1/*************************************************************************************** 2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) 3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences 4* Copyright (c) 2020-2021 Peng Cheng Laboratory 5* 6* XiangShan is licensed under Mulan PSL v2. 7* You can use this software according to the terms and conditions of the Mulan PSL v2. 8* You may obtain a copy of Mulan PSL v2 at: 9* http://license.coscl.org.cn/MulanPSL2 10* 11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 14* 15* See the Mulan PSL v2 for more details. 16***************************************************************************************/ 17 18package xiangshan.frontend 19 20import org.chipsalliance.cde.config.Parameters 21import chisel3._ 22import chisel3.util._ 23import freechips.rocketchip.rocket.RVCDecoder 24import xiangshan._ 25import xiangshan.cache.mmu._ 26import xiangshan.frontend.icache._ 27import utils._ 28import utility._ 29import xiangshan.backend.fu.{PMPReqBundle, PMPRespBundle} 30import utility.ChiselDB 31 32trait HasInstrMMIOConst extends HasXSParameter with HasIFUConst{ 33 def mmioBusWidth = 64 34 def mmioBusBytes = mmioBusWidth / 8 35 def maxInstrLen = 32 36} 37 38trait HasIFUConst extends HasXSParameter{ 39 def addrAlign(addr: UInt, bytes: Int, highest: Int): UInt = Cat(addr(highest-1, log2Ceil(bytes)), 0.U(log2Ceil(bytes).W)) 40 def fetchQueueSize = 2 41 42 def getBasicBlockIdx( pc: UInt, start: UInt ): UInt = { 43 val byteOffset = pc - start 44 (byteOffset - instBytes.U)(log2Ceil(PredictWidth),instOffsetBits) 45 } 46} 47 48class IfuToFtqIO(implicit p:Parameters) extends XSBundle { 49 val pdWb = Valid(new PredecodeWritebackBundle) 50} 51 52class IfuToBackendIO(implicit p:Parameters) extends XSBundle { 53 // write to backend gpaddr mem 54 val gpaddrMem_wen = Output(Bool()) 55 val gpaddrMem_waddr = Output(UInt(log2Ceil(FtqSize).W)) // Ftq Ptr 56 // 2 gpaddrs, correspond to startAddr & nextLineAddr in bundle FtqICacheInfo 57 // TODO: avoid cross page entry in Ftq 58 val gpaddrMem_wdata = Output(UInt(GPAddrBits.W)) 59} 60 61class FtqInterface(implicit p: Parameters) extends XSBundle { 62 val fromFtq = Flipped(new FtqToIfuIO) 63 val toFtq = new IfuToFtqIO 64} 65 66class UncacheInterface(implicit p: Parameters) extends XSBundle { 67 val fromUncache = Flipped(DecoupledIO(new InsUncacheResp)) 68 val toUncache = DecoupledIO( new InsUncacheReq ) 69} 70 71class NewIFUIO(implicit p: Parameters) extends XSBundle { 72 val ftqInter = new FtqInterface 73 val icacheInter = Flipped(new IFUICacheIO) 74 val icacheStop = Output(Bool()) 75 val icachePerfInfo = Input(new ICachePerfInfo) 76 val toIbuffer = Decoupled(new FetchToIBuffer) 77 val toBackend = new IfuToBackendIO 78 val uncacheInter = new UncacheInterface 79 val frontendTrigger = Flipped(new FrontendTdataDistributeIO) 80 val rob_commits = Flipped(Vec(CommitWidth, Valid(new RobCommitInfo))) 81 val iTLBInter = new TlbRequestIO 82 val pmp = new ICachePMPBundle 83 val mmioCommitRead = new mmioCommitRead 84} 85 86// record the situation in which fallThruAddr falls into 87// the middle of an RVI inst 88class LastHalfInfo(implicit p: Parameters) extends XSBundle { 89 val valid = Bool() 90 val middlePC = UInt(VAddrBits.W) 91 def matchThisBlock(startAddr: UInt) = valid && middlePC === startAddr 92} 93 94class IfuToPreDecode(implicit p: Parameters) extends XSBundle { 95 val data = if(HasCExtension) Vec(PredictWidth + 1, UInt(16.W)) else Vec(PredictWidth, UInt(32.W)) 96 val frontendTrigger = new FrontendTdataDistributeIO 97 val pc = Vec(PredictWidth, UInt(VAddrBits.W)) 98} 99 100 101class IfuToPredChecker(implicit p: Parameters) extends XSBundle { 102 val ftqOffset = Valid(UInt(log2Ceil(PredictWidth).W)) 103 val jumpOffset = Vec(PredictWidth, UInt(XLEN.W)) 104 val target = UInt(VAddrBits.W) 105 val instrRange = Vec(PredictWidth, Bool()) 106 val instrValid = Vec(PredictWidth, Bool()) 107 val pds = Vec(PredictWidth, new PreDecodeInfo) 108 val pc = Vec(PredictWidth, UInt(VAddrBits.W)) 109 val fire_in = Bool() 110} 111 112class FetchToIBufferDB extends Bundle { 113 val start_addr = UInt(39.W) 114 val instr_count = UInt(32.W) 115 val exception = Bool() 116 val is_cache_hit = Bool() 117} 118 119class IfuWbToFtqDB extends Bundle { 120 val start_addr = UInt(39.W) 121 val is_miss_pred = Bool() 122 val miss_pred_offset = UInt(32.W) 123 val checkJalFault = Bool() 124 val checkRetFault = Bool() 125 val checkTargetFault = Bool() 126 val checkNotCFIFault = Bool() 127 val checkInvalidTaken = Bool() 128} 129 130class NewIFU(implicit p: Parameters) extends XSModule 131 with HasICacheParameters 132 with HasXSParameter 133 with HasIFUConst 134 with HasPdConst 135 with HasCircularQueuePtrHelper 136 with HasPerfEvents 137 with HasTlbConst 138{ 139 val io = IO(new NewIFUIO) 140 val (toFtq, fromFtq) = (io.ftqInter.toFtq, io.ftqInter.fromFtq) 141 val fromICache = io.icacheInter.resp 142 val (toUncache, fromUncache) = (io.uncacheInter.toUncache , io.uncacheInter.fromUncache) 143 144 def isCrossLineReq(start: UInt, end: UInt): Bool = start(blockOffBits) ^ end(blockOffBits) 145 146 def numOfStage = 3 147 // equal lower_result overflow bit 148 def PcCutPoint = (VAddrBits/4) - 1 149 def CatPC(low: UInt, high: UInt, high1: UInt): UInt = { 150 Mux( 151 low(PcCutPoint), 152 Cat(high1, low(PcCutPoint-1, 0)), 153 Cat(high, low(PcCutPoint-1, 0)) 154 ) 155 } 156 def CatPC(lowVec: Vec[UInt], high: UInt, high1: UInt): Vec[UInt] = VecInit(lowVec.map(CatPC(_, high, high1))) 157 require(numOfStage > 1, "BPU numOfStage must be greater than 1") 158 val topdown_stages = RegInit(VecInit(Seq.fill(numOfStage)(0.U.asTypeOf(new FrontendTopDownBundle)))) 159 // bubble events in IFU, only happen in stage 1 160 val icacheMissBubble = Wire(Bool()) 161 val itlbMissBubble =Wire(Bool()) 162 163 // only driven by clock, not valid-ready 164 topdown_stages(0) := fromFtq.req.bits.topdown_info 165 for (i <- 1 until numOfStage) { 166 topdown_stages(i) := topdown_stages(i - 1) 167 } 168 when (icacheMissBubble) { 169 topdown_stages(1).reasons(TopDownCounters.ICacheMissBubble.id) := true.B 170 } 171 when (itlbMissBubble) { 172 topdown_stages(1).reasons(TopDownCounters.ITLBMissBubble.id) := true.B 173 } 174 io.toIbuffer.bits.topdown_info := topdown_stages(numOfStage - 1) 175 when (fromFtq.topdown_redirect.valid) { 176 // only redirect from backend, IFU redirect itself is handled elsewhere 177 when (fromFtq.topdown_redirect.bits.debugIsCtrl) { 178 /* 179 for (i <- 0 until numOfStage) { 180 topdown_stages(i).reasons(TopDownCounters.ControlRedirectBubble.id) := true.B 181 } 182 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.ControlRedirectBubble.id) := true.B 183 */ 184 when (fromFtq.topdown_redirect.bits.ControlBTBMissBubble) { 185 for (i <- 0 until numOfStage) { 186 topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B 187 } 188 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.BTBMissBubble.id) := true.B 189 } .elsewhen (fromFtq.topdown_redirect.bits.TAGEMissBubble) { 190 for (i <- 0 until numOfStage) { 191 topdown_stages(i).reasons(TopDownCounters.TAGEMissBubble.id) := true.B 192 } 193 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.TAGEMissBubble.id) := true.B 194 } .elsewhen (fromFtq.topdown_redirect.bits.SCMissBubble) { 195 for (i <- 0 until numOfStage) { 196 topdown_stages(i).reasons(TopDownCounters.SCMissBubble.id) := true.B 197 } 198 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.SCMissBubble.id) := true.B 199 } .elsewhen (fromFtq.topdown_redirect.bits.ITTAGEMissBubble) { 200 for (i <- 0 until numOfStage) { 201 topdown_stages(i).reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B 202 } 203 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B 204 } .elsewhen (fromFtq.topdown_redirect.bits.RASMissBubble) { 205 for (i <- 0 until numOfStage) { 206 topdown_stages(i).reasons(TopDownCounters.RASMissBubble.id) := true.B 207 } 208 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.RASMissBubble.id) := true.B 209 } 210 } .elsewhen (fromFtq.topdown_redirect.bits.debugIsMemVio) { 211 for (i <- 0 until numOfStage) { 212 topdown_stages(i).reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B 213 } 214 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B 215 } .otherwise { 216 for (i <- 0 until numOfStage) { 217 topdown_stages(i).reasons(TopDownCounters.OtherRedirectBubble.id) := true.B 218 } 219 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.OtherRedirectBubble.id) := true.B 220 } 221 } 222 223 class TlbExept(implicit p: Parameters) extends XSBundle{ 224 val pageFault = Bool() 225 val accessFault = Bool() 226 val mmio = Bool() 227 } 228 229 val preDecoder = Module(new PreDecode) 230 231 val predChecker = Module(new PredChecker) 232 val frontendTrigger = Module(new FrontendTrigger) 233 val (checkerIn, checkerOutStage1, checkerOutStage2) = (predChecker.io.in, predChecker.io.out.stage1Out,predChecker.io.out.stage2Out) 234 235 /** 236 ****************************************************************************** 237 * IFU Stage 0 238 * - send cacheline fetch request to ICacheMainPipe 239 ****************************************************************************** 240 */ 241 242 val f0_valid = fromFtq.req.valid 243 val f0_ftq_req = fromFtq.req.bits 244 val f0_doubleLine = fromFtq.req.bits.crossCacheline 245 val f0_vSetIdx = VecInit(get_idx((f0_ftq_req.startAddr)), get_idx(f0_ftq_req.nextlineStart)) 246 val f0_fire = fromFtq.req.fire 247 248 val f0_flush, f1_flush, f2_flush, f3_flush = WireInit(false.B) 249 val from_bpu_f0_flush, from_bpu_f1_flush, from_bpu_f2_flush, from_bpu_f3_flush = WireInit(false.B) 250 251 from_bpu_f0_flush := fromFtq.flushFromBpu.shouldFlushByStage2(f0_ftq_req.ftqIdx) || 252 fromFtq.flushFromBpu.shouldFlushByStage3(f0_ftq_req.ftqIdx) 253 254 val wb_redirect , mmio_redirect, backend_redirect= WireInit(false.B) 255 val f3_wb_not_flush = WireInit(false.B) 256 257 backend_redirect := fromFtq.redirect.valid 258 f3_flush := backend_redirect || (wb_redirect && !f3_wb_not_flush) 259 f2_flush := backend_redirect || mmio_redirect || wb_redirect 260 f1_flush := f2_flush || from_bpu_f1_flush 261 f0_flush := f1_flush || from_bpu_f0_flush 262 263 val f1_ready, f2_ready, f3_ready = WireInit(false.B) 264 265 fromFtq.req.ready := f1_ready && io.icacheInter.icacheReady 266 267 268 when (wb_redirect) { 269 when (f3_wb_not_flush) { 270 topdown_stages(2).reasons(TopDownCounters.BTBMissBubble.id) := true.B 271 } 272 for (i <- 0 until numOfStage - 1) { 273 topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B 274 } 275 } 276 277 /** <PERF> f0 fetch bubble */ 278 279 XSPerfAccumulate("fetch_bubble_ftq_not_valid", !fromFtq.req.valid && fromFtq.req.ready ) 280 // XSPerfAccumulate("fetch_bubble_pipe_stall", f0_valid && toICache(0).ready && toICache(1).ready && !f1_ready ) 281 // XSPerfAccumulate("fetch_bubble_icache_0_busy", f0_valid && !toICache(0).ready ) 282 // XSPerfAccumulate("fetch_bubble_icache_1_busy", f0_valid && !toICache(1).ready ) 283 XSPerfAccumulate("fetch_flush_backend_redirect", backend_redirect ) 284 XSPerfAccumulate("fetch_flush_wb_redirect", wb_redirect ) 285 XSPerfAccumulate("fetch_flush_bpu_f1_flush", from_bpu_f1_flush ) 286 XSPerfAccumulate("fetch_flush_bpu_f0_flush", from_bpu_f0_flush ) 287 288 289 /** 290 ****************************************************************************** 291 * IFU Stage 1 292 * - calculate pc/half_pc/cut_ptr for every instruction 293 ****************************************************************************** 294 */ 295 296 val f1_valid = RegInit(false.B) 297 val f1_ftq_req = RegEnable(f0_ftq_req, f0_fire) 298 // val f1_situation = RegEnable(f0_situation, f0_fire) 299 val f1_doubleLine = RegEnable(f0_doubleLine, f0_fire) 300 val f1_vSetIdx = RegEnable(f0_vSetIdx, f0_fire) 301 val f1_fire = f1_valid && f2_ready 302 303 f1_ready := f1_fire || !f1_valid 304 305 from_bpu_f1_flush := fromFtq.flushFromBpu.shouldFlushByStage3(f1_ftq_req.ftqIdx) && f1_valid 306 // from_bpu_f1_flush := false.B 307 308 when(f1_flush) {f1_valid := false.B} 309 .elsewhen(f0_fire && !f0_flush) {f1_valid := true.B} 310 .elsewhen(f1_fire) {f1_valid := false.B} 311 312 val f1_pc_high = f1_ftq_req.startAddr(VAddrBits-1, PcCutPoint) 313 val f1_pc_high_plus1 = f1_pc_high + 1.U 314 315 /** 316 * In order to reduce power consumption, avoid calculating the full PC value in the first level. 317 * code of original logic, this code has been deprecated 318 * val f1_pc = VecInit(f1_pc_lower_result.map{ i => 319 * Mux(i(f1_pc_adder_cut_point), Cat(f1_pc_high_plus1,i(f1_pc_adder_cut_point-1,0)), Cat(f1_pc_high,i(f1_pc_adder_cut_point-1,0)))}) 320 */ 321 val f1_pc_lower_result = VecInit((0 until PredictWidth).map(i => Cat(0.U(1.W), f1_ftq_req.startAddr(PcCutPoint-1, 0)) + (i * 2).U)) // cat with overflow bit 322 323 val f1_pc = CatPC(f1_pc_lower_result, f1_pc_high, f1_pc_high_plus1) 324 325 val f1_half_snpc_lower_result = VecInit((0 until PredictWidth).map(i => Cat(0.U(1.W), f1_ftq_req.startAddr(PcCutPoint-1, 0)) + ((i+2) * 2).U)) // cat with overflow bit 326 val f1_half_snpc = CatPC(f1_half_snpc_lower_result, f1_pc_high, f1_pc_high_plus1) 327 328 if (env.FPGAPlatform){ 329 val f1_pc_diff = VecInit((0 until PredictWidth).map(i => f1_ftq_req.startAddr + (i * 2).U)) 330 val f1_half_snpc_diff = VecInit((0 until PredictWidth).map(i => f1_ftq_req.startAddr + ((i+2) * 2).U)) 331 332 XSError(f1_pc.zip(f1_pc_diff).map{ case (a,b) => a.asUInt =/= b.asUInt }.reduce(_||_), "f1_half_snpc adder cut fail") 333 XSError(f1_half_snpc.zip(f1_half_snpc_diff).map{ case (a,b) => a.asUInt =/= b.asUInt }.reduce(_||_), "f1_half_snpc adder cut fail") 334 } 335 336 val f1_cut_ptr = if(HasCExtension) VecInit((0 until PredictWidth + 1).map(i => Cat(0.U(2.W), f1_ftq_req.startAddr(blockOffBits-1, 1)) + i.U )) 337 else VecInit((0 until PredictWidth).map(i => Cat(0.U(2.W), f1_ftq_req.startAddr(blockOffBits-1, 2)) + i.U )) 338 339 /** 340 ****************************************************************************** 341 * IFU Stage 2 342 * - icache response data (latched for pipeline stop) 343 * - generate exceprion bits for every instruciton (page fault/access fault/mmio) 344 * - generate predicted instruction range (1 means this instruciton is in this fetch packet) 345 * - cut data from cachlines to packet instruction code 346 * - instruction predecode and RVC expand 347 ****************************************************************************** 348 */ 349 350 val icacheRespAllValid = WireInit(false.B) 351 352 val f2_valid = RegInit(false.B) 353 val f2_ftq_req = RegEnable(f1_ftq_req, f1_fire) 354 // val f2_situation = RegEnable(f1_situation, f1_fire) 355 val f2_doubleLine = RegEnable(f1_doubleLine, f1_fire) 356 val f2_vSetIdx = RegEnable(f1_vSetIdx, f1_fire) 357 val f2_fire = f2_valid && f3_ready && icacheRespAllValid 358 359 f2_ready := f2_fire || !f2_valid 360 //TODO: addr compare may be timing critical 361 val f2_icache_all_resp_wire = fromICache(0).valid && (fromICache(0).bits.vaddr === f2_ftq_req.startAddr) && ((fromICache(1).valid && (fromICache(1).bits.vaddr === f2_ftq_req.nextlineStart)) || !f2_doubleLine) 362 val f2_icache_all_resp_reg = RegInit(false.B) 363 364 icacheRespAllValid := f2_icache_all_resp_reg || f2_icache_all_resp_wire 365 366 icacheMissBubble := io.icacheInter.topdownIcacheMiss 367 itlbMissBubble := io.icacheInter.topdownItlbMiss 368 369 io.icacheStop := !f3_ready 370 371 when(f2_flush) {f2_icache_all_resp_reg := false.B} 372 .elsewhen(f2_valid && f2_icache_all_resp_wire && !f3_ready) {f2_icache_all_resp_reg := true.B} 373 .elsewhen(f2_fire && f2_icache_all_resp_reg) {f2_icache_all_resp_reg := false.B} 374 375 when(f2_flush) {f2_valid := false.B} 376 .elsewhen(f1_fire && !f1_flush) {f2_valid := true.B } 377 .elsewhen(f2_fire) {f2_valid := false.B} 378 379 val f2_exception = VecInit((0 until PortNumber).map(i => fromICache(i).bits.exception)) 380 val f2_except_fromBackend = fromICache(0).bits.exceptionFromBackend 381 // paddr and gpaddr of [startAddr, nextLineAddr] 382 val f2_paddrs = VecInit((0 until PortNumber).map(i => fromICache(i).bits.paddr)) 383 val f2_gpaddr = fromICache(0).bits.gpaddr 384 385 // FIXME: what if port 0 is not mmio, but port 1 is? 386 // cancel mmio fetch if exception occurs 387 val f2_mmio = f2_exception(0) === ExceptionType.none && ( 388 fromICache(0).bits.pmp_mmio || 389 // currently, we do not distinguish between Pbmt.nc and Pbmt.io 390 // anyway, they are both non-cacheable, and should be handled with mmio fsm and sent to Uncache module 391 Pbmt.isUncache(fromICache(0).bits.itlb_pbmt) 392 ) 393 394 395 /** 396 * reduce the number of registers, origin code 397 * f2_pc = RegEnable(f1_pc, f1_fire) 398 */ 399 val f2_pc_lower_result = RegEnable(f1_pc_lower_result, f1_fire) 400 val f2_pc_high = RegEnable(f1_pc_high, f1_fire) 401 val f2_pc_high_plus1 = RegEnable(f1_pc_high_plus1, f1_fire) 402 val f2_pc = CatPC(f2_pc_lower_result, f2_pc_high, f2_pc_high_plus1) 403 404 val f2_cut_ptr = RegEnable(f1_cut_ptr, f1_fire) 405 val f2_resend_vaddr = RegEnable(f1_ftq_req.startAddr + 2.U, f1_fire) 406 407 def isNextLine(pc: UInt, startAddr: UInt) = { 408 startAddr(blockOffBits) ^ pc(blockOffBits) 409 } 410 411 def isLastInLine(pc: UInt) = { 412 pc(blockOffBits - 1, 0) === "b111110".U 413 } 414 415 val f2_foldpc = VecInit(f2_pc.map(i => XORFold(i(VAddrBits-1,1), MemPredPCWidth))) 416 val f2_jump_range = Fill(PredictWidth, !f2_ftq_req.ftqOffset.valid) | Fill(PredictWidth, 1.U(1.W)) >> ~f2_ftq_req.ftqOffset.bits 417 val f2_ftr_range = Fill(PredictWidth, f2_ftq_req.ftqOffset.valid) | Fill(PredictWidth, 1.U(1.W)) >> ~getBasicBlockIdx(f2_ftq_req.nextStartAddr, f2_ftq_req.startAddr) 418 val f2_instr_range = f2_jump_range & f2_ftr_range 419 val f2_exception_vec = VecInit((0 until PredictWidth).map( i => MuxCase(ExceptionType.none, Seq( 420 !isNextLine(f2_pc(i), f2_ftq_req.startAddr) -> f2_exception(0), 421 (isNextLine(f2_pc(i), f2_ftq_req.startAddr) && f2_doubleLine) -> f2_exception(1) 422 )))) 423 val f2_perf_info = io.icachePerfInfo 424 425 def cut(cacheline: UInt, cutPtr: Vec[UInt]) : Vec[UInt] ={ 426 require(HasCExtension) 427 // if(HasCExtension){ 428 val result = Wire(Vec(PredictWidth + 1, UInt(16.W))) 429 val dataVec = cacheline.asTypeOf(Vec(blockBytes, UInt(16.W))) //32 16-bit data vector 430 (0 until PredictWidth + 1).foreach( i => 431 result(i) := dataVec(cutPtr(i)) //the max ptr is 3*blockBytes/4-1 432 ) 433 result 434 // } else { 435 // val result = Wire(Vec(PredictWidth, UInt(32.W)) ) 436 // val dataVec = cacheline.asTypeOf(Vec(blockBytes * 2/ 4, UInt(32.W))) 437 // (0 until PredictWidth).foreach( i => 438 // result(i) := dataVec(cutPtr(i)) 439 // ) 440 // result 441 // } 442 } 443 444 val f2_cache_response_data = fromICache.map(_.bits.data) 445 val f2_data_2_cacheline = Cat(f2_cache_response_data(0), f2_cache_response_data(0)) 446 447 val f2_cut_data = cut(f2_data_2_cacheline, f2_cut_ptr) 448 449 /** predecode (include RVC expander) */ 450 // preDecoderRegIn.data := f2_reg_cut_data 451 // preDecoderRegInIn.frontendTrigger := io.frontendTrigger 452 // preDecoderRegInIn.csrTriggerEnable := io.csrTriggerEnable 453 // preDecoderRegIn.pc := f2_pc 454 455 val preDecoderIn = preDecoder.io.in 456 preDecoderIn.valid := f2_valid 457 preDecoderIn.bits.data := f2_cut_data 458 preDecoderIn.bits.frontendTrigger := io.frontendTrigger 459 preDecoderIn.bits.pc := f2_pc 460 val preDecoderOut = preDecoder.io.out 461 462 //val f2_expd_instr = preDecoderOut.expInstr 463 val f2_instr = preDecoderOut.instr 464 val f2_pd = preDecoderOut.pd 465 val f2_jump_offset = preDecoderOut.jumpOffset 466 val f2_hasHalfValid = preDecoderOut.hasHalfValid 467 /* if there is a cross-page RVI instruction, and the former page has no exception, 468 * whether it has exception is actually depends on the latter page 469 */ 470 val f2_crossPage_exception_vec = VecInit((0 until PredictWidth).map { i => Mux( 471 isLastInLine(f2_pc(i)) && !f2_pd(i).isRVC && f2_doubleLine && f2_exception(0) === ExceptionType.none, 472 f2_exception(1), 473 ExceptionType.none 474 )}) 475 XSPerfAccumulate("fetch_bubble_icache_not_resp", f2_valid && !icacheRespAllValid ) 476 477 478 /** 479 ****************************************************************************** 480 * IFU Stage 3 481 * - handle MMIO instruciton 482 * -send request to Uncache fetch Unit 483 * -every packet include 1 MMIO instruction 484 * -MMIO instructions will stop fetch pipeline until commiting from RoB 485 * -flush to snpc (send ifu_redirect to Ftq) 486 * - Ibuffer enqueue 487 * - check predict result in Frontend (jalFault/retFault/notCFIFault/invalidTakenFault/targetFault) 488 * - handle last half RVI instruction 489 ****************************************************************************** 490 */ 491 492 val expanders = Seq.fill(PredictWidth)(Module(new RVCExpander)) 493 494 val f3_valid = RegInit(false.B) 495 val f3_ftq_req = RegEnable(f2_ftq_req, f2_fire) 496 // val f3_situation = RegEnable(f2_situation, f2_fire) 497 val f3_doubleLine = RegEnable(f2_doubleLine, f2_fire) 498 val f3_fire = io.toIbuffer.fire 499 500 val f3_cut_data = RegEnable(f2_cut_data, f2_fire) 501 502 val f3_exception = RegEnable(f2_exception, f2_fire) 503 val f3_mmio = RegEnable(f2_mmio, f2_fire) 504 val f3_except_fromBackend = RegEnable(f2_except_fromBackend, f2_fire) 505 506 val f3_instr = RegEnable(f2_instr, f2_fire) 507 508 expanders.zipWithIndex.foreach { case (expander, i) => 509 expander.io.in := f3_instr(i) 510 } 511 // Use expanded instruction only when input is legal. 512 // Otherwise use origin illegal RVC instruction. 513 val f3_expd_instr = VecInit(expanders.map { expander: RVCExpander => 514 Mux(expander.io.ill, expander.io.in, expander.io.out.bits) 515 }) 516 val f3_ill = VecInit(expanders.map(_.io.ill)) 517 518 val f3_pd_wire = RegEnable(f2_pd, f2_fire) 519 val f3_pd = WireInit(f3_pd_wire) 520 val f3_jump_offset = RegEnable(f2_jump_offset, f2_fire) 521 val f3_exception_vec = RegEnable(f2_exception_vec, f2_fire) 522 val f3_crossPage_exception_vec = RegEnable(f2_crossPage_exception_vec, f2_fire) 523 524 val f3_pc_lower_result = RegEnable(f2_pc_lower_result, f2_fire) 525 val f3_pc_high = RegEnable(f2_pc_high, f2_fire) 526 val f3_pc_high_plus1 = RegEnable(f2_pc_high_plus1, f2_fire) 527 val f3_pc = CatPC(f3_pc_lower_result, f3_pc_high, f3_pc_high_plus1) 528 529 val f3_pc_last_lower_result_plus2 = RegEnable(f2_pc_lower_result(PredictWidth - 1) + 2.U, f2_fire) 530 val f3_pc_last_lower_result_plus4 = RegEnable(f2_pc_lower_result(PredictWidth - 1) + 4.U, f2_fire) 531 //val f3_half_snpc = RegEnable(f2_half_snpc, f2_fire) 532 533 /** 534 *********************************************************************** 535 * Half snpc(i) is larger than pc(i) by 4. Using pc to calculate half snpc may be a good choice. 536 *********************************************************************** 537 */ 538 val f3_half_snpc = Wire(Vec(PredictWidth,UInt(VAddrBits.W))) 539 for(i <- 0 until PredictWidth){ 540 if(i == (PredictWidth - 2)){ 541 f3_half_snpc(i) := CatPC(f3_pc_last_lower_result_plus2, f3_pc_high, f3_pc_high_plus1) 542 } else if (i == (PredictWidth - 1)){ 543 f3_half_snpc(i) := CatPC(f3_pc_last_lower_result_plus4, f3_pc_high, f3_pc_high_plus1) 544 } else { 545 f3_half_snpc(i) := f3_pc(i+2) 546 } 547 } 548 549 val f3_instr_range = RegEnable(f2_instr_range, f2_fire) 550 val f3_foldpc = RegEnable(f2_foldpc, f2_fire) 551 val f3_hasHalfValid = RegEnable(f2_hasHalfValid, f2_fire) 552 val f3_paddrs = RegEnable(f2_paddrs, f2_fire) 553 val f3_gpaddr = RegEnable(f2_gpaddr, f2_fire) 554 val f3_resend_vaddr = RegEnable(f2_resend_vaddr, f2_fire) 555 556 // Expand 1 bit to prevent overflow when assert 557 val f3_ftq_req_startAddr = Cat(0.U(1.W), f3_ftq_req.startAddr) 558 val f3_ftq_req_nextStartAddr = Cat(0.U(1.W), f3_ftq_req.nextStartAddr) 559 // brType, isCall and isRet generation is delayed to f3 stage 560 val f3Predecoder = Module(new F3Predecoder) 561 562 f3Predecoder.io.in.instr := f3_instr 563 564 f3_pd.zipWithIndex.map{ case (pd,i) => 565 pd.brType := f3Predecoder.io.out.pd(i).brType 566 pd.isCall := f3Predecoder.io.out.pd(i).isCall 567 pd.isRet := f3Predecoder.io.out.pd(i).isRet 568 } 569 570 val f3PdDiff = f3_pd_wire.zip(f3_pd).map{ case (a,b) => a.asUInt =/= b.asUInt }.reduce(_||_) 571 XSError(f3_valid && f3PdDiff, "f3 pd diff") 572 573 when(f3_valid && !f3_ftq_req.ftqOffset.valid){ 574 assert(f3_ftq_req_startAddr + (2*PredictWidth).U >= f3_ftq_req_nextStartAddr, s"More tha ${2*PredictWidth} Bytes fetch is not allowed!") 575 } 576 577 /*** MMIO State Machine***/ 578 val f3_mmio_data = Reg(Vec(2, UInt(16.W))) 579 val mmio_is_RVC = RegInit(false.B) 580 val mmio_resend_addr = RegInit(0.U(PAddrBits.W)) 581 val mmio_resend_exception = RegInit(0.U(ExceptionType.width.W)) 582 val mmio_resend_gpaddr = RegInit(0.U(GPAddrBits.W)) 583 584 //last instuction finish 585 val is_first_instr = RegInit(true.B) 586 /*** Determine whether the MMIO instruction is executable based on the previous prediction block ***/ 587 io.mmioCommitRead.mmioFtqPtr := RegNext(f3_ftq_req.ftqIdx - 1.U) 588 589 val m_idle :: m_waitLastCmt:: m_sendReq :: m_waitResp :: m_sendTLB :: m_tlbResp :: m_sendPMP :: m_resendReq :: m_waitResendResp :: m_waitCommit :: m_commited :: Nil = Enum(11) 590 val mmio_state = RegInit(m_idle) 591 592 val f3_req_is_mmio = f3_mmio && f3_valid 593 val mmio_commit = VecInit(io.rob_commits.map{commit => commit.valid && commit.bits.ftqIdx === f3_ftq_req.ftqIdx && commit.bits.ftqOffset === 0.U}).asUInt.orR 594 val f3_mmio_req_commit = f3_req_is_mmio && mmio_state === m_commited 595 596 val f3_mmio_to_commit = f3_req_is_mmio && mmio_state === m_waitCommit 597 val f3_mmio_to_commit_next = RegNext(f3_mmio_to_commit) 598 val f3_mmio_can_go = f3_mmio_to_commit && !f3_mmio_to_commit_next 599 600 val fromFtqRedirectReg = Wire(fromFtq.redirect.cloneType) 601 fromFtqRedirectReg.bits := RegEnable(fromFtq.redirect.bits, 0.U.asTypeOf(fromFtq.redirect.bits), fromFtq.redirect.valid) 602 fromFtqRedirectReg.valid := RegNext(fromFtq.redirect.valid, init = false.B) 603 val mmioF3Flush = RegNext(f3_flush,init = false.B) 604 val f3_ftq_flush_self = fromFtqRedirectReg.valid && RedirectLevel.flushItself(fromFtqRedirectReg.bits.level) 605 val f3_ftq_flush_by_older = fromFtqRedirectReg.valid && isBefore(fromFtqRedirectReg.bits.ftqIdx, f3_ftq_req.ftqIdx) 606 607 val f3_need_not_flush = f3_req_is_mmio && fromFtqRedirectReg.valid && !f3_ftq_flush_self && !f3_ftq_flush_by_older 608 609 /** 610 ********************************************************************************** 611 * We want to defer instruction fetching when encountering MMIO instructions to ensure that the MMIO region is not negatively impacted. 612 * This is the exception when the first instruction is an MMIO instruction. 613 ********************************************************************************** 614 */ 615 when(is_first_instr && f3_fire){ 616 is_first_instr := false.B 617 } 618 619 when(f3_flush && !f3_req_is_mmio) {f3_valid := false.B} 620 .elsewhen(mmioF3Flush && f3_req_is_mmio && !f3_need_not_flush) {f3_valid := false.B} 621 .elsewhen(f2_fire && !f2_flush ) {f3_valid := true.B } 622 .elsewhen(io.toIbuffer.fire && !f3_req_is_mmio) {f3_valid := false.B} 623 .elsewhen{f3_req_is_mmio && f3_mmio_req_commit} {f3_valid := false.B} 624 625 val f3_mmio_use_seq_pc = RegInit(false.B) 626 627 val (redirect_ftqIdx, redirect_ftqOffset) = (fromFtqRedirectReg.bits.ftqIdx,fromFtqRedirectReg.bits.ftqOffset) 628 val redirect_mmio_req = fromFtqRedirectReg.valid && redirect_ftqIdx === f3_ftq_req.ftqIdx && redirect_ftqOffset === 0.U 629 630 when(RegNext(f2_fire && !f2_flush) && f3_req_is_mmio) { f3_mmio_use_seq_pc := true.B } 631 .elsewhen(redirect_mmio_req) { f3_mmio_use_seq_pc := false.B } 632 633 f3_ready := (io.toIbuffer.ready && (f3_mmio_req_commit || !f3_req_is_mmio)) || !f3_valid 634 635 // mmio state machine 636 switch(mmio_state){ 637 is(m_idle){ 638 when(f3_req_is_mmio){ 639 mmio_state := m_waitLastCmt 640 } 641 } 642 643 is(m_waitLastCmt){ 644 when(is_first_instr){ 645 mmio_state := m_sendReq 646 }.otherwise{ 647 mmio_state := Mux(io.mmioCommitRead.mmioLastCommit, m_sendReq, m_waitLastCmt) 648 } 649 } 650 651 is(m_sendReq){ 652 mmio_state := Mux(toUncache.fire, m_waitResp, m_sendReq) 653 } 654 655 is(m_waitResp){ 656 when(fromUncache.fire){ 657 val isRVC = fromUncache.bits.data(1,0) =/= 3.U 658 val needResend = !isRVC && f3_paddrs(0)(2,1) === 3.U 659 mmio_state := Mux(needResend, m_sendTLB, m_waitCommit) 660 mmio_is_RVC := isRVC 661 f3_mmio_data(0) := fromUncache.bits.data(15,0) 662 f3_mmio_data(1) := fromUncache.bits.data(31,16) 663 } 664 } 665 666 is(m_sendTLB){ 667 mmio_state := Mux(io.iTLBInter.req.fire, m_tlbResp, m_sendTLB) 668 } 669 670 is(m_tlbResp){ 671 when(io.iTLBInter.resp.fire) { 672 // we are using a blocked tlb, so resp.fire must have !resp.bits.miss 673 assert(!io.iTLBInter.resp.bits.miss, "blocked mode iTLB miss when resp.fire") 674 val tlb_exception = ExceptionType.fromTlbResp(io.iTLBInter.resp.bits) 675 // if tlb has exception, abort checking pmp, just send instr & exception to ibuffer and wait for commit 676 mmio_state := Mux(tlb_exception === ExceptionType.none, m_sendPMP, m_waitCommit) 677 // also save itlb response 678 mmio_resend_addr := io.iTLBInter.resp.bits.paddr(0) 679 mmio_resend_exception := tlb_exception 680 mmio_resend_gpaddr := io.iTLBInter.resp.bits.gpaddr(0) 681 } 682 } 683 684 is(m_sendPMP){ 685 // if pmp re-check does not respond mmio, must be access fault 686 val pmp_exception = Mux(io.pmp.resp.mmio, ExceptionType.fromPMPResp(io.pmp.resp), ExceptionType.af) 687 // if pmp has exception, abort sending request, just send instr & exception to ibuffer and wait for commit 688 mmio_state := Mux(pmp_exception === ExceptionType.none, m_resendReq, m_waitCommit) 689 // also save pmp response 690 mmio_resend_exception := pmp_exception 691 } 692 693 is(m_resendReq){ 694 mmio_state := Mux(toUncache.fire, m_waitResendResp, m_resendReq) 695 } 696 697 is(m_waitResendResp) { 698 when(fromUncache.fire) { 699 mmio_state := m_waitCommit 700 f3_mmio_data(1) := fromUncache.bits.data(15,0) 701 } 702 } 703 704 is(m_waitCommit) { 705 mmio_state := Mux(mmio_commit, m_commited, m_waitCommit) 706 } 707 708 //normal mmio instruction 709 is(m_commited) { 710 mmio_state := m_idle 711 mmio_is_RVC := false.B 712 mmio_resend_addr := 0.U 713 mmio_resend_exception := ExceptionType.none 714 mmio_resend_gpaddr := 0.U 715 } 716 } 717 718 // Exception or flush by older branch prediction 719 // Condition is from RegNext(fromFtq.redirect), 1 cycle after backend rediect 720 when(f3_ftq_flush_self || f3_ftq_flush_by_older) { 721 mmio_state := m_idle 722 mmio_is_RVC := false.B 723 mmio_resend_addr := 0.U 724 mmio_resend_exception := ExceptionType.none 725 mmio_resend_gpaddr := 0.U 726 f3_mmio_data.map(_ := 0.U) 727 } 728 729 toUncache.valid := ((mmio_state === m_sendReq) || (mmio_state === m_resendReq)) && f3_req_is_mmio 730 toUncache.bits.addr := Mux((mmio_state === m_resendReq), mmio_resend_addr, f3_paddrs(0)) 731 fromUncache.ready := true.B 732 733 // send itlb request in m_sendTLB state 734 io.iTLBInter.req.valid := (mmio_state === m_sendTLB) && f3_req_is_mmio 735 io.iTLBInter.req.bits.size := 3.U 736 io.iTLBInter.req.bits.vaddr := f3_resend_vaddr 737 io.iTLBInter.req.bits.debug.pc := f3_resend_vaddr 738 io.iTLBInter.req.bits.cmd := TlbCmd.exec 739 io.iTLBInter.req.bits.kill := false.B // IFU use itlb for mmio, doesn't need sync, set it to false 740 io.iTLBInter.req.bits.no_translate := false.B 741 io.iTLBInter.req.bits.hyperinst := DontCare 742 io.iTLBInter.req.bits.hlvx := DontCare 743 io.iTLBInter.req.bits.memidx := DontCare 744 io.iTLBInter.req.bits.debug.robIdx := DontCare 745 io.iTLBInter.req.bits.debug.isFirstIssue := DontCare 746 io.iTLBInter.req.bits.pmp_addr := DontCare 747 // whats the difference between req_kill and req.bits.kill? 748 io.iTLBInter.req_kill := false.B 749 // wait for itlb response in m_tlbResp state 750 io.iTLBInter.resp.ready := (mmio_state === m_tlbResp) && f3_req_is_mmio 751 752 io.pmp.req.valid := (mmio_state === m_sendPMP) && f3_req_is_mmio 753 io.pmp.req.bits.addr := mmio_resend_addr 754 io.pmp.req.bits.size := 3.U 755 io.pmp.req.bits.cmd := TlbCmd.exec 756 757 val f3_lastHalf = RegInit(0.U.asTypeOf(new LastHalfInfo)) 758 759 val f3_predecode_range = VecInit(preDecoderOut.pd.map(inst => inst.valid)).asUInt 760 val f3_mmio_range = VecInit((0 until PredictWidth).map(i => if(i ==0) true.B else false.B)) 761 val f3_instr_valid = Wire(Vec(PredictWidth, Bool())) 762 763 /*** prediction result check ***/ 764 checkerIn.ftqOffset := f3_ftq_req.ftqOffset 765 checkerIn.jumpOffset := f3_jump_offset 766 checkerIn.target := f3_ftq_req.nextStartAddr 767 checkerIn.instrRange := f3_instr_range.asTypeOf(Vec(PredictWidth, Bool())) 768 checkerIn.instrValid := f3_instr_valid.asTypeOf(Vec(PredictWidth, Bool())) 769 checkerIn.pds := f3_pd 770 checkerIn.pc := f3_pc 771 checkerIn.fire_in := RegNext(f2_fire, init = false.B) 772 773 /*** handle half RVI in the last 2 Bytes ***/ 774 775 def hasLastHalf(idx: UInt) = { 776 //!f3_pd(idx).isRVC && checkerOutStage1.fixedRange(idx) && f3_instr_valid(idx) && !checkerOutStage1.fixedTaken(idx) && !checkerOutStage2.fixedMissPred(idx) && ! f3_req_is_mmio 777 !f3_pd(idx).isRVC && checkerOutStage1.fixedRange(idx) && f3_instr_valid(idx) && !checkerOutStage1.fixedTaken(idx) && ! f3_req_is_mmio 778 } 779 780 val f3_last_validIdx = ParallelPosteriorityEncoder(checkerOutStage1.fixedRange) 781 782 val f3_hasLastHalf = hasLastHalf((PredictWidth - 1).U) 783 val f3_false_lastHalf = hasLastHalf(f3_last_validIdx) 784 val f3_false_snpc = f3_half_snpc(f3_last_validIdx) 785 786 val f3_lastHalf_mask = VecInit((0 until PredictWidth).map( i => if(i ==0) false.B else true.B )).asUInt 787 val f3_lastHalf_disable = RegInit(false.B) 788 789 when(f3_flush || (f3_fire && f3_lastHalf_disable)){ 790 f3_lastHalf_disable := false.B 791 } 792 793 when (f3_flush) { 794 f3_lastHalf.valid := false.B 795 }.elsewhen (f3_fire) { 796 f3_lastHalf.valid := f3_hasLastHalf && !f3_lastHalf_disable 797 f3_lastHalf.middlePC := f3_ftq_req.nextStartAddr 798 } 799 800 f3_instr_valid := Mux(f3_lastHalf.valid,f3_hasHalfValid ,VecInit(f3_pd.map(inst => inst.valid))) 801 802 /*** frontend Trigger ***/ 803 frontendTrigger.io.pds := f3_pd 804 frontendTrigger.io.pc := f3_pc 805 frontendTrigger.io.data := f3_cut_data 806 807 frontendTrigger.io.frontendTrigger := io.frontendTrigger 808 809 val f3_triggered = frontendTrigger.io.triggered 810 val f3_toIbuffer_valid = f3_valid && (!f3_req_is_mmio || f3_mmio_can_go) && !f3_flush 811 812 /*** send to Ibuffer ***/ 813 io.toIbuffer.valid := f3_toIbuffer_valid 814 io.toIbuffer.bits.instrs := f3_expd_instr 815 io.toIbuffer.bits.valid := f3_instr_valid.asUInt 816 io.toIbuffer.bits.enqEnable := checkerOutStage1.fixedRange.asUInt & f3_instr_valid.asUInt 817 io.toIbuffer.bits.pd := f3_pd 818 io.toIbuffer.bits.ftqPtr := f3_ftq_req.ftqIdx 819 io.toIbuffer.bits.pc := f3_pc 820 io.toIbuffer.bits.ftqOffset.zipWithIndex.map{case(a, i) => a.bits := i.U; a.valid := checkerOutStage1.fixedTaken(i) && !f3_req_is_mmio} 821 io.toIbuffer.bits.foldpc := f3_foldpc 822 io.toIbuffer.bits.exceptionType := ExceptionType.merge(f3_exception_vec, f3_crossPage_exception_vec) 823 // exceptionFromBackend only needs to be set for the first instruction. 824 // Other instructions in the same block may have pf or af set, 825 // which is a side effect of the first instruction and actually not necessary. 826 io.toIbuffer.bits.exceptionFromBackend := (0 until PredictWidth).map { 827 case 0 => f3_except_fromBackend 828 case _ => false.B 829 } 830 io.toIbuffer.bits.crossPageIPFFix := f3_crossPage_exception_vec.map(_ =/= ExceptionType.none) 831 io.toIbuffer.bits.illegalInstr:= f3_ill 832 io.toIbuffer.bits.triggered := f3_triggered 833 834 when(f3_lastHalf.valid){ 835 io.toIbuffer.bits.enqEnable := checkerOutStage1.fixedRange.asUInt & f3_instr_valid.asUInt & f3_lastHalf_mask 836 io.toIbuffer.bits.valid := f3_lastHalf_mask & f3_instr_valid.asUInt 837 } 838 839 /** to backend */ 840 // f3_gpaddr is valid iff gpf is detected 841 io.toBackend.gpaddrMem_wen := f3_toIbuffer_valid && Mux( 842 f3_req_is_mmio, 843 mmio_resend_exception === ExceptionType.gpf, 844 f3_exception.map(_ === ExceptionType.gpf).reduce(_||_) 845 ) 846 io.toBackend.gpaddrMem_waddr := f3_ftq_req.ftqIdx.value 847 io.toBackend.gpaddrMem_wdata := Mux(f3_req_is_mmio, mmio_resend_gpaddr, f3_gpaddr) 848 849 //Write back to Ftq 850 val f3_cache_fetch = f3_valid && !(f2_fire && !f2_flush) 851 val finishFetchMaskReg = RegNext(f3_cache_fetch) 852 853 val mmioFlushWb = Wire(Valid(new PredecodeWritebackBundle)) 854 val f3_mmio_missOffset = Wire(ValidUndirectioned(UInt(log2Ceil(PredictWidth).W))) 855 f3_mmio_missOffset.valid := f3_req_is_mmio 856 f3_mmio_missOffset.bits := 0.U 857 858 // Send mmioFlushWb back to FTQ 1 cycle after uncache fetch return 859 // When backend redirect, mmio_state reset after 1 cycle. 860 // In this case, mask .valid to avoid overriding backend redirect 861 mmioFlushWb.valid := (f3_req_is_mmio && mmio_state === m_waitCommit && RegNext(fromUncache.fire) && 862 f3_mmio_use_seq_pc && !f3_ftq_flush_self && !f3_ftq_flush_by_older) 863 mmioFlushWb.bits.pc := f3_pc 864 mmioFlushWb.bits.pd := f3_pd 865 mmioFlushWb.bits.pd.zipWithIndex.map{case(instr,i) => instr.valid := f3_mmio_range(i)} 866 mmioFlushWb.bits.ftqIdx := f3_ftq_req.ftqIdx 867 mmioFlushWb.bits.ftqOffset := f3_ftq_req.ftqOffset.bits 868 mmioFlushWb.bits.misOffset := f3_mmio_missOffset 869 mmioFlushWb.bits.cfiOffset := DontCare 870 mmioFlushWb.bits.target := Mux(mmio_is_RVC, f3_ftq_req.startAddr + 2.U , f3_ftq_req.startAddr + 4.U) 871 mmioFlushWb.bits.jalTarget := DontCare 872 mmioFlushWb.bits.instrRange := f3_mmio_range 873 874 val mmioRVCExpander = Module(new RVCExpander) 875 mmioRVCExpander.io.in := Mux(f3_req_is_mmio, Cat(f3_mmio_data(1), f3_mmio_data(0)), 0.U) 876 877 /** external predecode for MMIO instruction */ 878 when(f3_req_is_mmio){ 879 val inst = Cat(f3_mmio_data(1), f3_mmio_data(0)) 880 val currentIsRVC = isRVC(inst) 881 882 val brType::isCall::isRet::Nil = brInfo(inst) 883 val jalOffset = jal_offset(inst, currentIsRVC) 884 val brOffset = br_offset(inst, currentIsRVC) 885 886 io.toIbuffer.bits.instrs(0) := Mux(mmioRVCExpander.io.ill, mmioRVCExpander.io.in, mmioRVCExpander.io.out.bits) 887 888 io.toIbuffer.bits.pd(0).valid := true.B 889 io.toIbuffer.bits.pd(0).isRVC := currentIsRVC 890 io.toIbuffer.bits.pd(0).brType := brType 891 io.toIbuffer.bits.pd(0).isCall := isCall 892 io.toIbuffer.bits.pd(0).isRet := isRet 893 894 io.toIbuffer.bits.exceptionType(0) := mmio_resend_exception 895 io.toIbuffer.bits.crossPageIPFFix(0) := mmio_resend_exception =/= ExceptionType.none 896 io.toIbuffer.bits.illegalInstr(0) := mmioRVCExpander.io.ill 897 898 io.toIbuffer.bits.enqEnable := f3_mmio_range.asUInt 899 900 mmioFlushWb.bits.pd(0).valid := true.B 901 mmioFlushWb.bits.pd(0).isRVC := currentIsRVC 902 mmioFlushWb.bits.pd(0).brType := brType 903 mmioFlushWb.bits.pd(0).isCall := isCall 904 mmioFlushWb.bits.pd(0).isRet := isRet 905 } 906 907 mmio_redirect := (f3_req_is_mmio && mmio_state === m_waitCommit && RegNext(fromUncache.fire) && f3_mmio_use_seq_pc) 908 909 XSPerfAccumulate("fetch_bubble_ibuffer_not_ready", io.toIbuffer.valid && !io.toIbuffer.ready ) 910 911 912 /** 913 ****************************************************************************** 914 * IFU Write Back Stage 915 * - write back predecode information to Ftq to update 916 * - redirect if found fault prediction 917 * - redirect if has false hit last half (last PC is not start + 32 Bytes, but in the midle of an notCFI RVI instruction) 918 ****************************************************************************** 919 */ 920 val wb_enable = RegNext(f2_fire && !f2_flush) && !f3_req_is_mmio && !f3_flush 921 val wb_valid = RegNext(wb_enable, init = false.B) 922 val wb_ftq_req = RegEnable(f3_ftq_req, wb_enable) 923 924 val wb_check_result_stage1 = RegEnable(checkerOutStage1, wb_enable) 925 val wb_check_result_stage2 = checkerOutStage2 926 val wb_instr_range = RegEnable(io.toIbuffer.bits.enqEnable, wb_enable) 927 928 val wb_pc_lower_result = RegEnable(f3_pc_lower_result, wb_enable) 929 val wb_pc_high = RegEnable(f3_pc_high, wb_enable) 930 val wb_pc_high_plus1 = RegEnable(f3_pc_high_plus1, wb_enable) 931 val wb_pc = CatPC(wb_pc_lower_result, wb_pc_high, wb_pc_high_plus1) 932 933 //val wb_pc = RegEnable(f3_pc, wb_enable) 934 val wb_pd = RegEnable(f3_pd, wb_enable) 935 val wb_instr_valid = RegEnable(f3_instr_valid, wb_enable) 936 937 /* false hit lastHalf */ 938 val wb_lastIdx = RegEnable(f3_last_validIdx, wb_enable) 939 val wb_false_lastHalf = RegEnable(f3_false_lastHalf, wb_enable) && wb_lastIdx =/= (PredictWidth - 1).U 940 val wb_false_target = RegEnable(f3_false_snpc, wb_enable) 941 942 val wb_half_flush = wb_false_lastHalf 943 val wb_half_target = wb_false_target 944 945 /* false oversize */ 946 val lastIsRVC = wb_instr_range.asTypeOf(Vec(PredictWidth,Bool())).last && wb_pd.last.isRVC 947 val lastIsRVI = wb_instr_range.asTypeOf(Vec(PredictWidth,Bool()))(PredictWidth - 2) && !wb_pd(PredictWidth - 2).isRVC 948 val lastTaken = wb_check_result_stage1.fixedTaken.last 949 950 f3_wb_not_flush := wb_ftq_req.ftqIdx === f3_ftq_req.ftqIdx && f3_valid && wb_valid 951 952 /** if a req with a last half but miss predicted enters in wb stage, and this cycle f3 stalls, 953 * we set a flag to notify f3 that the last half flag need not to be set. 954 */ 955 //f3_fire is after wb_valid 956 when(wb_valid && RegNext(f3_hasLastHalf,init = false.B) 957 && wb_check_result_stage2.fixedMissPred(PredictWidth - 1) && !f3_fire && !RegNext(f3_fire,init = false.B) && !f3_flush 958 ){ 959 f3_lastHalf_disable := true.B 960 } 961 962 //wb_valid and f3_fire are in same cycle 963 when(wb_valid && RegNext(f3_hasLastHalf,init = false.B) 964 && wb_check_result_stage2.fixedMissPred(PredictWidth - 1) && f3_fire 965 ){ 966 f3_lastHalf.valid := false.B 967 } 968 969 val checkFlushWb = Wire(Valid(new PredecodeWritebackBundle)) 970 val checkFlushWbjalTargetIdx = ParallelPriorityEncoder(VecInit(wb_pd.zip(wb_instr_valid).map{case (pd, v) => v && pd.isJal })) 971 val checkFlushWbTargetIdx = ParallelPriorityEncoder(wb_check_result_stage2.fixedMissPred) 972 checkFlushWb.valid := wb_valid 973 checkFlushWb.bits.pc := wb_pc 974 checkFlushWb.bits.pd := wb_pd 975 checkFlushWb.bits.pd.zipWithIndex.map{case(instr,i) => instr.valid := wb_instr_valid(i)} 976 checkFlushWb.bits.ftqIdx := wb_ftq_req.ftqIdx 977 checkFlushWb.bits.ftqOffset := wb_ftq_req.ftqOffset.bits 978 checkFlushWb.bits.misOffset.valid := ParallelOR(wb_check_result_stage2.fixedMissPred) || wb_half_flush 979 checkFlushWb.bits.misOffset.bits := Mux(wb_half_flush, wb_lastIdx, ParallelPriorityEncoder(wb_check_result_stage2.fixedMissPred)) 980 checkFlushWb.bits.cfiOffset.valid := ParallelOR(wb_check_result_stage1.fixedTaken) 981 checkFlushWb.bits.cfiOffset.bits := ParallelPriorityEncoder(wb_check_result_stage1.fixedTaken) 982 checkFlushWb.bits.target := Mux(wb_half_flush, wb_half_target, wb_check_result_stage2.fixedTarget(checkFlushWbTargetIdx)) 983 checkFlushWb.bits.jalTarget := wb_check_result_stage2.jalTarget(checkFlushWbjalTargetIdx) 984 checkFlushWb.bits.instrRange := wb_instr_range.asTypeOf(Vec(PredictWidth, Bool())) 985 986 toFtq.pdWb := Mux(wb_valid, checkFlushWb, mmioFlushWb) 987 988 wb_redirect := checkFlushWb.bits.misOffset.valid && wb_valid 989 990 /*write back flush type*/ 991 val checkFaultType = wb_check_result_stage2.faultType 992 val checkJalFault = wb_valid && checkFaultType.map(_.isjalFault).reduce(_||_) 993 val checkRetFault = wb_valid && checkFaultType.map(_.isRetFault).reduce(_||_) 994 val checkTargetFault = wb_valid && checkFaultType.map(_.istargetFault).reduce(_||_) 995 val checkNotCFIFault = wb_valid && checkFaultType.map(_.notCFIFault).reduce(_||_) 996 val checkInvalidTaken = wb_valid && checkFaultType.map(_.invalidTakenFault).reduce(_||_) 997 998 999 XSPerfAccumulate("predecode_flush_jalFault", checkJalFault ) 1000 XSPerfAccumulate("predecode_flush_retFault", checkRetFault ) 1001 XSPerfAccumulate("predecode_flush_targetFault", checkTargetFault ) 1002 XSPerfAccumulate("predecode_flush_notCFIFault", checkNotCFIFault ) 1003 XSPerfAccumulate("predecode_flush_incalidTakenFault", checkInvalidTaken ) 1004 1005 when(checkRetFault){ 1006 XSDebug("startAddr:%x nextstartAddr:%x taken:%d takenIdx:%d\n", 1007 wb_ftq_req.startAddr, wb_ftq_req.nextStartAddr, wb_ftq_req.ftqOffset.valid, wb_ftq_req.ftqOffset.bits) 1008 } 1009 1010 1011 /** performance counter */ 1012 val f3_perf_info = RegEnable(f2_perf_info, f2_fire) 1013 val f3_req_0 = io.toIbuffer.fire 1014 val f3_req_1 = io.toIbuffer.fire && f3_doubleLine 1015 val f3_hit_0 = io.toIbuffer.fire && f3_perf_info.bank_hit(0) 1016 val f3_hit_1 = io.toIbuffer.fire && f3_doubleLine & f3_perf_info.bank_hit(1) 1017 val f3_hit = f3_perf_info.hit 1018 val perfEvents = Seq( 1019 ("frontendFlush ", wb_redirect ), 1020 ("ifu_req ", io.toIbuffer.fire ), 1021 ("ifu_miss ", io.toIbuffer.fire && !f3_perf_info.hit ), 1022 ("ifu_req_cacheline_0 ", f3_req_0 ), 1023 ("ifu_req_cacheline_1 ", f3_req_1 ), 1024 ("ifu_req_cacheline_0_hit ", f3_hit_1 ), 1025 ("ifu_req_cacheline_1_hit ", f3_hit_1 ), 1026 ("only_0_hit ", f3_perf_info.only_0_hit && io.toIbuffer.fire ), 1027 ("only_0_miss ", f3_perf_info.only_0_miss && io.toIbuffer.fire ), 1028 ("hit_0_hit_1 ", f3_perf_info.hit_0_hit_1 && io.toIbuffer.fire ), 1029 ("hit_0_miss_1 ", f3_perf_info.hit_0_miss_1 && io.toIbuffer.fire ), 1030 ("miss_0_hit_1 ", f3_perf_info.miss_0_hit_1 && io.toIbuffer.fire ), 1031 ("miss_0_miss_1 ", f3_perf_info.miss_0_miss_1 && io.toIbuffer.fire ), 1032 ) 1033 generatePerfEvent() 1034 1035 XSPerfAccumulate("ifu_req", io.toIbuffer.fire ) 1036 XSPerfAccumulate("ifu_miss", io.toIbuffer.fire && !f3_hit ) 1037 XSPerfAccumulate("ifu_req_cacheline_0", f3_req_0 ) 1038 XSPerfAccumulate("ifu_req_cacheline_1", f3_req_1 ) 1039 XSPerfAccumulate("ifu_req_cacheline_0_hit", f3_hit_0 ) 1040 XSPerfAccumulate("ifu_req_cacheline_1_hit", f3_hit_1 ) 1041 XSPerfAccumulate("frontendFlush", wb_redirect ) 1042 XSPerfAccumulate("only_0_hit", f3_perf_info.only_0_hit && io.toIbuffer.fire ) 1043 XSPerfAccumulate("only_0_miss", f3_perf_info.only_0_miss && io.toIbuffer.fire ) 1044 XSPerfAccumulate("hit_0_hit_1", f3_perf_info.hit_0_hit_1 && io.toIbuffer.fire ) 1045 XSPerfAccumulate("hit_0_miss_1", f3_perf_info.hit_0_miss_1 && io.toIbuffer.fire ) 1046 XSPerfAccumulate("miss_0_hit_1", f3_perf_info.miss_0_hit_1 && io.toIbuffer.fire ) 1047 XSPerfAccumulate("miss_0_miss_1", f3_perf_info.miss_0_miss_1 && io.toIbuffer.fire ) 1048 XSPerfAccumulate("hit_0_except_1", f3_perf_info.hit_0_except_1 && io.toIbuffer.fire ) 1049 XSPerfAccumulate("miss_0_except_1", f3_perf_info.miss_0_except_1 && io.toIbuffer.fire ) 1050 XSPerfAccumulate("except_0", f3_perf_info.except_0 && io.toIbuffer.fire ) 1051 XSPerfHistogram("ifu2ibuffer_validCnt", PopCount(io.toIbuffer.bits.valid & io.toIbuffer.bits.enqEnable), io.toIbuffer.fire, 0, PredictWidth + 1, 1) 1052 1053 val hartId = p(XSCoreParamsKey).HartId 1054 val isWriteFetchToIBufferTable = Constantin.createRecord(s"isWriteFetchToIBufferTable$hartId") 1055 val isWriteIfuWbToFtqTable = Constantin.createRecord(s"isWriteIfuWbToFtqTable$hartId") 1056 val fetchToIBufferTable = ChiselDB.createTable(s"FetchToIBuffer$hartId", new FetchToIBufferDB) 1057 val ifuWbToFtqTable = ChiselDB.createTable(s"IfuWbToFtq$hartId", new IfuWbToFtqDB) 1058 1059 val fetchIBufferDumpData = Wire(new FetchToIBufferDB) 1060 fetchIBufferDumpData.start_addr := f3_ftq_req.startAddr 1061 fetchIBufferDumpData.instr_count := PopCount(io.toIbuffer.bits.enqEnable) 1062 fetchIBufferDumpData.exception := (f3_perf_info.except_0 && io.toIbuffer.fire) || (f3_perf_info.hit_0_except_1 && io.toIbuffer.fire) || (f3_perf_info.miss_0_except_1 && io.toIbuffer.fire) 1063 fetchIBufferDumpData.is_cache_hit := f3_hit 1064 1065 val ifuWbToFtqDumpData = Wire(new IfuWbToFtqDB) 1066 ifuWbToFtqDumpData.start_addr := wb_ftq_req.startAddr 1067 ifuWbToFtqDumpData.is_miss_pred := checkFlushWb.bits.misOffset.valid 1068 ifuWbToFtqDumpData.miss_pred_offset := checkFlushWb.bits.misOffset.bits 1069 ifuWbToFtqDumpData.checkJalFault := checkJalFault 1070 ifuWbToFtqDumpData.checkRetFault := checkRetFault 1071 ifuWbToFtqDumpData.checkTargetFault := checkTargetFault 1072 ifuWbToFtqDumpData.checkNotCFIFault := checkNotCFIFault 1073 ifuWbToFtqDumpData.checkInvalidTaken := checkInvalidTaken 1074 1075 fetchToIBufferTable.log( 1076 data = fetchIBufferDumpData, 1077 en = isWriteFetchToIBufferTable.orR && io.toIbuffer.fire, 1078 site = "IFU" + p(XSCoreParamsKey).HartId.toString, 1079 clock = clock, 1080 reset = reset 1081 ) 1082 ifuWbToFtqTable.log( 1083 data = ifuWbToFtqDumpData, 1084 en = isWriteIfuWbToFtqTable.orR && checkFlushWb.valid, 1085 site = "IFU" + p(XSCoreParamsKey).HartId.toString, 1086 clock = clock, 1087 reset = reset 1088 ) 1089 1090} 1091