xref: /XiangShan/src/main/scala/xiangshan/frontend/IBuffer.scala (revision 8a020714df826c6ac860308700137855ecd6ba07)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.frontend
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import xiangshan._
23import utils._
24import utility._
25import xiangshan.ExceptionNO._
26
27class IBufPtr(implicit p: Parameters) extends CircularQueuePtr[IBufPtr](
28  p => p(XSCoreParamsKey).IBufSize
29) {
30}
31
32class IBufInBankPtr(implicit p: Parameters) extends CircularQueuePtr[IBufInBankPtr](
33  p => p(XSCoreParamsKey).IBufSize / p(XSCoreParamsKey).IBufNBank
34) {
35}
36
37class IBufBankPtr(implicit p: Parameters) extends CircularQueuePtr[IBufBankPtr](
38  p => p(XSCoreParamsKey).IBufNBank
39) {
40}
41
42class IBufferIO(implicit p: Parameters) extends XSBundle {
43  val flush = Input(Bool())
44  val ControlRedirect = Input(Bool())
45  val ControlBTBMissBubble = Input(Bool())
46  val TAGEMissBubble = Input(Bool())
47  val SCMissBubble = Input(Bool())
48  val ITTAGEMissBubble = Input(Bool())
49  val RASMissBubble = Input(Bool())
50  val MemVioRedirect = Input(Bool())
51  val in = Flipped(DecoupledIO(new FetchToIBuffer))
52  val out = Vec(DecodeWidth, DecoupledIO(new CtrlFlow))
53  val full = Output(Bool())
54  val decodeCanAccept = Input(Bool())
55  val stallReason = new StallReasonIO(DecodeWidth)
56}
57
58class IBufEntry(implicit p: Parameters) extends XSBundle {
59  val inst = UInt(32.W)
60  val pc = UInt(VAddrBits.W)
61  val foldpc = UInt(MemPredPCWidth.W)
62  val pd = new PreDecodeInfo
63  val pred_taken = Bool()
64  val ftqPtr = new FtqPtr
65  val ftqOffset = UInt(log2Ceil(PredictWidth).W)
66  val exceptionType = UInt(ExceptionType.width.W)
67  val crossPageIPFFix = Bool()
68  val triggered = TriggerAction()
69
70  def fromFetch(fetch: FetchToIBuffer, i: Int): IBufEntry = {
71    inst   := fetch.instrs(i)
72    pc     := fetch.pc(i)
73    foldpc := fetch.foldpc(i)
74    pd     := fetch.pd(i)
75    pred_taken := fetch.ftqOffset(i).valid
76    ftqPtr := fetch.ftqPtr
77    ftqOffset := fetch.ftqOffset(i).bits
78    exceptionType := fetch.exceptionType(i)
79    crossPageIPFFix := fetch.crossPageIPFFix(i)
80    triggered := fetch.triggered(i)
81    this
82  }
83
84  def toCtrlFlow: CtrlFlow = {
85    val cf = Wire(new CtrlFlow)
86    cf.instr := inst
87    cf.pc := pc
88    cf.foldpc := foldpc
89    cf.exceptionVec := 0.U.asTypeOf(ExceptionVec())
90    cf.exceptionVec(instrPageFault) := exceptionType === ExceptionType.pf
91    cf.exceptionVec(instrGuestPageFault) := exceptionType === ExceptionType.gpf
92    cf.exceptionVec(instrAccessFault) := exceptionType === ExceptionType.af
93    cf.trigger := triggered
94    cf.pd := pd
95    cf.pred_taken := pred_taken
96    cf.crossPageIPFFix := crossPageIPFFix
97    cf.storeSetHit := DontCare
98    cf.waitForRobIdx := DontCare
99    cf.loadWaitBit := DontCare
100    cf.loadWaitStrict := DontCare
101    cf.ssid := DontCare
102    cf.ftqPtr := ftqPtr
103    cf.ftqOffset := ftqOffset
104    cf
105  }
106}
107
108class IBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper with HasPerfEvents {
109  val io = IO(new IBufferIO)
110
111  // io alias
112  private val decodeCanAccept = io.decodeCanAccept
113
114  // Parameter Check
115  private val bankSize = IBufSize / IBufNBank
116  require(IBufSize % IBufNBank == 0, s"IBufNBank should divide IBufSize, IBufNBank: $IBufNBank, IBufSize: $IBufSize")
117  require(IBufNBank >= DecodeWidth,
118    s"IBufNBank should be equal or larger than DecodeWidth, IBufNBank: $IBufNBank, DecodeWidth: $DecodeWidth")
119
120  // IBuffer is organized as raw registers
121  // This is due to IBuffer is a huge queue, read & write port logic should be precisely controlled
122  //                             . + + E E E - .
123  //                             . + + E E E - .
124  //                             . . + E E E - .
125  //                             . . + E E E E -
126  // As shown above, + means enqueue, - means dequeue, E is current content
127  // When dequeue, read port is organized like a banked FIFO
128  // Dequeue reads no more than 1 entry from each bank sequentially, this can be exploit to reduce area
129  // Enqueue writes cannot benefit from this characteristic unless use a SRAM
130  // For detail see Enqueue and Dequeue below
131  private val ibuf: Vec[IBufEntry] = RegInit(VecInit.fill(IBufSize)(0.U.asTypeOf(new IBufEntry)))
132  private val bankedIBufView: Vec[Vec[IBufEntry]] = VecInit.tabulate(IBufNBank)(
133    bankID => VecInit.tabulate(bankSize)(
134      inBankOffset => ibuf(bankID + inBankOffset * IBufNBank)
135    )
136  )
137
138
139  // Bypass wire
140  private val bypassEntries = WireDefault(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry))))
141  // Normal read wire
142  private val deqEntries = WireDefault(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry))))
143  // Output register
144  private val outputEntries = RegInit(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry))))
145  private val outputEntriesValidNum = PriorityMuxDefault(outputEntries.map(_.valid).zip(Seq.range(1, DecodeWidth).map(_.U)).reverse.toSeq, 0.U)
146
147  // Between Bank
148  private val deqBankPtrVec: Vec[IBufBankPtr] = RegInit(VecInit.tabulate(DecodeWidth)(_.U.asTypeOf(new IBufBankPtr)))
149  private val deqBankPtr: IBufBankPtr = deqBankPtrVec(0)
150  private val deqBankPtrVecNext = Wire(deqBankPtrVec.cloneType)
151  // Inside Bank
152  private val deqInBankPtr: Vec[IBufInBankPtr] = RegInit(VecInit.fill(IBufNBank)(0.U.asTypeOf(new IBufInBankPtr)))
153  private val deqInBankPtrNext = Wire(deqInBankPtr.cloneType)
154
155  val deqPtr = RegInit(0.U.asTypeOf(new IBufPtr))
156  val deqPtrNext = Wire(deqPtr.cloneType)
157
158  val enqPtrVec = RegInit(VecInit.tabulate(PredictWidth)(_.U.asTypeOf(new IBufPtr)))
159  val enqPtr = enqPtrVec(0)
160
161  val numTryEnq = WireDefault(0.U)
162  val numEnq = Mux(io.in.fire, numTryEnq, 0.U)
163
164  // empty and decode can accept insts
165  val useBypass = enqPtr === deqPtr && decodeCanAccept
166
167  // The number of decode accepted insts.
168  // Since decode promises accepting insts in order, use priority encoder to simplify the accumulation.
169  private val numOut = Wire(UInt(log2Ceil(DecodeWidth).W))
170  private val numDeq = numOut
171
172  // counter current number of valid
173  val numValid = distanceBetween(enqPtr, deqPtr)
174  val numValidAfterDeq = numValid - numDeq
175  // counter next number of valid
176  val numValidNext = numValid + numEnq - numDeq
177  val allowEnq = RegInit(true.B)
178  val numFromFetch = Mux(io.in.valid, PopCount(io.in.bits.enqEnable), 0.U)
179
180  allowEnq := (IBufSize - PredictWidth).U >= numValidNext // Disable when almost full
181
182  val enqOffset = VecInit.tabulate(PredictWidth)(i => PopCount(io.in.bits.valid.asBools.take(i)))
183  val enqData = VecInit.tabulate(PredictWidth)(i => Wire(new IBufEntry).fromFetch(io.in.bits, i))
184
185  val outputEntriesIsNotFull = !outputEntries(DecodeWidth-1).valid
186  when(decodeCanAccept) {
187    numOut := Mux(numValid >= DecodeWidth.U, DecodeWidth.U, numValid)
188  }.elsewhen(outputEntriesIsNotFull) {
189    numOut := Mux(numValid >= DecodeWidth.U - outputEntriesValidNum, DecodeWidth.U - outputEntriesValidNum, numValid)
190  }.otherwise {
191    numOut := 0.U
192  }
193  val numBypass = Wire(UInt(log2Ceil(DecodeWidth).W))
194  // when using bypass, bypassed entries do not enqueue
195  when(useBypass) {
196    when(numFromFetch >= DecodeWidth.U) {
197      numTryEnq := numFromFetch - DecodeWidth.U
198      numBypass := DecodeWidth.U
199    } .otherwise {
200      numTryEnq := 0.U
201      numBypass := numFromFetch
202    }
203  } .otherwise {
204    numTryEnq := numFromFetch
205    numBypass := 0.U
206  }
207
208  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
209  // Bypass
210  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
211  bypassEntries.zipWithIndex.foreach {
212    case (entry, idx) =>
213      // Select
214      val validOH = Range(0, PredictWidth).map {
215        i =>
216          io.in.bits.valid(i) &&
217            io.in.bits.enqEnable(i) &&
218            enqOffset(i) === idx.asUInt
219      } // Should be OneHot
220      entry.valid := validOH.reduce(_ || _) && io.in.fire && !io.flush
221      entry.bits := Mux1H(validOH, enqData)
222
223      // Debug Assertion
224      XSError(io.in.valid && PopCount(validOH) > 1.asUInt, "validOH is not OneHot")
225  }
226
227  // => Decode Output
228  // clean register output
229  io.out zip outputEntries foreach {
230    case (io, reg) =>
231      io.valid := reg.valid
232      io.bits := reg.bits.toCtrlFlow
233  }
234  (outputEntries zip bypassEntries).zipWithIndex.foreach {
235    case ((out, bypass), i) =>
236      when(decodeCanAccept) {
237        when(useBypass && io.in.valid) {
238          out := bypass
239        }.otherwise {
240          out := deqEntries(i)
241        }
242      }.elsewhen(outputEntriesIsNotFull){
243        out.valid := deqEntries(i).valid
244        out.bits := Mux(i.U < outputEntriesValidNum, out.bits, VecInit(deqEntries.take(i + 1).map(_.bits))(i.U - outputEntriesValidNum))
245      }
246  }
247
248  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
249  // Enqueue
250  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
251  io.in.ready := allowEnq
252  // Data
253  ibuf.zipWithIndex.foreach {
254    case (entry, idx) => {
255      // Select
256      val validOH = Range(0, PredictWidth).map {
257        i =>
258          val useBypassMatch = enqOffset(i) >= DecodeWidth.U &&
259            enqPtrVec(enqOffset(i) - DecodeWidth.U).value === idx.asUInt
260          val normalMatch = enqPtrVec(enqOffset(i)).value === idx.asUInt
261          val m = Mux(useBypass, useBypassMatch, normalMatch) // when using bypass, bypassed entries do not enqueue
262
263          io.in.bits.valid(i) && io.in.bits.enqEnable(i) && m
264      } // Should be OneHot
265      val wen = validOH.reduce(_ || _) && io.in.fire && !io.flush
266
267      // Write port
268      // Each IBuffer entry has a PredictWidth -> 1 Mux
269      val writeEntry = Mux1H(validOH, enqData)
270      entry := Mux(wen, writeEntry, entry)
271
272      // Debug Assertion
273      XSError(io.in.valid && PopCount(validOH) > 1.asUInt, "validOH is not OneHot")
274    }
275  }
276  // Pointer maintenance
277  when (io.in.fire && !io.flush) {
278    enqPtrVec := VecInit(enqPtrVec.map(_ + numTryEnq))
279  }
280
281  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
282  // Dequeue
283  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
284  val outputEntriesValidNumNext = Wire(UInt(log2Ceil(DecodeWidth).W))
285  XSError(outputEntriesValidNumNext > DecodeWidth.U, "Ibuffer: outputEntriesValidNumNext > DecodeWidth.U")
286  val validVec = UIntToMask(outputEntriesValidNumNext(log2Ceil(DecodeWidth) - 1, 0), DecodeWidth)
287  when(decodeCanAccept) {
288    outputEntriesValidNumNext := Mux(useBypass, numBypass, numDeq)
289  }.elsewhen(outputEntriesIsNotFull) {
290    outputEntriesValidNumNext := outputEntriesValidNum + numDeq
291  }.otherwise {
292    outputEntriesValidNumNext := outputEntriesValidNum
293  }
294  // Data
295  // Read port
296  // 2-stage, IBufNBank * (bankSize -> 1) + IBufNBank -> 1
297  // Should be better than IBufSize -> 1 in area, with no significant latency increase
298  private val readStage1: Vec[IBufEntry] = VecInit.tabulate(IBufNBank)(
299    bankID => Mux1H(UIntToOH(deqInBankPtr(bankID).value), bankedIBufView(bankID))
300  )
301  for (i <- 0 until DecodeWidth) {
302    deqEntries(i).valid := validVec(i)
303    deqEntries(i).bits := Mux1H(UIntToOH(deqBankPtrVec(i).value), readStage1)
304  }
305  // Pointer maintenance
306  deqBankPtrVecNext := VecInit(deqBankPtrVec.map(_ + numDeq))
307  deqPtrNext := deqPtr + numDeq
308  deqInBankPtrNext.zip(deqInBankPtr).zipWithIndex.foreach {
309    case ((ptrNext, ptr), idx) => {
310      // validVec[k] == bankValid[deqBankPtr + k]
311      // So bankValid[n] == validVec[n - deqBankPtr]
312      val validIdx = Mux(idx.asUInt >= deqBankPtr.value,
313        idx.asUInt - deqBankPtr.value,
314        ((idx + IBufNBank).asUInt - deqBankPtr.value)(log2Ceil(IBufNBank) - 1, 0)
315      )(log2Ceil(DecodeWidth) - 1, 0)
316      val bankAdvance = numOut > validIdx
317      ptrNext := Mux(bankAdvance , ptr + 1.U, ptr)
318    }
319  }
320
321  // Flush
322  when (io.flush) {
323    allowEnq := true.B
324    enqPtrVec := enqPtrVec.indices.map(_.U.asTypeOf(new IBufPtr))
325    deqBankPtrVec := deqBankPtrVec.indices.map(_.U.asTypeOf(new IBufBankPtr))
326    deqInBankPtr := VecInit.fill(IBufNBank)(0.U.asTypeOf(new IBufInBankPtr))
327    deqPtr := 0.U.asTypeOf(new IBufPtr())
328    outputEntries.foreach(_.valid := false.B)
329  }.otherwise {
330    deqPtr := deqPtrNext
331    deqInBankPtr := deqInBankPtrNext
332    deqBankPtrVec := deqBankPtrVecNext
333  }
334  io.full := !allowEnq
335
336  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
337  // TopDown
338  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
339  val topdown_stage = RegInit(0.U.asTypeOf(new FrontendTopDownBundle))
340  topdown_stage := io.in.bits.topdown_info
341  when(io.flush) {
342    when(io.ControlRedirect) {
343      when(io.ControlBTBMissBubble) {
344        topdown_stage.reasons(TopDownCounters.BTBMissBubble.id) := true.B
345      }.elsewhen(io.TAGEMissBubble) {
346        topdown_stage.reasons(TopDownCounters.TAGEMissBubble.id) := true.B
347      }.elsewhen(io.SCMissBubble) {
348        topdown_stage.reasons(TopDownCounters.SCMissBubble.id) := true.B
349      }.elsewhen(io.ITTAGEMissBubble) {
350        topdown_stage.reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B
351      }.elsewhen(io.RASMissBubble) {
352        topdown_stage.reasons(TopDownCounters.RASMissBubble.id) := true.B
353      }
354    }.elsewhen(io.MemVioRedirect) {
355      topdown_stage.reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B
356    }.otherwise {
357      topdown_stage.reasons(TopDownCounters.OtherRedirectBubble.id) := true.B
358    }
359  }
360
361
362  val dequeueInsufficient = Wire(Bool())
363  val matchBubble = Wire(UInt(log2Up(TopDownCounters.NumStallReasons.id).W))
364  val deqValidCount = PopCount(validVec.asBools)
365  val deqWasteCount = DecodeWidth.U - deqValidCount
366  dequeueInsufficient := deqValidCount < DecodeWidth.U
367  matchBubble := (TopDownCounters.NumStallReasons.id - 1).U - PriorityEncoder(topdown_stage.reasons.reverse)
368
369  io.stallReason.reason.map(_ := 0.U)
370  for (i <- 0 until DecodeWidth) {
371    when(i.U < deqWasteCount) {
372      io.stallReason.reason(DecodeWidth - i - 1) := matchBubble
373    }
374  }
375
376  when(!(deqWasteCount === DecodeWidth.U || topdown_stage.reasons.asUInt.orR)) {
377    // should set reason for FetchFragmentationStall
378    // topdown_stage.reasons(TopDownCounters.FetchFragmentationStall.id) := true.B
379    for (i <- 0 until DecodeWidth) {
380      when(i.U < deqWasteCount) {
381        io.stallReason.reason(DecodeWidth - i - 1) := TopDownCounters.FetchFragBubble.id.U
382      }
383    }
384  }
385
386  when(io.stallReason.backReason.valid) {
387    io.stallReason.reason.map(_ := io.stallReason.backReason.bits)
388  }
389
390  // Debug info
391  XSError(
392    deqPtr.value =/= deqBankPtr.value + deqInBankPtr(deqBankPtr.value).value * IBufNBank.asUInt,
393    "Dequeue PTR mismatch"
394  )
395  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
396
397  XSDebug(io.flush, "IBuffer Flushed\n")
398
399  when(io.in.fire) {
400    XSDebug("Enque:\n")
401    XSDebug(p"MASK=${Binary(io.in.bits.valid)}\n")
402    for(i <- 0 until PredictWidth){
403      XSDebug(p"PC=${Hexadecimal(io.in.bits.pc(i))} ${Hexadecimal(io.in.bits.instrs(i))}\n")
404    }
405  }
406
407  for (i <- 0 until DecodeWidth) {
408    XSDebug(io.out(i).fire,
409      p"deq: ${Hexadecimal(io.out(i).bits.instr)} PC=${Hexadecimal(io.out(i).bits.pc)}" +
410      p"v=${io.out(i).valid} r=${io.out(i).ready} " +
411      p"excpVec=${Binary(io.out(i).bits.exceptionVec.asUInt)} crossPageIPF=${io.out(i).bits.crossPageIPFFix}\n")
412  }
413
414  XSDebug(p"numValid: ${numValid}\n")
415  XSDebug(p"EnqNum: ${numEnq}\n")
416  XSDebug(p"DeqNum: ${numDeq}\n")
417
418  val afterInit = RegInit(false.B)
419  val headBubble = RegInit(false.B)
420  when (io.in.fire) { afterInit := true.B }
421  when (io.flush) {
422    headBubble := true.B
423  } .elsewhen(numValid =/= 0.U) {
424    headBubble := false.B
425  }
426  val instrHungry = afterInit && (numValid === 0.U) && !headBubble
427
428  QueuePerf(IBufSize, numValid, !allowEnq)
429  XSPerfAccumulate("flush", io.flush)
430  XSPerfAccumulate("hungry", instrHungry)
431
432  val ibuffer_IDWidth_hvButNotFull = afterInit && (numValid =/= 0.U) && (numValid < DecodeWidth.U) && !headBubble
433  XSPerfAccumulate("ibuffer_IDWidth_hvButNotFull", ibuffer_IDWidth_hvButNotFull)
434  /*
435  XSPerfAccumulate("ICacheMissBubble", Mux(matchBubbleVec(TopDownCounters.ICacheMissBubble.id), deqWasteCount, 0.U))
436  XSPerfAccumulate("ITLBMissBubble", Mux(matchBubbleVec(TopDownCounters.ITLBMissBubble.id), deqWasteCount, 0.U))
437  XSPerfAccumulate("ControlRedirectBubble", Mux(matchBubbleVec(TopDownCounters.ControlRedirectBubble.id), deqWasteCount, 0.U))
438  XSPerfAccumulate("MemVioRedirectBubble", Mux(matchBubbleVec(TopDownCounters.MemVioRedirectBubble.id), deqWasteCount, 0.U))
439  XSPerfAccumulate("OtherRedirectBubble", Mux(matchBubbleVec(TopDownCounters.OtherRedirectBubble.id), deqWasteCount, 0.U))
440  XSPerfAccumulate("BTBMissBubble", Mux(matchBubbleVec(TopDownCounters.BTBMissBubble.id), deqWasteCount, 0.U))
441  XSPerfAccumulate("OverrideBubble", Mux(matchBubbleVec(TopDownCounters.OverrideBubble.id), deqWasteCount, 0.U))
442  XSPerfAccumulate("FtqUpdateBubble", Mux(matchBubbleVec(TopDownCounters.FtqUpdateBubble.id), deqWasteCount, 0.U))
443  XSPerfAccumulate("FtqFullStall", Mux(matchBubbleVec(TopDownCounters.FtqFullStall.id), deqWasteCount, 0.U))
444  XSPerfAccumulate("FetchFragmentBubble",
445  Mux(deqWasteCount === DecodeWidth.U || topdown_stage.reasons.asUInt.orR, 0.U, deqWasteCount))
446  XSPerfAccumulate("TAGEMissBubble", Mux(matchBubbleVec(TopDownCounters.TAGEMissBubble.id), deqWasteCount, 0.U))
447  XSPerfAccumulate("SCMissBubble", Mux(matchBubbleVec(TopDownCounters.SCMissBubble.id), deqWasteCount, 0.U))
448  XSPerfAccumulate("ITTAGEMissBubble", Mux(matchBubbleVec(TopDownCounters.ITTAGEMissBubble.id), deqWasteCount, 0.U))
449  XSPerfAccumulate("RASMissBubble", Mux(matchBubbleVec(TopDownCounters.RASMissBubble.id), deqWasteCount, 0.U))
450  */
451
452  val perfEvents = Seq(
453    ("IBuffer_Flushed  ", io.flush                                                                     ),
454    ("IBuffer_hungry   ", instrHungry                                                                  ),
455    ("IBuffer_1_4_valid", (numValid >  (0*(IBufSize/4)).U) & (numValid < (1*(IBufSize/4)).U)   ),
456    ("IBuffer_2_4_valid", (numValid >= (1*(IBufSize/4)).U) & (numValid < (2*(IBufSize/4)).U)   ),
457    ("IBuffer_3_4_valid", (numValid >= (2*(IBufSize/4)).U) & (numValid < (3*(IBufSize/4)).U)   ),
458    ("IBuffer_4_4_valid", (numValid >= (3*(IBufSize/4)).U) & (numValid < (4*(IBufSize/4)).U)   ),
459    ("IBuffer_full     ",  numValid.andR                                                           ),
460    ("Front_Bubble     ", PopCount((0 until DecodeWidth).map(i => io.out(i).ready && !io.out(i).valid)))
461  )
462  generatePerfEvent()
463}
464