xref: /XiangShan/src/main/scala/xiangshan/frontend/IFU.scala (revision 5137113c032a3fad2a29f363b52fca52325191d2)
1/***************************************************************************************
2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC)
3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences
4* Copyright (c) 2020-2021 Peng Cheng Laboratory
5*
6* XiangShan is licensed under Mulan PSL v2.
7* You can use this software according to the terms and conditions of the Mulan PSL v2.
8* You may obtain a copy of Mulan PSL v2 at:
9*          http://license.coscl.org.cn/MulanPSL2
10*
11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
14*
15* See the Mulan PSL v2 for more details.
16***************************************************************************************/
17
18package xiangshan.frontend
19
20import chisel3._
21import chisel3.util._
22import org.chipsalliance.cde.config.Parameters
23import utility._
24import utility.ChiselDB
25import xiangshan._
26import xiangshan.backend.GPAMemEntry
27import xiangshan.cache.mmu._
28import xiangshan.frontend.icache._
29
30trait HasInstrMMIOConst extends HasXSParameter with HasIFUConst {
31  def mmioBusWidth = 64
32  def mmioBusBytes = mmioBusWidth / 8
33  def maxInstrLen  = 32
34}
35
36trait HasIFUConst extends HasXSParameter {
37  def addrAlign(addr: UInt, bytes: Int, highest: Int): UInt =
38    Cat(addr(highest - 1, log2Ceil(bytes)), 0.U(log2Ceil(bytes).W))
39  def fetchQueueSize = 2
40
41  def getBasicBlockIdx(pc: UInt, start: UInt): UInt = {
42    val byteOffset = pc - start
43    (byteOffset - instBytes.U)(log2Ceil(PredictWidth), instOffsetBits)
44  }
45}
46
47class IfuToFtqIO(implicit p: Parameters) extends XSBundle {
48  val pdWb = Valid(new PredecodeWritebackBundle)
49}
50
51class IfuToBackendIO(implicit p: Parameters) extends XSBundle {
52  // write to backend gpaddr mem
53  val gpaddrMem_wen   = Output(Bool())
54  val gpaddrMem_waddr = Output(UInt(log2Ceil(FtqSize).W)) // Ftq Ptr
55  // 2 gpaddrs, correspond to startAddr & nextLineAddr in bundle FtqICacheInfo
56  // TODO: avoid cross page entry in Ftq
57  val gpaddrMem_wdata = Output(new GPAMemEntry)
58}
59
60class FtqInterface(implicit p: Parameters) extends XSBundle {
61  val fromFtq = Flipped(new FtqToIfuIO)
62  val toFtq   = new IfuToFtqIO
63}
64
65class UncacheInterface(implicit p: Parameters) extends XSBundle {
66  val fromUncache = Flipped(DecoupledIO(new InsUncacheResp))
67  val toUncache   = DecoupledIO(new InsUncacheReq)
68}
69
70class NewIFUIO(implicit p: Parameters) extends XSBundle {
71  val ftqInter        = new FtqInterface
72  val icacheInter     = Flipped(new IFUICacheIO)
73  val icacheStop      = Output(Bool())
74  val icachePerfInfo  = Input(new ICachePerfInfo)
75  val toIbuffer       = Decoupled(new FetchToIBuffer)
76  val toBackend       = new IfuToBackendIO
77  val uncacheInter    = new UncacheInterface
78  val frontendTrigger = Flipped(new FrontendTdataDistributeIO)
79  val rob_commits     = Flipped(Vec(CommitWidth, Valid(new RobCommitInfo)))
80  val iTLBInter       = new TlbRequestIO
81  val pmp             = new ICachePMPBundle
82  val mmioCommitRead  = new mmioCommitRead
83  val csr_fsIsOff     = Input(Bool())
84}
85
86// record the situation in which fallThruAddr falls into
87// the middle of an RVI inst
88class LastHalfInfo(implicit p: Parameters) extends XSBundle {
89  val valid    = Bool()
90  val middlePC = UInt(VAddrBits.W)
91  def matchThisBlock(startAddr: UInt) = valid && middlePC === startAddr
92}
93
94class IfuToPreDecode(implicit p: Parameters) extends XSBundle {
95  val data            = if (HasCExtension) Vec(PredictWidth + 1, UInt(16.W)) else Vec(PredictWidth, UInt(32.W))
96  val frontendTrigger = new FrontendTdataDistributeIO
97  val pc              = Vec(PredictWidth, UInt(VAddrBits.W))
98}
99
100class IfuToPredChecker(implicit p: Parameters) extends XSBundle {
101  val ftqOffset  = Valid(UInt(log2Ceil(PredictWidth).W))
102  val jumpOffset = Vec(PredictWidth, UInt(XLEN.W))
103  val target     = UInt(VAddrBits.W)
104  val instrRange = Vec(PredictWidth, Bool())
105  val instrValid = Vec(PredictWidth, Bool())
106  val pds        = Vec(PredictWidth, new PreDecodeInfo)
107  val pc         = Vec(PredictWidth, UInt(VAddrBits.W))
108  val fire_in    = Bool()
109}
110
111class FetchToIBufferDB extends Bundle {
112  val start_addr   = UInt(39.W)
113  val instr_count  = UInt(32.W)
114  val exception    = Bool()
115  val is_cache_hit = Bool()
116}
117
118class IfuWbToFtqDB extends Bundle {
119  val start_addr        = UInt(39.W)
120  val is_miss_pred      = Bool()
121  val miss_pred_offset  = UInt(32.W)
122  val checkJalFault     = Bool()
123  val checkRetFault     = Bool()
124  val checkTargetFault  = Bool()
125  val checkNotCFIFault  = Bool()
126  val checkInvalidTaken = Bool()
127}
128
129class NewIFU(implicit p: Parameters) extends XSModule
130    with HasICacheParameters
131    with HasXSParameter
132    with HasIFUConst
133    with HasPdConst
134    with HasCircularQueuePtrHelper
135    with HasPerfEvents
136    with HasTlbConst {
137  val io                       = IO(new NewIFUIO)
138  val (toFtq, fromFtq)         = (io.ftqInter.toFtq, io.ftqInter.fromFtq)
139  val fromICache               = io.icacheInter.resp
140  val (toUncache, fromUncache) = (io.uncacheInter.toUncache, io.uncacheInter.fromUncache)
141
142  def isCrossLineReq(start: UInt, end: UInt): Bool = start(blockOffBits) ^ end(blockOffBits)
143
144  def numOfStage = 3
145  // equal lower_result overflow bit
146  def PcCutPoint = (VAddrBits / 4) - 1
147  def CatPC(low: UInt, high: UInt, high1: UInt): UInt =
148    Mux(
149      low(PcCutPoint),
150      Cat(high1, low(PcCutPoint - 1, 0)),
151      Cat(high, low(PcCutPoint - 1, 0))
152    )
153  def CatPC(lowVec: Vec[UInt], high: UInt, high1: UInt): Vec[UInt] = VecInit(lowVec.map(CatPC(_, high, high1)))
154  require(numOfStage > 1, "BPU numOfStage must be greater than 1")
155  val topdown_stages = RegInit(VecInit(Seq.fill(numOfStage)(0.U.asTypeOf(new FrontendTopDownBundle))))
156  // bubble events in IFU, only happen in stage 1
157  val icacheMissBubble = Wire(Bool())
158  val itlbMissBubble   = Wire(Bool())
159
160  // only driven by clock, not valid-ready
161  topdown_stages(0) := fromFtq.req.bits.topdown_info
162  for (i <- 1 until numOfStage) {
163    topdown_stages(i) := topdown_stages(i - 1)
164  }
165  when(icacheMissBubble) {
166    topdown_stages(1).reasons(TopDownCounters.ICacheMissBubble.id) := true.B
167  }
168  when(itlbMissBubble) {
169    topdown_stages(1).reasons(TopDownCounters.ITLBMissBubble.id) := true.B
170  }
171  io.toIbuffer.bits.topdown_info := topdown_stages(numOfStage - 1)
172  when(fromFtq.topdown_redirect.valid) {
173    // only redirect from backend, IFU redirect itself is handled elsewhere
174    when(fromFtq.topdown_redirect.bits.debugIsCtrl) {
175      /*
176      for (i <- 0 until numOfStage) {
177        topdown_stages(i).reasons(TopDownCounters.ControlRedirectBubble.id) := true.B
178      }
179      io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.ControlRedirectBubble.id) := true.B
180       */
181      when(fromFtq.topdown_redirect.bits.ControlBTBMissBubble) {
182        for (i <- 0 until numOfStage) {
183          topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B
184        }
185        io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.BTBMissBubble.id) := true.B
186      }.elsewhen(fromFtq.topdown_redirect.bits.TAGEMissBubble) {
187        for (i <- 0 until numOfStage) {
188          topdown_stages(i).reasons(TopDownCounters.TAGEMissBubble.id) := true.B
189        }
190        io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.TAGEMissBubble.id) := true.B
191      }.elsewhen(fromFtq.topdown_redirect.bits.SCMissBubble) {
192        for (i <- 0 until numOfStage) {
193          topdown_stages(i).reasons(TopDownCounters.SCMissBubble.id) := true.B
194        }
195        io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.SCMissBubble.id) := true.B
196      }.elsewhen(fromFtq.topdown_redirect.bits.ITTAGEMissBubble) {
197        for (i <- 0 until numOfStage) {
198          topdown_stages(i).reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B
199        }
200        io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B
201      }.elsewhen(fromFtq.topdown_redirect.bits.RASMissBubble) {
202        for (i <- 0 until numOfStage) {
203          topdown_stages(i).reasons(TopDownCounters.RASMissBubble.id) := true.B
204        }
205        io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.RASMissBubble.id) := true.B
206      }
207    }.elsewhen(fromFtq.topdown_redirect.bits.debugIsMemVio) {
208      for (i <- 0 until numOfStage) {
209        topdown_stages(i).reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B
210      }
211      io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B
212    }.otherwise {
213      for (i <- 0 until numOfStage) {
214        topdown_stages(i).reasons(TopDownCounters.OtherRedirectBubble.id) := true.B
215      }
216      io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.OtherRedirectBubble.id) := true.B
217    }
218  }
219
220  class TlbExept(implicit p: Parameters) extends XSBundle {
221    val pageFault   = Bool()
222    val accessFault = Bool()
223    val mmio        = Bool()
224  }
225
226  val preDecoder = Module(new PreDecode)
227
228  val predChecker     = Module(new PredChecker)
229  val frontendTrigger = Module(new FrontendTrigger)
230  val (checkerIn, checkerOutStage1, checkerOutStage2) =
231    (predChecker.io.in, predChecker.io.out.stage1Out, predChecker.io.out.stage2Out)
232
233  /**
234    ******************************************************************************
235    * IFU Stage 0
236    * - send cacheline fetch request to ICacheMainPipe
237    ******************************************************************************
238    */
239
240  val f0_valid      = fromFtq.req.valid
241  val f0_ftq_req    = fromFtq.req.bits
242  val f0_doubleLine = fromFtq.req.bits.crossCacheline
243  val f0_vSetIdx    = VecInit(get_idx(f0_ftq_req.startAddr), get_idx(f0_ftq_req.nextlineStart))
244  val f0_fire       = fromFtq.req.fire
245
246  val f0_flush, f1_flush, f2_flush, f3_flush = WireInit(false.B)
247
248  val f0_flush_from_bpu = fromFtq.flushFromBpu.shouldFlushByStage2(f0_ftq_req.ftqIdx) ||
249    fromFtq.flushFromBpu.shouldFlushByStage3(f0_ftq_req.ftqIdx)
250
251  val wb_redirect, mmio_redirect, backend_redirect = WireInit(false.B)
252  val f3_wb_not_flush                              = WireInit(false.B)
253
254  backend_redirect := fromFtq.redirect.valid
255  f3_flush         := backend_redirect || (wb_redirect && !f3_wb_not_flush)
256  f2_flush         := backend_redirect || mmio_redirect || wb_redirect
257  f1_flush         := f2_flush
258  f0_flush         := f1_flush || f0_flush_from_bpu
259
260  val f1_ready, f2_ready, f3_ready = WireInit(false.B)
261
262  fromFtq.req.ready := f1_ready && io.icacheInter.icacheReady
263
264  when(wb_redirect) {
265    when(f3_wb_not_flush) {
266      topdown_stages(2).reasons(TopDownCounters.BTBMissBubble.id) := true.B
267    }
268    for (i <- 0 until numOfStage - 1) {
269      topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B
270    }
271  }
272
273  /** <PERF> f0 fetch bubble */
274
275  XSPerfAccumulate("fetch_bubble_ftq_not_valid", !fromFtq.req.valid && fromFtq.req.ready)
276  // XSPerfAccumulate("fetch_bubble_pipe_stall",    f0_valid && toICache(0).ready && toICache(1).ready && !f1_ready )
277  // XSPerfAccumulate("fetch_bubble_icache_0_busy",   f0_valid && !toICache(0).ready  )
278  // XSPerfAccumulate("fetch_bubble_icache_1_busy",   f0_valid && !toICache(1).ready  )
279  XSPerfAccumulate("fetch_flush_backend_redirect", backend_redirect)
280  XSPerfAccumulate("fetch_flush_wb_redirect", wb_redirect)
281  XSPerfAccumulate("fetch_flush_f0_flush_from_bpu", f0_flush_from_bpu)
282
283  /**
284    ******************************************************************************
285    * IFU Stage 1
286    * - calculate pc/half_pc/cut_ptr for every instruction
287    ******************************************************************************
288    */
289
290  val f1_valid   = RegInit(false.B)
291  val f1_ftq_req = RegEnable(f0_ftq_req, f0_fire)
292  // val f1_situation  = RegEnable(f0_situation,  f0_fire)
293  val f1_doubleLine = RegEnable(f0_doubleLine, f0_fire)
294  val f1_vSetIdx    = RegEnable(f0_vSetIdx, f0_fire)
295  val f1_fire       = f1_valid && f2_ready
296
297  f1_ready := f1_fire || !f1_valid
298
299  assert(!(fromFtq.flushFromBpu.shouldFlushByStage3(f1_ftq_req.ftqIdx) && f1_valid))
300
301  when(f1_flush)(f1_valid := false.B)
302    .elsewhen(f0_fire && !f0_flush)(f1_valid := true.B)
303    .elsewhen(f1_fire)(f1_valid := false.B)
304
305  val f1_pc_high       = f1_ftq_req.startAddr(VAddrBits - 1, PcCutPoint)
306  val f1_pc_high_plus1 = f1_pc_high + 1.U
307
308  /**
309   * In order to reduce power consumption, avoid calculating the full PC value in the first level.
310   * code of original logic, this code has been deprecated
311   * val f1_pc                 = VecInit(f1_pc_lower_result.map{ i =>
312   *  Mux(i(f1_pc_adder_cut_point), Cat(f1_pc_high_plus1,i(f1_pc_adder_cut_point-1,0)), Cat(f1_pc_high,i(f1_pc_adder_cut_point-1,0)))})
313   */
314  val f1_pc_lower_result = VecInit((0 until PredictWidth).map(i =>
315    Cat(0.U(1.W), f1_ftq_req.startAddr(PcCutPoint - 1, 0)) + (i * 2).U
316  )) // cat with overflow bit
317
318  val f1_pc = CatPC(f1_pc_lower_result, f1_pc_high, f1_pc_high_plus1)
319
320  val f1_half_snpc_lower_result = VecInit((0 until PredictWidth).map(i =>
321    Cat(0.U(1.W), f1_ftq_req.startAddr(PcCutPoint - 1, 0)) + ((i + 2) * 2).U
322  )) // cat with overflow bit
323  val f1_half_snpc = CatPC(f1_half_snpc_lower_result, f1_pc_high, f1_pc_high_plus1)
324
325  if (env.FPGAPlatform) {
326    val f1_pc_diff        = VecInit((0 until PredictWidth).map(i => f1_ftq_req.startAddr + (i * 2).U))
327    val f1_half_snpc_diff = VecInit((0 until PredictWidth).map(i => f1_ftq_req.startAddr + ((i + 2) * 2).U))
328
329    XSError(
330      f1_pc.zip(f1_pc_diff).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _),
331      "f1_half_snpc adder cut fail"
332    )
333    XSError(
334      f1_half_snpc.zip(f1_half_snpc_diff).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _),
335      "f1_half_snpc adder cut fail"
336    )
337  }
338
339  val f1_cut_ptr = if (HasCExtension)
340    VecInit((0 until PredictWidth + 1).map(i => Cat(0.U(2.W), f1_ftq_req.startAddr(blockOffBits - 1, 1)) + i.U))
341  else VecInit((0 until PredictWidth).map(i => Cat(0.U(2.W), f1_ftq_req.startAddr(blockOffBits - 1, 2)) + i.U))
342
343  /**
344    ******************************************************************************
345    * IFU Stage 2
346    * - icache response data (latched for pipeline stop)
347    * - generate exceprion bits for every instruciton (page fault/access fault/mmio)
348    * - generate predicted instruction range (1 means this instruciton is in this fetch packet)
349    * - cut data from cachlines to packet instruction code
350    * - instruction predecode and RVC expand
351    ******************************************************************************
352    */
353
354  val icacheRespAllValid = WireInit(false.B)
355
356  val f2_valid   = RegInit(false.B)
357  val f2_ftq_req = RegEnable(f1_ftq_req, f1_fire)
358  // val f2_situation  = RegEnable(f1_situation,  f1_fire)
359  val f2_doubleLine = RegEnable(f1_doubleLine, f1_fire)
360  val f2_vSetIdx    = RegEnable(f1_vSetIdx, f1_fire)
361  val f2_fire       = f2_valid && f3_ready && icacheRespAllValid
362
363  f2_ready := f2_fire || !f2_valid
364  // TODO: addr compare may be timing critical
365  val f2_icache_all_resp_wire =
366    fromICache.valid &&
367      fromICache.bits.vaddr(0) === f2_ftq_req.startAddr &&
368      (fromICache.bits.doubleline && fromICache.bits.vaddr(1) === f2_ftq_req.nextlineStart || !f2_doubleLine)
369  val f2_icache_all_resp_reg = RegInit(false.B)
370
371  icacheRespAllValid := f2_icache_all_resp_reg || f2_icache_all_resp_wire
372
373  icacheMissBubble := io.icacheInter.topdownIcacheMiss
374  itlbMissBubble   := io.icacheInter.topdownItlbMiss
375
376  io.icacheStop := !f3_ready
377
378  when(f2_flush)(f2_icache_all_resp_reg := false.B)
379    .elsewhen(f2_valid && f2_icache_all_resp_wire && !f3_ready)(f2_icache_all_resp_reg := true.B)
380    .elsewhen(f2_fire && f2_icache_all_resp_reg)(f2_icache_all_resp_reg := false.B)
381
382  when(f2_flush)(f2_valid := false.B)
383    .elsewhen(f1_fire && !f1_flush)(f2_valid := true.B)
384    .elsewhen(f2_fire)(f2_valid := false.B)
385
386  val f2_exception_in     = fromICache.bits.exception
387  val f2_backendException = fromICache.bits.backendException
388  // paddr and gpaddr of [startAddr, nextLineAddr]
389  val f2_paddrs            = fromICache.bits.paddr
390  val f2_gpaddr            = fromICache.bits.gpaddr
391  val f2_isForVSnonLeafPTE = fromICache.bits.isForVSnonLeafPTE
392
393  // FIXME: raise af if one fetch block crosses the cacheable-noncacheable boundary, might not correct
394  val f2_mmio_mismatch_exception = VecInit(Seq(
395    ExceptionType.none, // mark the exception only on the second line
396    Mux(
397      // not double-line, skip check
398      !fromICache.bits.doubleline || (
399        // is double-line, ask for consistent pmp_mmio and itlb_pbmt value
400        fromICache.bits.pmp_mmio(0) === fromICache.bits.pmp_mmio(1) &&
401          fromICache.bits.itlb_pbmt(0) === fromICache.bits.itlb_pbmt(1)
402      ),
403      ExceptionType.none,
404      ExceptionType.af
405    )
406  ))
407
408  // merge exceptions
409  val f2_exception = ExceptionType.merge(f2_exception_in, f2_mmio_mismatch_exception)
410
411  // we need only the first port, as the second is asked to be the same
412  val f2_pmp_mmio  = fromICache.bits.pmp_mmio(0)
413  val f2_itlb_pbmt = fromICache.bits.itlb_pbmt(0)
414
415  /**
416    * reduce the number of registers, origin code
417    * f2_pc = RegEnable(f1_pc, f1_fire)
418    */
419  val f2_pc_lower_result = RegEnable(f1_pc_lower_result, f1_fire)
420  val f2_pc_high         = RegEnable(f1_pc_high, f1_fire)
421  val f2_pc_high_plus1   = RegEnable(f1_pc_high_plus1, f1_fire)
422  val f2_pc              = CatPC(f2_pc_lower_result, f2_pc_high, f2_pc_high_plus1)
423
424  val f2_cut_ptr      = RegEnable(f1_cut_ptr, f1_fire)
425  val f2_resend_vaddr = RegEnable(f1_ftq_req.startAddr + 2.U, f1_fire)
426
427  def isNextLine(pc: UInt, startAddr: UInt) =
428    startAddr(blockOffBits) ^ pc(blockOffBits)
429
430  def isLastInLine(pc: UInt) =
431    pc(blockOffBits - 1, 0) === "b111110".U
432
433  val f2_foldpc = VecInit(f2_pc.map(i => XORFold(i(VAddrBits - 1, 1), MemPredPCWidth)))
434  val f2_jump_range =
435    Fill(PredictWidth, !f2_ftq_req.ftqOffset.valid) | Fill(PredictWidth, 1.U(1.W)) >> ~f2_ftq_req.ftqOffset.bits
436  require(
437    isPow2(PredictWidth),
438    "If PredictWidth does not satisfy the power of 2," +
439      "expression: Fill(PredictWidth, 1.U(1.W)) >> ~f2_ftq_req.ftqOffset.bits is not right !!"
440  )
441  val f2_ftr_range = Fill(PredictWidth, f2_ftq_req.ftqOffset.valid) | Fill(PredictWidth, 1.U(1.W)) >> ~getBasicBlockIdx(
442    f2_ftq_req.nextStartAddr,
443    f2_ftq_req.startAddr
444  )
445  val f2_instr_range = f2_jump_range & f2_ftr_range
446  val f2_exception_vec = VecInit((0 until PredictWidth).map(i =>
447    MuxCase(
448      ExceptionType.none,
449      Seq(
450        !isNextLine(f2_pc(i), f2_ftq_req.startAddr)                   -> f2_exception(0),
451        (isNextLine(f2_pc(i), f2_ftq_req.startAddr) && f2_doubleLine) -> f2_exception(1)
452      )
453    )
454  ))
455  val f2_perf_info = io.icachePerfInfo
456
457  def cut(cacheline: UInt, cutPtr: Vec[UInt]): Vec[UInt] = {
458    require(HasCExtension)
459    // if(HasCExtension){
460    val result  = Wire(Vec(PredictWidth + 1, UInt(16.W)))
461    val dataVec = cacheline.asTypeOf(Vec(blockBytes, UInt(16.W))) // 32 16-bit data vector
462    (0 until PredictWidth + 1).foreach(i =>
463      result(i) := dataVec(cutPtr(i)) // the max ptr is 3*blockBytes/4-1
464    )
465    result
466    // } else {
467    //   val result   = Wire(Vec(PredictWidth, UInt(32.W)) )
468    //   val dataVec  = cacheline.asTypeOf(Vec(blockBytes * 2/ 4, UInt(32.W)))
469    //   (0 until PredictWidth).foreach( i =>
470    //     result(i) := dataVec(cutPtr(i))
471    //   )
472    //   result
473    // }
474  }
475
476  /* NOTE: the following `Cat(_data, _data)` *is* intentional.
477   * Explanation:
478   * In the old design, IFU is responsible for selecting requested data from two adjacent cachelines,
479   *    so IFU has to receive 2*64B (2cacheline * 64B) data from ICache, and do `Cat(_data(1), _data(0))` here.
480   * However, a fetch block is 34B at max, sending 2*64B is quiet a waste of power.
481   * In current design (2024.06~), ICacheDataArray is responsible for selecting data from two adjacent cachelines,
482   *    so IFU only need to receive 40B (5bank * 8B) valid data, and use only one port is enough.
483   * For example, when pc falls on the 6th bank in cacheline0(so this is a doubleline request):
484   *                                MSB                                         LSB
485   *                  cacheline 1 || 1-7 | 1-6 | 1-5 | 1-4 | 1-3 | 1-2 | 1-1 | 1-0 ||
486   *                  cacheline 0 || 0-7 | 0-6 | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | 0-0 ||
487   *    and ICacheDataArray will respond:
488   *         fromICache.bits.data || 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 ||
489   *    therefore simply make a copy of the response and `Cat` together, and obtain the requested data from centre:
490   *          f2_data_2_cacheline || 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 | 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 ||
491   *                                             requested data: ^-----------------------------^
492   * For another example, pc falls on the 1st bank in cacheline 0, we have:
493   *         fromICache.bits.data || xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx ||
494   *          f2_data_2_cacheline || xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx | xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx ||
495   *                                                                           requested data: ^-----------------------------^
496   * Each "| x-y |" block is a 8B bank from cacheline(x).bank(y)
497   * Please also refer to:
498   * - DataArray selects data:
499   * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICache.scala#L355-L381
500   * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICache.scala#L149-L161
501   * - ICache respond to IFU:
502   * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICacheMainPipe.scala#L473
503   */
504  val f2_data_2_cacheline = Cat(fromICache.bits.data, fromICache.bits.data)
505
506  val f2_cut_data = cut(f2_data_2_cacheline, f2_cut_ptr)
507
508  /** predecode (include RVC expander) */
509  // preDecoderRegIn.data := f2_reg_cut_data
510  // preDecoderRegInIn.frontendTrigger := io.frontendTrigger
511  // preDecoderRegInIn.csrTriggerEnable := io.csrTriggerEnable
512  // preDecoderRegIn.pc  := f2_pc
513
514  val preDecoderIn = preDecoder.io.in
515  preDecoderIn.valid                := f2_valid
516  preDecoderIn.bits.data            := f2_cut_data
517  preDecoderIn.bits.frontendTrigger := io.frontendTrigger
518  preDecoderIn.bits.pc              := f2_pc
519  val preDecoderOut = preDecoder.io.out
520
521  // val f2_expd_instr     = preDecoderOut.expInstr
522  val f2_instr        = preDecoderOut.instr
523  val f2_pd           = preDecoderOut.pd
524  val f2_jump_offset  = preDecoderOut.jumpOffset
525  val f2_hasHalfValid = preDecoderOut.hasHalfValid
526  /* if there is a cross-page RVI instruction, and the former page has no exception,
527   * whether it has exception is actually depends on the latter page
528   */
529  val f2_crossPage_exception_vec = VecInit((0 until PredictWidth).map { i =>
530    Mux(
531      isLastInLine(f2_pc(i)) && !f2_pd(i).isRVC && f2_doubleLine && !ExceptionType.hasException(f2_exception(0)),
532      f2_exception(1),
533      ExceptionType.none
534    )
535  })
536  XSPerfAccumulate("fetch_bubble_icache_not_resp", f2_valid && !icacheRespAllValid)
537
538  /**
539    ******************************************************************************
540    * IFU Stage 3
541    * - handle MMIO instruciton
542    *  -send request to Uncache fetch Unit
543    *  -every packet include 1 MMIO instruction
544    *  -MMIO instructions will stop fetch pipeline until commiting from RoB
545    *  -flush to snpc (send ifu_redirect to Ftq)
546    * - Ibuffer enqueue
547    * - check predict result in Frontend (jalFault/retFault/notCFIFault/invalidTakenFault/targetFault)
548    * - handle last half RVI instruction
549    ******************************************************************************
550    */
551
552  val expanders = Seq.fill(PredictWidth)(Module(new RVCExpander))
553
554  val f3_valid   = RegInit(false.B)
555  val f3_ftq_req = RegEnable(f2_ftq_req, f2_fire)
556  // val f3_situation      = RegEnable(f2_situation,  f2_fire)
557  val f3_doubleLine = RegEnable(f2_doubleLine, f2_fire)
558  val f3_fire       = io.toIbuffer.fire
559
560  val f3_cut_data = RegEnable(f2_cut_data, f2_fire)
561
562  val f3_exception        = RegEnable(f2_exception, f2_fire)
563  val f3_pmp_mmio         = RegEnable(f2_pmp_mmio, f2_fire)
564  val f3_itlb_pbmt        = RegEnable(f2_itlb_pbmt, f2_fire)
565  val f3_backendException = RegEnable(f2_backendException, f2_fire)
566
567  val f3_instr = RegEnable(f2_instr, f2_fire)
568
569  expanders.zipWithIndex.foreach { case (expander, i) =>
570    expander.io.in      := f3_instr(i)
571    expander.io.fsIsOff := io.csr_fsIsOff
572  }
573  // Use expanded instruction only when input is legal.
574  // Otherwise use origin illegal RVC instruction.
575  val f3_expd_instr = VecInit(expanders.map { expander: RVCExpander =>
576    Mux(expander.io.ill, expander.io.in, expander.io.out.bits)
577  })
578  val f3_ill = VecInit(expanders.map(_.io.ill))
579
580  val f3_pd_wire                 = RegEnable(f2_pd, f2_fire)
581  val f3_pd                      = WireInit(f3_pd_wire)
582  val f3_jump_offset             = RegEnable(f2_jump_offset, f2_fire)
583  val f3_exception_vec           = RegEnable(f2_exception_vec, f2_fire)
584  val f3_crossPage_exception_vec = RegEnable(f2_crossPage_exception_vec, f2_fire)
585
586  val f3_pc_lower_result = RegEnable(f2_pc_lower_result, f2_fire)
587  val f3_pc_high         = RegEnable(f2_pc_high, f2_fire)
588  val f3_pc_high_plus1   = RegEnable(f2_pc_high_plus1, f2_fire)
589  val f3_pc              = CatPC(f3_pc_lower_result, f3_pc_high, f3_pc_high_plus1)
590
591  val f3_pc_last_lower_result_plus2 = RegEnable(f2_pc_lower_result(PredictWidth - 1) + 2.U, f2_fire)
592  val f3_pc_last_lower_result_plus4 = RegEnable(f2_pc_lower_result(PredictWidth - 1) + 4.U, f2_fire)
593  // val f3_half_snpc      = RegEnable(f2_half_snpc,   f2_fire)
594
595  /**
596    ***********************************************************************
597    * Half snpc(i) is larger than pc(i) by 4. Using pc to calculate half snpc may be a good choice.
598    ***********************************************************************
599    */
600  val f3_half_snpc = Wire(Vec(PredictWidth, UInt(VAddrBits.W)))
601  for (i <- 0 until PredictWidth) {
602    if (i == (PredictWidth - 2)) {
603      f3_half_snpc(i) := CatPC(f3_pc_last_lower_result_plus2, f3_pc_high, f3_pc_high_plus1)
604    } else if (i == (PredictWidth - 1)) {
605      f3_half_snpc(i) := CatPC(f3_pc_last_lower_result_plus4, f3_pc_high, f3_pc_high_plus1)
606    } else {
607      f3_half_snpc(i) := f3_pc(i + 2)
608    }
609  }
610
611  val f3_instr_range       = RegEnable(f2_instr_range, f2_fire)
612  val f3_foldpc            = RegEnable(f2_foldpc, f2_fire)
613  val f3_hasHalfValid      = RegEnable(f2_hasHalfValid, f2_fire)
614  val f3_paddrs            = RegEnable(f2_paddrs, f2_fire)
615  val f3_gpaddr            = RegEnable(f2_gpaddr, f2_fire)
616  val f3_isForVSnonLeafPTE = RegEnable(f2_isForVSnonLeafPTE, f2_fire)
617  val f3_resend_vaddr      = RegEnable(f2_resend_vaddr, f2_fire)
618
619  // Expand 1 bit to prevent overflow when assert
620  val f3_ftq_req_startAddr     = Cat(0.U(1.W), f3_ftq_req.startAddr)
621  val f3_ftq_req_nextStartAddr = Cat(0.U(1.W), f3_ftq_req.nextStartAddr)
622  // brType, isCall and isRet generation is delayed to f3 stage
623  val f3Predecoder = Module(new F3Predecoder)
624
625  f3Predecoder.io.in.instr := f3_instr
626
627  f3_pd.zipWithIndex.map { case (pd, i) =>
628    pd.brType := f3Predecoder.io.out.pd(i).brType
629    pd.isCall := f3Predecoder.io.out.pd(i).isCall
630    pd.isRet  := f3Predecoder.io.out.pd(i).isRet
631  }
632
633  val f3PdDiff = f3_pd_wire.zip(f3_pd).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _)
634  XSError(f3_valid && f3PdDiff, "f3 pd diff")
635
636  when(f3_valid && !f3_ftq_req.ftqOffset.valid) {
637    assert(
638      f3_ftq_req_startAddr + (2 * PredictWidth).U >= f3_ftq_req_nextStartAddr,
639      s"More tha ${2 * PredictWidth} Bytes fetch is not allowed!"
640    )
641  }
642
643  /*** MMIO State Machine***/
644  val f3_mmio_data          = Reg(Vec(2, UInt(16.W)))
645  val mmio_is_RVC           = RegInit(false.B)
646  val mmio_resend_addr      = RegInit(0.U(PAddrBits.W))
647  val mmio_resend_exception = RegInit(0.U(ExceptionType.width.W))
648  // NOTE: we dont use GPAddrBits here, refer to ICacheMainPipe.scala L43-48 and PR#3795
649  val mmio_resend_gpaddr            = RegInit(0.U(PAddrBitsMax.W))
650  val mmio_resend_isForVSnonLeafPTE = RegInit(false.B)
651
652  // last instuction finish
653  val is_first_instr = RegInit(true.B)
654
655  /*** Determine whether the MMIO instruction is executable based on the previous prediction block ***/
656  io.mmioCommitRead.mmioFtqPtr := RegNext(f3_ftq_req.ftqIdx - 1.U)
657
658  val m_idle :: m_waitLastCmt :: m_sendReq :: m_waitResp :: m_sendTLB :: m_tlbResp :: m_sendPMP :: m_resendReq :: m_waitResendResp :: m_waitCommit :: m_commited :: Nil =
659    Enum(11)
660  val mmio_state = RegInit(m_idle)
661
662  // do mmio fetch only when pmp/pbmt shows it is a uncacheable address and no exception occurs
663  /* FIXME: we do not distinguish pbmt is NC or IO now
664   *        but we actually can do speculative execution if pbmt is NC, maybe fix this later for performance
665   */
666  val f3_req_is_mmio =
667    f3_valid && (f3_pmp_mmio || Pbmt.isUncache(f3_itlb_pbmt)) && !ExceptionType.hasException(f3_exception)
668  val mmio_commit = VecInit(io.rob_commits.map { commit =>
669    commit.valid && commit.bits.ftqIdx === f3_ftq_req.ftqIdx && commit.bits.ftqOffset === 0.U
670  }).asUInt.orR
671  val f3_mmio_req_commit = f3_req_is_mmio && mmio_state === m_commited
672
673  val f3_mmio_to_commit      = f3_req_is_mmio && mmio_state === m_waitCommit
674  val f3_mmio_to_commit_next = RegNext(f3_mmio_to_commit)
675  val f3_mmio_can_go         = f3_mmio_to_commit && !f3_mmio_to_commit_next
676
677  val fromFtqRedirectReg = Wire(fromFtq.redirect.cloneType)
678  fromFtqRedirectReg.bits := RegEnable(
679    fromFtq.redirect.bits,
680    0.U.asTypeOf(fromFtq.redirect.bits),
681    fromFtq.redirect.valid
682  )
683  fromFtqRedirectReg.valid := RegNext(fromFtq.redirect.valid, init = false.B)
684  val mmioF3Flush           = RegNext(f3_flush, init = false.B)
685  val f3_ftq_flush_self     = fromFtqRedirectReg.valid && RedirectLevel.flushItself(fromFtqRedirectReg.bits.level)
686  val f3_ftq_flush_by_older = fromFtqRedirectReg.valid && isBefore(fromFtqRedirectReg.bits.ftqIdx, f3_ftq_req.ftqIdx)
687
688  val f3_need_not_flush = f3_req_is_mmio && fromFtqRedirectReg.valid && !f3_ftq_flush_self && !f3_ftq_flush_by_older
689
690  /**
691    **********************************************************************************
692    * We want to defer instruction fetching when encountering MMIO instructions to ensure that the MMIO region is not negatively impacted.
693    * This is the exception when the first instruction is an MMIO instruction.
694    **********************************************************************************
695    */
696  when(is_first_instr && f3_fire) {
697    is_first_instr := false.B
698  }
699
700  when(f3_flush && !f3_req_is_mmio)(f3_valid := false.B)
701    .elsewhen(mmioF3Flush && f3_req_is_mmio && !f3_need_not_flush)(f3_valid := false.B)
702    .elsewhen(f2_fire && !f2_flush)(f3_valid := true.B)
703    .elsewhen(io.toIbuffer.fire && !f3_req_is_mmio)(f3_valid := false.B)
704    .elsewhen(f3_req_is_mmio && f3_mmio_req_commit)(f3_valid := false.B)
705
706  val f3_mmio_use_seq_pc = RegInit(false.B)
707
708  val (redirect_ftqIdx, redirect_ftqOffset) = (fromFtqRedirectReg.bits.ftqIdx, fromFtqRedirectReg.bits.ftqOffset)
709  val redirect_mmio_req =
710    fromFtqRedirectReg.valid && redirect_ftqIdx === f3_ftq_req.ftqIdx && redirect_ftqOffset === 0.U
711
712  when(RegNext(f2_fire && !f2_flush) && f3_req_is_mmio)(f3_mmio_use_seq_pc := true.B)
713    .elsewhen(redirect_mmio_req)(f3_mmio_use_seq_pc := false.B)
714
715  f3_ready := (io.toIbuffer.ready && (f3_mmio_req_commit || !f3_req_is_mmio)) || !f3_valid
716
717  // mmio state machine
718  switch(mmio_state) {
719    is(m_idle) {
720      when(f3_req_is_mmio) {
721        // in idempotent spaces, we can send request directly (i.e. can do speculative fetch)
722        mmio_state := Mux(f3_itlb_pbmt === Pbmt.nc, m_sendReq, m_waitLastCmt)
723      }
724    }
725
726    is(m_waitLastCmt) {
727      when(is_first_instr) {
728        mmio_state := m_sendReq
729      }.otherwise {
730        mmio_state := Mux(io.mmioCommitRead.mmioLastCommit, m_sendReq, m_waitLastCmt)
731      }
732    }
733
734    is(m_sendReq) {
735      mmio_state := Mux(toUncache.fire, m_waitResp, m_sendReq)
736    }
737
738    is(m_waitResp) {
739      when(fromUncache.fire) {
740        val isRVC      = fromUncache.bits.data(1, 0) =/= 3.U
741        val needResend = !isRVC && f3_paddrs(0)(2, 1) === 3.U
742        mmio_state      := Mux(needResend, m_sendTLB, m_waitCommit)
743        mmio_is_RVC     := isRVC
744        f3_mmio_data(0) := fromUncache.bits.data(15, 0)
745        f3_mmio_data(1) := fromUncache.bits.data(31, 16)
746      }
747    }
748
749    is(m_sendTLB) {
750      mmio_state := Mux(io.iTLBInter.req.fire, m_tlbResp, m_sendTLB)
751    }
752
753    is(m_tlbResp) {
754      when(io.iTLBInter.resp.fire) {
755        // we are using a blocked tlb, so resp.fire must have !resp.bits.miss
756        assert(!io.iTLBInter.resp.bits.miss, "blocked mode iTLB miss when resp.fire")
757        val tlb_exception = ExceptionType.fromTlbResp(io.iTLBInter.resp.bits)
758        // if itlb re-check respond pbmt mismatch with previous check, must be access fault
759        val pbmt_mismatch_exception = Mux(
760          io.iTLBInter.resp.bits.pbmt(0) =/= f3_itlb_pbmt,
761          ExceptionType.af,
762          ExceptionType.none
763        )
764        val exception = ExceptionType.merge(tlb_exception, pbmt_mismatch_exception)
765        // if tlb has exception, abort checking pmp, just send instr & exception to ibuffer and wait for commit
766        mmio_state := Mux(ExceptionType.hasException(exception), m_waitCommit, m_sendPMP)
767        // also save itlb response
768        mmio_resend_addr              := io.iTLBInter.resp.bits.paddr(0)
769        mmio_resend_exception         := exception
770        mmio_resend_gpaddr            := io.iTLBInter.resp.bits.gpaddr(0)
771        mmio_resend_isForVSnonLeafPTE := io.iTLBInter.resp.bits.isForVSnonLeafPTE(0)
772      }
773    }
774
775    is(m_sendPMP) {
776      val pmp_exception = ExceptionType.fromPMPResp(io.pmp.resp)
777      // if pmp re-check respond mismatch with previous check, must be access fault
778      val mmio_mismatch_exception = Mux(
779        io.pmp.resp.mmio =/= f3_pmp_mmio,
780        ExceptionType.af,
781        ExceptionType.none
782      )
783      val exception = ExceptionType.merge(pmp_exception, mmio_mismatch_exception)
784      // if pmp has exception, abort sending request, just send instr & exception to ibuffer and wait for commit
785      mmio_state := Mux(ExceptionType.hasException(exception), m_waitCommit, m_resendReq)
786      // also save pmp response
787      mmio_resend_exception := exception
788    }
789
790    is(m_resendReq) {
791      mmio_state := Mux(toUncache.fire, m_waitResendResp, m_resendReq)
792    }
793
794    is(m_waitResendResp) {
795      when(fromUncache.fire) {
796        mmio_state      := m_waitCommit
797        f3_mmio_data(1) := fromUncache.bits.data(15, 0)
798      }
799    }
800
801    is(m_waitCommit) {
802      // in idempotent spaces, we can skip waiting for commit (i.e. can do speculative fetch)
803      // but we do not skip m_waitCommit state, as other signals (e.g. f3_mmio_can_go relies on this)
804      mmio_state := Mux(mmio_commit || f3_itlb_pbmt === Pbmt.nc, m_commited, m_waitCommit)
805    }
806
807    // normal mmio instruction
808    is(m_commited) {
809      mmio_state                    := m_idle
810      mmio_is_RVC                   := false.B
811      mmio_resend_addr              := 0.U
812      mmio_resend_exception         := ExceptionType.none
813      mmio_resend_gpaddr            := 0.U
814      mmio_resend_isForVSnonLeafPTE := false.B
815    }
816  }
817
818  // Exception or flush by older branch prediction
819  // Condition is from RegNext(fromFtq.redirect), 1 cycle after backend rediect
820  when(f3_ftq_flush_self || f3_ftq_flush_by_older) {
821    mmio_state                    := m_idle
822    mmio_is_RVC                   := false.B
823    mmio_resend_addr              := 0.U
824    mmio_resend_exception         := ExceptionType.none
825    mmio_resend_gpaddr            := 0.U
826    mmio_resend_isForVSnonLeafPTE := false.B
827    f3_mmio_data.map(_ := 0.U)
828  }
829
830  toUncache.valid     := ((mmio_state === m_sendReq) || (mmio_state === m_resendReq)) && f3_req_is_mmio
831  toUncache.bits.addr := Mux(mmio_state === m_resendReq, mmio_resend_addr, f3_paddrs(0))
832  fromUncache.ready   := true.B
833
834  // send itlb request in m_sendTLB state
835  io.iTLBInter.req.valid                   := (mmio_state === m_sendTLB) && f3_req_is_mmio
836  io.iTLBInter.req.bits.size               := 3.U
837  io.iTLBInter.req.bits.vaddr              := f3_resend_vaddr
838  io.iTLBInter.req.bits.debug.pc           := f3_resend_vaddr
839  io.iTLBInter.req.bits.cmd                := TlbCmd.exec
840  io.iTLBInter.req.bits.isPrefetch         := false.B
841  io.iTLBInter.req.bits.kill               := false.B // IFU use itlb for mmio, doesn't need sync, set it to false
842  io.iTLBInter.req.bits.no_translate       := false.B
843  io.iTLBInter.req.bits.fullva             := 0.U
844  io.iTLBInter.req.bits.checkfullva        := false.B
845  io.iTLBInter.req.bits.hyperinst          := DontCare
846  io.iTLBInter.req.bits.hlvx               := DontCare
847  io.iTLBInter.req.bits.memidx             := DontCare
848  io.iTLBInter.req.bits.debug.robIdx       := DontCare
849  io.iTLBInter.req.bits.debug.isFirstIssue := DontCare
850  io.iTLBInter.req.bits.pmp_addr           := DontCare
851  // whats the difference between req_kill and req.bits.kill?
852  io.iTLBInter.req_kill := false.B
853  // wait for itlb response in m_tlbResp state
854  io.iTLBInter.resp.ready := (mmio_state === m_tlbResp) && f3_req_is_mmio
855
856  io.pmp.req.valid     := (mmio_state === m_sendPMP) && f3_req_is_mmio
857  io.pmp.req.bits.addr := mmio_resend_addr
858  io.pmp.req.bits.size := 3.U
859  io.pmp.req.bits.cmd  := TlbCmd.exec
860
861  val f3_lastHalf = RegInit(0.U.asTypeOf(new LastHalfInfo))
862
863  val f3_predecode_range = VecInit(preDecoderOut.pd.map(inst => inst.valid)).asUInt
864  val f3_mmio_range      = VecInit((0 until PredictWidth).map(i => if (i == 0) true.B else false.B))
865  val f3_instr_valid     = Wire(Vec(PredictWidth, Bool()))
866
867  /*** prediction result check   ***/
868  checkerIn.ftqOffset  := f3_ftq_req.ftqOffset
869  checkerIn.jumpOffset := f3_jump_offset
870  checkerIn.target     := f3_ftq_req.nextStartAddr
871  checkerIn.instrRange := f3_instr_range.asTypeOf(Vec(PredictWidth, Bool()))
872  checkerIn.instrValid := f3_instr_valid.asTypeOf(Vec(PredictWidth, Bool()))
873  checkerIn.pds        := f3_pd
874  checkerIn.pc         := f3_pc
875  checkerIn.fire_in    := RegNext(f2_fire, init = false.B)
876
877  /*** handle half RVI in the last 2 Bytes  ***/
878
879  def hasLastHalf(idx: UInt) =
880    // !f3_pd(idx).isRVC && checkerOutStage1.fixedRange(idx) && f3_instr_valid(idx) && !checkerOutStage1.fixedTaken(idx) && !checkerOutStage2.fixedMissPred(idx) && ! f3_req_is_mmio
881    !f3_pd(idx).isRVC && checkerOutStage1.fixedRange(idx) && f3_instr_valid(idx) && !checkerOutStage1.fixedTaken(
882      idx
883    ) && !f3_req_is_mmio
884
885  val f3_last_validIdx = ParallelPosteriorityEncoder(checkerOutStage1.fixedRange)
886
887  val f3_hasLastHalf    = hasLastHalf((PredictWidth - 1).U)
888  val f3_false_lastHalf = hasLastHalf(f3_last_validIdx)
889  val f3_false_snpc     = f3_half_snpc(f3_last_validIdx)
890
891  val f3_lastHalf_mask    = VecInit((0 until PredictWidth).map(i => if (i == 0) false.B else true.B)).asUInt
892  val f3_lastHalf_disable = RegInit(false.B)
893
894  when(f3_flush || (f3_fire && f3_lastHalf_disable)) {
895    f3_lastHalf_disable := false.B
896  }
897
898  when(f3_flush) {
899    f3_lastHalf.valid := false.B
900  }.elsewhen(f3_fire) {
901    f3_lastHalf.valid    := f3_hasLastHalf && !f3_lastHalf_disable
902    f3_lastHalf.middlePC := f3_ftq_req.nextStartAddr
903  }
904
905  f3_instr_valid := Mux(f3_lastHalf.valid, f3_hasHalfValid, VecInit(f3_pd.map(inst => inst.valid)))
906
907  /*** frontend Trigger  ***/
908  frontendTrigger.io.pds  := f3_pd
909  frontendTrigger.io.pc   := f3_pc
910  frontendTrigger.io.data := f3_cut_data
911
912  frontendTrigger.io.frontendTrigger := io.frontendTrigger
913
914  val f3_triggered       = frontendTrigger.io.triggered
915  val f3_toIbuffer_valid = f3_valid && (!f3_req_is_mmio || f3_mmio_can_go) && !f3_flush
916
917  /*** send to Ibuffer  ***/
918  io.toIbuffer.valid          := f3_toIbuffer_valid
919  io.toIbuffer.bits.instrs    := f3_expd_instr
920  io.toIbuffer.bits.valid     := f3_instr_valid.asUInt
921  io.toIbuffer.bits.enqEnable := checkerOutStage1.fixedRange.asUInt & f3_instr_valid.asUInt
922  io.toIbuffer.bits.pd        := f3_pd
923  io.toIbuffer.bits.ftqPtr    := f3_ftq_req.ftqIdx
924  io.toIbuffer.bits.pc        := f3_pc
925  // Find last using PriorityMux
926  io.toIbuffer.bits.isLastInFtqEntry := Reverse(PriorityEncoderOH(Reverse(io.toIbuffer.bits.enqEnable))).asBools
927  io.toIbuffer.bits.ftqOffset.zipWithIndex.map { case (a, i) =>
928    a.bits := i.U; a.valid := checkerOutStage1.fixedTaken(i) && !f3_req_is_mmio
929  }
930  io.toIbuffer.bits.foldpc        := f3_foldpc
931  io.toIbuffer.bits.exceptionType := ExceptionType.merge(f3_exception_vec, f3_crossPage_exception_vec)
932  // backendException only needs to be set for the first instruction.
933  // Other instructions in the same block may have pf or af set,
934  // which is a side effect of the first instruction and actually not necessary.
935  io.toIbuffer.bits.backendException := (0 until PredictWidth).map {
936    case 0 => f3_backendException
937    case _ => false.B
938  }
939  io.toIbuffer.bits.crossPageIPFFix := f3_crossPage_exception_vec.map(ExceptionType.hasException)
940  io.toIbuffer.bits.illegalInstr    := f3_ill
941  io.toIbuffer.bits.triggered       := f3_triggered
942
943  when(f3_lastHalf.valid) {
944    io.toIbuffer.bits.enqEnable := checkerOutStage1.fixedRange.asUInt & f3_instr_valid.asUInt & f3_lastHalf_mask
945    io.toIbuffer.bits.valid     := f3_lastHalf_mask & f3_instr_valid.asUInt
946  }
947
948  /** to backend */
949  // f3_gpaddr is valid iff gpf is detected
950  io.toBackend.gpaddrMem_wen := f3_toIbuffer_valid && Mux(
951    f3_req_is_mmio,
952    mmio_resend_exception === ExceptionType.gpf,
953    f3_exception.map(_ === ExceptionType.gpf).reduce(_ || _)
954  )
955  io.toBackend.gpaddrMem_waddr        := f3_ftq_req.ftqIdx.value
956  io.toBackend.gpaddrMem_wdata.gpaddr := Mux(f3_req_is_mmio, mmio_resend_gpaddr, f3_gpaddr)
957  io.toBackend.gpaddrMem_wdata.isForVSnonLeafPTE := Mux(
958    f3_req_is_mmio,
959    mmio_resend_isForVSnonLeafPTE,
960    f3_isForVSnonLeafPTE
961  )
962
963  // Write back to Ftq
964  val f3_cache_fetch     = f3_valid && !(f2_fire && !f2_flush)
965  val finishFetchMaskReg = RegNext(f3_cache_fetch)
966
967  val mmioFlushWb        = Wire(Valid(new PredecodeWritebackBundle))
968  val f3_mmio_missOffset = Wire(ValidUndirectioned(UInt(log2Ceil(PredictWidth).W)))
969  f3_mmio_missOffset.valid := f3_req_is_mmio
970  f3_mmio_missOffset.bits  := 0.U
971
972  // Send mmioFlushWb back to FTQ 1 cycle after uncache fetch return
973  // When backend redirect, mmio_state reset after 1 cycle.
974  // In this case, mask .valid to avoid overriding backend redirect
975  mmioFlushWb.valid := (f3_req_is_mmio && mmio_state === m_waitCommit && RegNext(fromUncache.fire) &&
976    f3_mmio_use_seq_pc && !f3_ftq_flush_self && !f3_ftq_flush_by_older)
977  mmioFlushWb.bits.pc := f3_pc
978  mmioFlushWb.bits.pd := f3_pd
979  mmioFlushWb.bits.pd.zipWithIndex.map { case (instr, i) => instr.valid := f3_mmio_range(i) }
980  mmioFlushWb.bits.ftqIdx     := f3_ftq_req.ftqIdx
981  mmioFlushWb.bits.ftqOffset  := f3_ftq_req.ftqOffset.bits
982  mmioFlushWb.bits.misOffset  := f3_mmio_missOffset
983  mmioFlushWb.bits.cfiOffset  := DontCare
984  mmioFlushWb.bits.target     := Mux(mmio_is_RVC, f3_ftq_req.startAddr + 2.U, f3_ftq_req.startAddr + 4.U)
985  mmioFlushWb.bits.jalTarget  := DontCare
986  mmioFlushWb.bits.instrRange := f3_mmio_range
987
988  val mmioRVCExpander = Module(new RVCExpander)
989  mmioRVCExpander.io.in      := Mux(f3_req_is_mmio, Cat(f3_mmio_data(1), f3_mmio_data(0)), 0.U)
990  mmioRVCExpander.io.fsIsOff := io.csr_fsIsOff
991
992  /** external predecode for MMIO instruction */
993  when(f3_req_is_mmio) {
994    val inst         = Cat(f3_mmio_data(1), f3_mmio_data(0))
995    val currentIsRVC = isRVC(inst)
996
997    val brType :: isCall :: isRet :: Nil = brInfo(inst)
998    val jalOffset                        = jal_offset(inst, currentIsRVC)
999    val brOffset                         = br_offset(inst, currentIsRVC)
1000
1001    io.toIbuffer.bits.instrs(0) := Mux(mmioRVCExpander.io.ill, mmioRVCExpander.io.in, mmioRVCExpander.io.out.bits)
1002
1003    io.toIbuffer.bits.pd(0).valid  := true.B
1004    io.toIbuffer.bits.pd(0).isRVC  := currentIsRVC
1005    io.toIbuffer.bits.pd(0).brType := brType
1006    io.toIbuffer.bits.pd(0).isCall := isCall
1007    io.toIbuffer.bits.pd(0).isRet  := isRet
1008
1009    io.toIbuffer.bits.exceptionType(0)   := mmio_resend_exception
1010    io.toIbuffer.bits.crossPageIPFFix(0) := ExceptionType.hasException(mmio_resend_exception)
1011    io.toIbuffer.bits.illegalInstr(0)    := mmioRVCExpander.io.ill
1012
1013    io.toIbuffer.bits.enqEnable := f3_mmio_range.asUInt
1014
1015    mmioFlushWb.bits.pd(0).valid  := true.B
1016    mmioFlushWb.bits.pd(0).isRVC  := currentIsRVC
1017    mmioFlushWb.bits.pd(0).brType := brType
1018    mmioFlushWb.bits.pd(0).isCall := isCall
1019    mmioFlushWb.bits.pd(0).isRet  := isRet
1020  }
1021
1022  mmio_redirect := (f3_req_is_mmio && mmio_state === m_waitCommit && RegNext(fromUncache.fire) && f3_mmio_use_seq_pc)
1023
1024  XSPerfAccumulate("fetch_bubble_ibuffer_not_ready", io.toIbuffer.valid && !io.toIbuffer.ready)
1025
1026  /**
1027    ******************************************************************************
1028    * IFU Write Back Stage
1029    * - write back predecode information to Ftq to update
1030    * - redirect if found fault prediction
1031    * - redirect if has false hit last half (last PC is not start + 32 Bytes, but in the midle of an notCFI RVI instruction)
1032    ******************************************************************************
1033    */
1034  val wb_enable  = RegNext(f2_fire && !f2_flush) && !f3_req_is_mmio && !f3_flush
1035  val wb_valid   = RegNext(wb_enable, init = false.B)
1036  val wb_ftq_req = RegEnable(f3_ftq_req, wb_enable)
1037
1038  val wb_check_result_stage1 = RegEnable(checkerOutStage1, wb_enable)
1039  val wb_check_result_stage2 = checkerOutStage2
1040  val wb_instr_range         = RegEnable(io.toIbuffer.bits.enqEnable, wb_enable)
1041
1042  val wb_pc_lower_result = RegEnable(f3_pc_lower_result, wb_enable)
1043  val wb_pc_high         = RegEnable(f3_pc_high, wb_enable)
1044  val wb_pc_high_plus1   = RegEnable(f3_pc_high_plus1, wb_enable)
1045  val wb_pc              = CatPC(wb_pc_lower_result, wb_pc_high, wb_pc_high_plus1)
1046
1047  // val wb_pc             = RegEnable(f3_pc, wb_enable)
1048  val wb_pd          = RegEnable(f3_pd, wb_enable)
1049  val wb_instr_valid = RegEnable(f3_instr_valid, wb_enable)
1050
1051  /* false hit lastHalf */
1052  val wb_lastIdx        = RegEnable(f3_last_validIdx, wb_enable)
1053  val wb_false_lastHalf = RegEnable(f3_false_lastHalf, wb_enable) && wb_lastIdx =/= (PredictWidth - 1).U
1054  val wb_false_target   = RegEnable(f3_false_snpc, wb_enable)
1055
1056  val wb_half_flush  = wb_false_lastHalf
1057  val wb_half_target = wb_false_target
1058
1059  /* false oversize */
1060  val lastIsRVC = wb_instr_range.asTypeOf(Vec(PredictWidth, Bool())).last && wb_pd.last.isRVC
1061  val lastIsRVI = wb_instr_range.asTypeOf(Vec(PredictWidth, Bool()))(PredictWidth - 2) && !wb_pd(PredictWidth - 2).isRVC
1062  val lastTaken = wb_check_result_stage1.fixedTaken.last
1063
1064  f3_wb_not_flush := wb_ftq_req.ftqIdx === f3_ftq_req.ftqIdx && f3_valid && wb_valid
1065
1066  /** if a req with a last half but miss predicted enters in wb stage, and this cycle f3 stalls,
1067    * we set a flag to notify f3 that the last half flag need not to be set.
1068    */
1069  // f3_fire is after wb_valid
1070  when(wb_valid && RegNext(f3_hasLastHalf, init = false.B)
1071    && wb_check_result_stage2.fixedMissPred(PredictWidth - 1) && !f3_fire && !RegNext(
1072      f3_fire,
1073      init = false.B
1074    ) && !f3_flush) {
1075    f3_lastHalf_disable := true.B
1076  }
1077
1078  // wb_valid and f3_fire are in same cycle
1079  when(wb_valid && RegNext(f3_hasLastHalf, init = false.B)
1080    && wb_check_result_stage2.fixedMissPred(PredictWidth - 1) && f3_fire) {
1081    f3_lastHalf.valid := false.B
1082  }
1083
1084  val checkFlushWb = Wire(Valid(new PredecodeWritebackBundle))
1085  val checkFlushWbjalTargetIdx = ParallelPriorityEncoder(VecInit(wb_pd.zip(wb_instr_valid).map { case (pd, v) =>
1086    v && pd.isJal
1087  }))
1088  val checkFlushWbTargetIdx = ParallelPriorityEncoder(wb_check_result_stage2.fixedMissPred)
1089  checkFlushWb.valid   := wb_valid
1090  checkFlushWb.bits.pc := wb_pc
1091  checkFlushWb.bits.pd := wb_pd
1092  checkFlushWb.bits.pd.zipWithIndex.map { case (instr, i) => instr.valid := wb_instr_valid(i) }
1093  checkFlushWb.bits.ftqIdx          := wb_ftq_req.ftqIdx
1094  checkFlushWb.bits.ftqOffset       := wb_ftq_req.ftqOffset.bits
1095  checkFlushWb.bits.misOffset.valid := ParallelOR(wb_check_result_stage2.fixedMissPred) || wb_half_flush
1096  checkFlushWb.bits.misOffset.bits := Mux(
1097    wb_half_flush,
1098    wb_lastIdx,
1099    ParallelPriorityEncoder(wb_check_result_stage2.fixedMissPred)
1100  )
1101  checkFlushWb.bits.cfiOffset.valid := ParallelOR(wb_check_result_stage1.fixedTaken)
1102  checkFlushWb.bits.cfiOffset.bits  := ParallelPriorityEncoder(wb_check_result_stage1.fixedTaken)
1103  checkFlushWb.bits.target := Mux(
1104    wb_half_flush,
1105    wb_half_target,
1106    wb_check_result_stage2.fixedTarget(checkFlushWbTargetIdx)
1107  )
1108  checkFlushWb.bits.jalTarget  := wb_check_result_stage2.jalTarget(checkFlushWbjalTargetIdx)
1109  checkFlushWb.bits.instrRange := wb_instr_range.asTypeOf(Vec(PredictWidth, Bool()))
1110
1111  toFtq.pdWb := Mux(wb_valid, checkFlushWb, mmioFlushWb)
1112
1113  wb_redirect := checkFlushWb.bits.misOffset.valid && wb_valid
1114
1115  /*write back flush type*/
1116  val checkFaultType    = wb_check_result_stage2.faultType
1117  val checkJalFault     = wb_valid && checkFaultType.map(_.isjalFault).reduce(_ || _)
1118  val checkRetFault     = wb_valid && checkFaultType.map(_.isRetFault).reduce(_ || _)
1119  val checkTargetFault  = wb_valid && checkFaultType.map(_.istargetFault).reduce(_ || _)
1120  val checkNotCFIFault  = wb_valid && checkFaultType.map(_.notCFIFault).reduce(_ || _)
1121  val checkInvalidTaken = wb_valid && checkFaultType.map(_.invalidTakenFault).reduce(_ || _)
1122
1123  XSPerfAccumulate("predecode_flush_jalFault", checkJalFault)
1124  XSPerfAccumulate("predecode_flush_retFault", checkRetFault)
1125  XSPerfAccumulate("predecode_flush_targetFault", checkTargetFault)
1126  XSPerfAccumulate("predecode_flush_notCFIFault", checkNotCFIFault)
1127  XSPerfAccumulate("predecode_flush_incalidTakenFault", checkInvalidTaken)
1128
1129  XSDebug(
1130    checkRetFault,
1131    "startAddr:%x  nextstartAddr:%x  taken:%d    takenIdx:%d\n",
1132    wb_ftq_req.startAddr,
1133    wb_ftq_req.nextStartAddr,
1134    wb_ftq_req.ftqOffset.valid,
1135    wb_ftq_req.ftqOffset.bits
1136  )
1137
1138  /** performance counter */
1139  val f3_perf_info = RegEnable(f2_perf_info, f2_fire)
1140  val f3_req_0     = io.toIbuffer.fire
1141  val f3_req_1     = io.toIbuffer.fire && f3_doubleLine
1142  val f3_hit_0     = io.toIbuffer.fire && f3_perf_info.bank_hit(0)
1143  val f3_hit_1     = io.toIbuffer.fire && f3_doubleLine & f3_perf_info.bank_hit(1)
1144  val f3_hit       = f3_perf_info.hit
1145  val perfEvents = Seq(
1146    ("frontendFlush                ", wb_redirect),
1147    ("ifu_req                      ", io.toIbuffer.fire),
1148    ("ifu_miss                     ", io.toIbuffer.fire && !f3_perf_info.hit),
1149    ("ifu_req_cacheline_0          ", f3_req_0),
1150    ("ifu_req_cacheline_1          ", f3_req_1),
1151    ("ifu_req_cacheline_0_hit      ", f3_hit_1),
1152    ("ifu_req_cacheline_1_hit      ", f3_hit_1),
1153    ("only_0_hit                   ", f3_perf_info.only_0_hit && io.toIbuffer.fire),
1154    ("only_0_miss                  ", f3_perf_info.only_0_miss && io.toIbuffer.fire),
1155    ("hit_0_hit_1                  ", f3_perf_info.hit_0_hit_1 && io.toIbuffer.fire),
1156    ("hit_0_miss_1                 ", f3_perf_info.hit_0_miss_1 && io.toIbuffer.fire),
1157    ("miss_0_hit_1                 ", f3_perf_info.miss_0_hit_1 && io.toIbuffer.fire),
1158    ("miss_0_miss_1                ", f3_perf_info.miss_0_miss_1 && io.toIbuffer.fire)
1159  )
1160  generatePerfEvent()
1161
1162  XSPerfAccumulate("ifu_req", io.toIbuffer.fire)
1163  XSPerfAccumulate("ifu_miss", io.toIbuffer.fire && !f3_hit)
1164  XSPerfAccumulate("ifu_req_cacheline_0", f3_req_0)
1165  XSPerfAccumulate("ifu_req_cacheline_1", f3_req_1)
1166  XSPerfAccumulate("ifu_req_cacheline_0_hit", f3_hit_0)
1167  XSPerfAccumulate("ifu_req_cacheline_1_hit", f3_hit_1)
1168  XSPerfAccumulate("frontendFlush", wb_redirect)
1169  XSPerfAccumulate("only_0_hit", f3_perf_info.only_0_hit && io.toIbuffer.fire)
1170  XSPerfAccumulate("only_0_miss", f3_perf_info.only_0_miss && io.toIbuffer.fire)
1171  XSPerfAccumulate("hit_0_hit_1", f3_perf_info.hit_0_hit_1 && io.toIbuffer.fire)
1172  XSPerfAccumulate("hit_0_miss_1", f3_perf_info.hit_0_miss_1 && io.toIbuffer.fire)
1173  XSPerfAccumulate("miss_0_hit_1", f3_perf_info.miss_0_hit_1 && io.toIbuffer.fire)
1174  XSPerfAccumulate("miss_0_miss_1", f3_perf_info.miss_0_miss_1 && io.toIbuffer.fire)
1175  XSPerfAccumulate("hit_0_except_1", f3_perf_info.hit_0_except_1 && io.toIbuffer.fire)
1176  XSPerfAccumulate("miss_0_except_1", f3_perf_info.miss_0_except_1 && io.toIbuffer.fire)
1177  XSPerfAccumulate("except_0", f3_perf_info.except_0 && io.toIbuffer.fire)
1178  XSPerfHistogram(
1179    "ifu2ibuffer_validCnt",
1180    PopCount(io.toIbuffer.bits.valid & io.toIbuffer.bits.enqEnable),
1181    io.toIbuffer.fire,
1182    0,
1183    PredictWidth + 1,
1184    1
1185  )
1186
1187  val hartId                     = p(XSCoreParamsKey).HartId
1188  val isWriteFetchToIBufferTable = Constantin.createRecord(s"isWriteFetchToIBufferTable$hartId")
1189  val isWriteIfuWbToFtqTable     = Constantin.createRecord(s"isWriteIfuWbToFtqTable$hartId")
1190  val fetchToIBufferTable        = ChiselDB.createTable(s"FetchToIBuffer$hartId", new FetchToIBufferDB)
1191  val ifuWbToFtqTable            = ChiselDB.createTable(s"IfuWbToFtq$hartId", new IfuWbToFtqDB)
1192
1193  val fetchIBufferDumpData = Wire(new FetchToIBufferDB)
1194  fetchIBufferDumpData.start_addr  := f3_ftq_req.startAddr
1195  fetchIBufferDumpData.instr_count := PopCount(io.toIbuffer.bits.enqEnable)
1196  fetchIBufferDumpData.exception := (f3_perf_info.except_0 && io.toIbuffer.fire) || (f3_perf_info.hit_0_except_1 && io.toIbuffer.fire) || (f3_perf_info.miss_0_except_1 && io.toIbuffer.fire)
1197  fetchIBufferDumpData.is_cache_hit := f3_hit
1198
1199  val ifuWbToFtqDumpData = Wire(new IfuWbToFtqDB)
1200  ifuWbToFtqDumpData.start_addr        := wb_ftq_req.startAddr
1201  ifuWbToFtqDumpData.is_miss_pred      := checkFlushWb.bits.misOffset.valid
1202  ifuWbToFtqDumpData.miss_pred_offset  := checkFlushWb.bits.misOffset.bits
1203  ifuWbToFtqDumpData.checkJalFault     := checkJalFault
1204  ifuWbToFtqDumpData.checkRetFault     := checkRetFault
1205  ifuWbToFtqDumpData.checkTargetFault  := checkTargetFault
1206  ifuWbToFtqDumpData.checkNotCFIFault  := checkNotCFIFault
1207  ifuWbToFtqDumpData.checkInvalidTaken := checkInvalidTaken
1208
1209  fetchToIBufferTable.log(
1210    data = fetchIBufferDumpData,
1211    en = isWriteFetchToIBufferTable.orR && io.toIbuffer.fire,
1212    site = "IFU" + p(XSCoreParamsKey).HartId.toString,
1213    clock = clock,
1214    reset = reset
1215  )
1216  ifuWbToFtqTable.log(
1217    data = ifuWbToFtqDumpData,
1218    en = isWriteIfuWbToFtqTable.orR && checkFlushWb.valid,
1219    site = "IFU" + p(XSCoreParamsKey).HartId.toString,
1220    clock = clock,
1221    reset = reset
1222  )
1223
1224}
1225