVI = wb_instr_range.asTypeOf(Vec(PredictWidth, Bool()))(PredictWidth - 2) && !wb_pd(PredictWidth - 2).isRVC
1053  val lastTaken = wb_check_result_stage1.fixedTaken.last
1054
1055  f3_wb_not_flush := wb_ftq_req.ftqIdx === f3_ftq_req.ftqIdx && f3_valid && wb_valid
1056
1057  /** if a req with a last half but miss predicted enters in wb stage, and this cycle f3 stalls,
1058    * we set a flag to notify f3 that the last half flag need not to be set.
1059    */
1060  // f3_fire is after wb_valid
1061  when(wb_valid && RegNext(f3_hasLastHalf, init = false.B)
1062    && wb_check_result_stage2.fixedMissPred(PredictWidth - 1) && !f3_fire && !RegNext(
1063      f3_fire,
1064      init = false.B
1065    ) && !f3_flush) {
1066    f3_lastHalf_disable := true.B
1067  }
1068
1069  // wb_valid and f3_fire are in same cycle
1070  when(wb_valid && RegNext(f3_hasLastHalf, init = false.B)
1071    && wb_check_result_stage2.fixedMissPred(PredictWidth - 1) && f3_fire) {
1072    f3_lastHalf.valid := false.B
1073  }
1074
1075  val checkFlushWb = Wire(Valid(new PredecodeWritebackBundle))
1076  val checkFlushWbjalTargetIdx = ParallelPriorityEncoder(VecInit(wb_pd.zip(wb_instr_valid).map { case (pd, v) =>
1077    v && pd.isJal
1078  }))
1079  val checkFlushWbTargetIdx = ParallelPriorityEncoder(wb_check_result_stage2.fixedMissPred)
1080  checkFlushWb.valid   := wb_valid
1081  checkFlushWb.bits.pc := wb_pc
1082  checkFlushWb.bits.pd := wb_pd
1083  checkFlushWb.bits.pd.zipWithIndex.map { case (instr, i) => instr.valid := wb_instr_valid(i) }
1084  checkFlushWb.bits.ftqIdx          := wb_ftq_req.ftqIdx
1085  checkFlushWb.bits.ftqOffset       := wb_ftq_req.ftqOffset.bits
1086  checkFlushWb.bits.misOffset.valid := ParallelOR(wb_check_result_stage2.fixedMissPred) || wb_half_flush
1087  checkFlushWb.bits.misOffset.bits := Mux(
1088    wb_half_flush,
1089    wb_lastIdx,
1090    ParallelPriorityEncoder(wb_check_result_stage2.fixedMissPred)
1091  )
1092  checkFlushWb.bits.cfiOffset.valid := ParallelOR(wb_check_result_stage1.fixedTaken)
1093  checkFlushWb.bits.cfiOffset.bits  := ParallelPriorityEncoder(wb_check_result_stage1.fixedTaken)
1094  checkFlushWb.bits.target := Mux(
1095    wb_half_flush,
1096    wb_half_target,
1097    wb_check_result_stage2.fixedTarget(checkFlushWbTargetIdx)
1098  )
1099  checkFlushWb.bits.jalTarget  := wb_check_result_stage2.jalTarget(checkFlushWbjalTargetIdx)
1100  checkFlushWb.bits.instrRange := wb_instr_range.asTypeOf(Vec(PredictWidth, Bool()))
1101
1102  toFtq.pdWb := Mux(wb_valid, checkFlushWb, mmioFlushWb)
1103
1104  wb_redirect := checkFlushWb.bits.misOffset.valid && wb_valid
1105
1106  /*write back flush type*/
1107  val checkFaultType    = wb_check_result_stage2.faultType
1108  val checkJalFault     = wb_valid && checkFaultType.map(_.isjalFault).reduce(_ || _)
1109  val checkRetFault     = wb_valid && checkFaultType.map(_.isRetFault).reduce(_ || _)
1110  val checkTargetFault  = wb_valid && checkFaultType.map(_.istargetFault).reduce(_ || _)
1111  val checkNotCFIFault  = wb_valid && checkFaultType.map(_.notCFIFault).reduce(_ || _)
1112  val checkInvalidTaken = wb_valid && checkFaultType.map(_.invalidTakenFault).reduce(_ || _)
1113
1114  XSPerfAccumulate("predecode_flush_jalFault", checkJalFault)
1115  XSPerfAccumulate("predecode_flush_retFault", checkRetFault)
1116  XSPerfAccumulate("predecode_flush_targetFault", checkTargetFault)
1117  XSPerfAccumulate("predecode_flush_notCFIFault", checkNotCFIFault)
1118  XSPerfAccumulate("predecode_flush_incalidTakenFault", checkInvalidTaken)
1119
1120  when(checkRetFault) {
1121    XSDebug(
1122      "startAddr:%x  nextstartAddr:%x  taken:%d    takenIdx:%d\n",
1123      wb_ftq_req.startAddr,
1124      wb_ftq_req.nextStartAddr,
1125      wb_ftq_req.ftqOffset.valid,
1126      wb_ftq_req.ftqOffset.bits
1127    )
1128  }
1129
1130  /** performance counter */
1131  val f3_perf_info = RegEnable(f2_perf_info, f2_fire)
1132  val f3_req_0     = io.toIbuffer.fire
1133  val f3_req_1     = io.toIbuffer.fire && f3_doubleLine
1134  val f3_hit_0     = io.toIbuffer.fire && f3_perf_info.bank_hit(0)
1135  val f3_hit_1     = io.toIbuffer.fire && f3_doubleLine & f3_perf_info.bank_hit(1)
1136  val f3_hit       = f3_perf_info.hit
1137  val perfEvents = Seq(
1138    ("frontendFlush                ", wb_redirect),
1139    ("ifu_req                      ", io.toIbuffer.fire),
1140    ("ifu_miss                     ", io.toIbuffer.fire && !f3_perf_info.hit),
1141    ("ifu_req_cacheline_0          ", f3_req_0),
1142    ("ifu_req_cacheline_1          ", f3_req_1),
1143    ("ifu_req_cacheline_0_hit      ", f3_hit_1),
1144    ("ifu_req_cacheline_1_hit      ", f3_hit_1),
1145    ("only_0_hit                   ", f3_perf_info.only_0_hit && io.toIbuffer.fire),
1146    ("only_0_miss                  ", f3_perf_info.only_0_miss && io.toIbuffer.fire),
1147    ("hit_0_hit_1                  ", f3_perf_info.hit_0_hit_1 && io.toIbuffer.fire),
1148    ("hit_0_miss_1                 ", f3_perf_info.hit_0_miss_1 && io.toIbuffer.fire),
1149    ("miss_0_hit_1                 ", f3_perf_info.miss_0_hit_1 && io.toIbuffer.fire),
1150    ("miss_0_miss_1                ", f3_perf_info.miss_0_miss_1 && io.toIbuffer.fire)
1151  )
1152  generatePerfEvent()
1153
1154  XSPerfAccumulate("ifu_req", io.toIbuffer.fire)
1155  XSPerfAccumulate("ifu_miss", io.toIbuffer.fire && !f3_hit)
1156  XSPerfAccumulate("ifu_req_cacheline_0", f3_req_0)
1157  XSPerfAccumulate("ifu_req_cacheline_1", f3_req_1)
1158  XSPerfAccumulate("ifu_req_cacheline_0_hit", f3_hit_0)
1159  XSPerfAccumulate("ifu_req_cacheline_1_hit", f3_hit_1)
1160  XSPerfAccumulate("frontendFlush", wb_redirect)
1161  XSPerfAccumulate("only_0_hit", f3_perf_info.only_0_hit && io.toIbuffer.fire)
1162  XSPerfAccumulate("only_0_miss", f3_perf_info.only_0_miss && io.toIbuffer.fire)
1163  XSPerfAccumulate("hit_0_hit_1", f3_perf_info.hit_0_hit_1 && io.toIbuffer.fire)
1164  XSPerfAccumulate("hit_0_miss_1", f3_perf_info.hit_0_miss_1 && io.toIbuffer.fire)
1165  XSPerfAccumulate("miss_0_hit_1", f3_perf_info.miss_0_hit_1 && io.toIbuffer.fire)
1166  XSPerfAccumulate("miss_0_miss_1", f3_perf_info.miss_0_miss_1 && io.toIbuffer.fire)
1167  XSPerfAccumulate("hit_0_except_1", f3_perf_info.hit_0_except_1 && io.toIbuffer.fire)
1168  XSPerfAccumulate("miss_0_except_1", f3_perf_info.miss_0_except_1 && io.toIbuffer.fire)
1169  XSPerfAccumulate("except_0", f3_perf_info.except_0 && io.toIbuffer.fire)
1170  XSPerfHistogram(
1171    "ifu2ibuffer_validCnt",
1172    PopCount(io.toIbuffer.bits.valid & io.toIbuffer.bits.enqEnable),
1173    io.toIbuffer.fire,
1174    0,
1175    PredictWidth + 1,
1176    1
1177  )
1178
1179  val hartId                     = p(XSCoreParamsKey).HartId
1180  val isWriteFetchToIBufferTable = Constantin.createRecord(s"isWriteFetchToIBufferTable$hartId")
1181  val isWriteIfuWbToFtqTable     = Constantin.createRecord(s"isWriteIfuWbToFtqTable$hartId")
1182  val fetchToIBufferTable        = ChiselDB.createTable(s"FetchToIBuffer$hartId", new FetchToIBufferDB)
1183  val ifuWbToFtqTable            = ChiselDB.createTable(s"IfuWbToFtq$hartId", new IfuWbToFtqDB)
1184
1185  val fetchIBufferDumpData = Wire(new FetchToIBufferDB)
1186  fetchIBufferDumpData.start_addr  := f3_ftq_req.startAddr
1187  fetchIBufferDumpData.instr_count := PopCount(io.toIbuffer.bits.enqEnable)
1188  fetchIBufferDumpData.exception := (f3_perf_info.except_0 && io.toIbuffer.fire) || (f3_perf_info.hit_0_except_1 && io.toIbuffer.fire) || (f3_perf_info.miss_0_except_1 && io.toIbuffer.fire)
1189  fetchIBufferDumpData.is_cache_hit := f3_hit
1190
1191  val ifuWbToFtqDumpData = Wire(new IfuWbToFtqDB)
1192  ifuWbToFtqDumpData.start_addr        := wb_ftq_req.startAddr
1193  ifuWbToFtqDumpData.is_miss_pred      := checkFlushWb.bits.misOffset.valid
1194  ifuWbToFtqDumpData.miss_pred_offset  := checkFlushWb.bits.misOffset.bits
1195  ifuWbToFtqDumpData.checkJalFault     := checkJalFault
1196  ifuWbToFtqDumpData.checkRetFault     := checkRetFault
1197  ifuWbToFtqDumpData.checkTargetFault  := checkTargetFault
1198  ifuWbToFtqDumpData.checkNotCFIFault  := checkNotCFIFault
1199  ifuWbToFtqDumpData.checkInvalidTaken := checkInvalidTaken
1200
1201  fetchToIBufferTable.log(
1202    data = fetchIBufferDumpData,
1203    en = isWriteFetchToIBufferTable.orR && io.toIbuffer.fire,
1204    site = "IFU" + p(XSCoreParamsKey).HartId.toString,
1205    clock = clock,
1206    reset = reset
1207  )
1208  ifuWbToFtqTable.log(
1209    data = ifuWbToFtqDumpData,
1210    en = isWriteIfuWbToFtqTable.orR && checkFlushWb.valid,
1211    site = "IFU" + p(XSCoreParamsKey).HartId.toString,
1212    clock = clock,
1213    reset = reset
1214  )
1215
1216}
1217