xref: /XiangShan/src/main/scala/xiangshan/frontend/IBuffer.scala (revision 4daa5bf3c3f27e7fd090866d52405b21e107eb8d)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.frontend
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import xiangshan._
23import utils._
24import utility._
25import xiangshan.ExceptionNO._
26
27class IBufPtr(implicit p: Parameters) extends CircularQueuePtr[IBufPtr](
28  p => p(XSCoreParamsKey).IBufSize
29) {
30}
31
32class IBufInBankPtr(implicit p: Parameters) extends CircularQueuePtr[IBufInBankPtr](
33  p => p(XSCoreParamsKey).IBufSize / p(XSCoreParamsKey).IBufNBank
34) {
35}
36
37class IBufBankPtr(implicit p: Parameters) extends CircularQueuePtr[IBufBankPtr](
38  p => p(XSCoreParamsKey).IBufNBank
39) {
40}
41
42class IBufferIO(implicit p: Parameters) extends XSBundle {
43  val flush = Input(Bool())
44  val ControlRedirect = Input(Bool())
45  val ControlBTBMissBubble = Input(Bool())
46  val TAGEMissBubble = Input(Bool())
47  val SCMissBubble = Input(Bool())
48  val ITTAGEMissBubble = Input(Bool())
49  val RASMissBubble = Input(Bool())
50  val MemVioRedirect = Input(Bool())
51  val in = Flipped(DecoupledIO(new FetchToIBuffer))
52  val out = Vec(DecodeWidth, DecoupledIO(new CtrlFlow))
53  val full = Output(Bool())
54  val decodeCanAccept = Input(Bool())
55  val stallReason = new StallReasonIO(DecodeWidth)
56}
57
58class IBufEntry(implicit p: Parameters) extends XSBundle {
59  val inst = UInt(32.W)
60  val pc = UInt(VAddrBits.W)
61  val foldpc = UInt(MemPredPCWidth.W)
62  val pd = new PreDecodeInfo
63  val pred_taken = Bool()
64  val ftqPtr = new FtqPtr
65  val ftqOffset = UInt(log2Ceil(PredictWidth).W)
66  val ipf = Bool()
67  val igpf = Bool()
68  val acf = Bool()
69  val crossPageIPFFix = Bool()
70  val triggered = new TriggerCf
71
72  def fromFetch(fetch: FetchToIBuffer, i: Int): IBufEntry = {
73    inst   := fetch.instrs(i)
74    pc     := fetch.pc(i)
75    foldpc := fetch.foldpc(i)
76    pd     := fetch.pd(i)
77    pred_taken := fetch.ftqOffset(i).valid
78    ftqPtr := fetch.ftqPtr
79    ftqOffset := fetch.ftqOffset(i).bits
80    ipf := fetch.ipf(i)
81    igpf:= fetch.igpf(i)
82    acf := fetch.acf(i)
83    crossPageIPFFix := fetch.crossPageIPFFix(i)
84    triggered := fetch.triggered(i)
85    this
86  }
87
88  def toCtrlFlow: CtrlFlow = {
89    val cf = Wire(new CtrlFlow)
90    cf.instr := inst
91    cf.pc := pc
92    cf.foldpc := foldpc
93    cf.exceptionVec := 0.U.asTypeOf(ExceptionVec())
94    cf.exceptionVec(instrPageFault) := ipf
95    cf.exceptionVec(instrGuestPageFault) := igpf
96    cf.exceptionVec(instrAccessFault) := acf
97    cf.trigger := triggered
98    cf.pd := pd
99    cf.pred_taken := pred_taken
100    cf.crossPageIPFFix := crossPageIPFFix
101    cf.storeSetHit := DontCare
102    cf.waitForRobIdx := DontCare
103    cf.loadWaitBit := DontCare
104    cf.loadWaitStrict := DontCare
105    cf.ssid := DontCare
106    cf.ftqPtr := ftqPtr
107    cf.ftqOffset := ftqOffset
108    cf
109  }
110}
111
112class IBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper with HasPerfEvents {
113  val io = IO(new IBufferIO)
114
115  // io alias
116  private val decodeCanAccept = io.decodeCanAccept
117
118  // Parameter Check
119  private val bankSize = IBufSize / IBufNBank
120  require(IBufSize % IBufNBank == 0, s"IBufNBank should divide IBufSize, IBufNBank: $IBufNBank, IBufSize: $IBufSize")
121  require(IBufNBank >= DecodeWidth,
122    s"IBufNBank should be equal or larger than DecodeWidth, IBufNBank: $IBufNBank, DecodeWidth: $DecodeWidth")
123
124  // IBuffer is organized as raw registers
125  // This is due to IBuffer is a huge queue, read & write port logic should be precisely controlled
126  //                             . + + E E E - .
127  //                             . + + E E E - .
128  //                             . . + E E E - .
129  //                             . . + E E E E -
130  // As shown above, + means enqueue, - means dequeue, E is current content
131  // When dequeue, read port is organized like a banked FIFO
132  // Dequeue reads no more than 1 entry from each bank sequentially, this can be exploit to reduce area
133  // Enqueue writes cannot benefit from this characteristic unless use a SRAM
134  // For detail see Enqueue and Dequeue below
135  private val ibuf: Vec[IBufEntry] = RegInit(VecInit.fill(IBufSize)(0.U.asTypeOf(new IBufEntry)))
136  private val bankedIBufView: Vec[Vec[IBufEntry]] = VecInit.tabulate(IBufNBank)(
137    bankID => VecInit.tabulate(bankSize)(
138      inBankOffset => ibuf(bankID + inBankOffset * IBufNBank)
139    )
140  )
141
142
143  // Bypass wire
144  private val bypassEntries = WireDefault(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry))))
145  // Normal read wire
146  private val deqEntries = WireDefault(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry))))
147  // Output register
148  private val outputEntries = RegInit(VecInit.fill(DecodeWidth)(0.U.asTypeOf(Valid(new IBufEntry))))
149
150  // Between Bank
151  private val deqBankPtrVec: Vec[IBufBankPtr] = RegInit(VecInit.tabulate(DecodeWidth)(_.U.asTypeOf(new IBufBankPtr)))
152  private val deqBankPtr: IBufBankPtr = deqBankPtrVec(0)
153  private val deqBankPtrVecNext = Wire(deqBankPtrVec.cloneType)
154  // Inside Bank
155  private val deqInBankPtr: Vec[IBufInBankPtr] = RegInit(VecInit.fill(IBufNBank)(0.U.asTypeOf(new IBufInBankPtr)))
156  private val deqInBankPtrNext = Wire(deqInBankPtr.cloneType)
157
158  val deqPtr = RegInit(0.U.asTypeOf(new IBufPtr))
159  val deqPtrNext = Wire(deqPtr.cloneType)
160
161  val enqPtrVec = RegInit(VecInit.tabulate(PredictWidth)(_.U.asTypeOf(new IBufPtr)))
162  val enqPtr = enqPtrVec(0)
163
164  val numTryEnq = WireDefault(0.U)
165  val numEnq = Mux(io.in.fire, numTryEnq, 0.U)
166
167  val useBypass = enqPtr === deqPtr && decodeCanAccept // empty and decode can accept insts
168  // Record the insts in output entries are from bypass or deq.
169  // Update deqPtr if they are from deq
170  val currentOutUseBypass = RegInit(false.B)
171
172  // The number of decode accepted insts.
173  // Since decode promises accepting insts in order, use priority encoder to simplify the accumulation.
174  private val numOut: UInt = PriorityMuxDefault(io.out.map(x => !x.ready) zip (0 until DecodeWidth).map(_.U), DecodeWidth.U)
175  private val numDeq = Mux(currentOutUseBypass, 0.U, numOut)
176
177  // counter current number of valid
178  val numValid = distanceBetween(enqPtr, deqPtr)
179  val numValidAfterDeq = numValid - numDeq
180  // counter next number of valid
181  val numValidNext = numValid + numEnq - numDeq
182  val allowEnq = RegInit(true.B)
183  val numFromFetch = Mux(io.in.valid, PopCount(io.in.bits.enqEnable), 0.U)
184  val numBypass = PopCount(bypassEntries.map(_.valid))
185
186  allowEnq := (IBufSize - PredictWidth).U >= numValidNext // Disable when almost full
187
188  val enqOffset = VecInit.tabulate(PredictWidth)(i => PopCount(io.in.bits.valid.asBools.take(i)))
189  val enqData = VecInit.tabulate(PredictWidth)(i => Wire(new IBufEntry).fromFetch(io.in.bits, i))
190
191  // when using bypass, bypassed entries do not enqueue
192  when(useBypass) {
193    when(numFromFetch >= DecodeWidth.U) {
194      numTryEnq := numFromFetch - DecodeWidth.U
195    } .otherwise {
196      numTryEnq := 0.U
197    }
198  } .otherwise {
199    numTryEnq := numFromFetch
200  }
201
202  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
203  // Bypass
204  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
205  bypassEntries.zipWithIndex.foreach {
206    case (entry, idx) =>
207      // Select
208      val validOH = Range(0, PredictWidth).map {
209        i =>
210          io.in.bits.valid(i) &&
211            io.in.bits.enqEnable(i) &&
212            enqOffset(i) === idx.asUInt
213      } // Should be OneHot
214      entry.valid := validOH.reduce(_ || _) && io.in.fire && !io.flush
215      entry.bits := Mux1H(validOH, enqData)
216
217      // Debug Assertion
218      XSError(io.in.valid && PopCount(validOH) > 1.asUInt, "validOH is not OneHot")
219  }
220
221  // => Decode Output
222  // clean register output
223  io.out zip outputEntries foreach {
224    case (io, reg) =>
225      io.valid := reg.valid
226      io.bits := reg.bits.toCtrlFlow
227  }
228  outputEntries zip bypassEntries zip deqEntries foreach {
229    case ((out, bypass), deq) =>
230      when(decodeCanAccept) {
231        out := deq
232        currentOutUseBypass := false.B
233        when(useBypass && io.in.valid) {
234          out := bypass
235          currentOutUseBypass := true.B
236        }
237      }
238  }
239
240  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
241  // Enqueue
242  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
243  io.in.ready := allowEnq
244  // Data
245  ibuf.zipWithIndex.foreach {
246    case (entry, idx) => {
247      // Select
248      val validOH = Range(0, PredictWidth).map {
249        i =>
250          val useBypassMatch = enqOffset(i) >= DecodeWidth.U &&
251            enqPtrVec(enqOffset(i) - DecodeWidth.U).value === idx.asUInt
252          val normalMatch = enqPtrVec(enqOffset(i)).value === idx.asUInt
253          val m = Mux(useBypass, useBypassMatch, normalMatch) // when using bypass, bypassed entries do not enqueue
254
255          io.in.bits.valid(i) && io.in.bits.enqEnable(i) && m
256      } // Should be OneHot
257      val wen = validOH.reduce(_ || _) && io.in.fire && !io.flush
258
259      // Write port
260      // Each IBuffer entry has a PredictWidth -> 1 Mux
261      val writeEntry = Mux1H(validOH, enqData)
262      entry := Mux(wen, writeEntry, entry)
263
264      // Debug Assertion
265      XSError(io.in.valid && PopCount(validOH) > 1.asUInt, "validOH is not OneHot")
266    }
267  }
268  // Pointer maintenance
269  when (io.in.fire && !io.flush) {
270    enqPtrVec := VecInit(enqPtrVec.map(_ + numTryEnq))
271  }
272
273  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
274  // Dequeue
275  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
276  val validVec = Mux(numValidAfterDeq >= DecodeWidth.U,
277    ((1 << DecodeWidth) - 1).U,
278    UIntToMask(numValidAfterDeq(log2Ceil(DecodeWidth) - 1, 0), DecodeWidth)
279  )
280  // Data
281  // Read port
282  // 2-stage, IBufNBank * (bankSize -> 1) + IBufNBank -> 1
283  // Should be better than IBufSize -> 1 in area, with no significant latency increase
284  private val readStage1: Vec[IBufEntry] = VecInit.tabulate(IBufNBank)(
285    bankID => Mux1H(UIntToOH(deqInBankPtrNext(bankID).value), bankedIBufView(bankID))
286  )
287  for (i <- 0 until DecodeWidth) {
288    deqEntries(i).valid := validVec(i)
289    deqEntries(i).bits := Mux1H(UIntToOH(deqBankPtrVecNext(i).value), readStage1)
290  }
291  // Pointer maintenance
292  deqBankPtrVecNext := VecInit(deqBankPtrVec.map(_ + numDeq))
293  deqPtrNext := deqPtr + numDeq
294  deqInBankPtrNext.zip(deqInBankPtr).zipWithIndex.foreach {
295    case ((ptrNext, ptr), idx) => {
296      // validVec[k] == bankValid[deqBankPtr + k]
297      // So bankValid[n] == validVec[n - deqBankPtr]
298      val validIdx = Mux(idx.asUInt >= deqBankPtr.value,
299        idx.asUInt - deqBankPtr.value,
300        ((idx + IBufNBank).asUInt - deqBankPtr.value)(log2Ceil(IBufNBank) - 1, 0)
301      )(log2Ceil(DecodeWidth) - 1, 0)
302      val bankAdvance = Mux(validIdx >= DecodeWidth.U,
303        false.B,
304        io.out(validIdx).ready // `ready` depends on `valid`, so we need only `ready`, not fire
305      ) && !currentOutUseBypass
306      ptrNext := Mux(bankAdvance , ptr + 1.U, ptr)
307    }
308  }
309
310  // Flush
311  when (io.flush) {
312    allowEnq := true.B
313    enqPtrVec := enqPtrVec.indices.map(_.U.asTypeOf(new IBufPtr))
314    deqBankPtrVec := deqBankPtrVec.indices.map(_.U.asTypeOf(new IBufBankPtr))
315    deqInBankPtr := VecInit.fill(IBufNBank)(0.U.asTypeOf(new IBufInBankPtr))
316    deqPtr := 0.U.asTypeOf(new IBufPtr())
317    outputEntries.foreach(_.valid := false.B)
318  }.otherwise {
319    deqPtr := deqPtrNext
320    deqInBankPtr := deqInBankPtrNext
321    deqBankPtrVec := deqBankPtrVecNext
322  }
323  io.full := !allowEnq
324
325  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
326  // TopDown
327  /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
328  val topdown_stage = RegInit(0.U.asTypeOf(new FrontendTopDownBundle))
329  topdown_stage := io.in.bits.topdown_info
330  when(io.flush) {
331    when(io.ControlRedirect) {
332      when(io.ControlBTBMissBubble) {
333        topdown_stage.reasons(TopDownCounters.BTBMissBubble.id) := true.B
334      }.elsewhen(io.TAGEMissBubble) {
335        topdown_stage.reasons(TopDownCounters.TAGEMissBubble.id) := true.B
336      }.elsewhen(io.SCMissBubble) {
337        topdown_stage.reasons(TopDownCounters.SCMissBubble.id) := true.B
338      }.elsewhen(io.ITTAGEMissBubble) {
339        topdown_stage.reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B
340      }.elsewhen(io.RASMissBubble) {
341        topdown_stage.reasons(TopDownCounters.RASMissBubble.id) := true.B
342      }
343    }.elsewhen(io.MemVioRedirect) {
344      topdown_stage.reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B
345    }.otherwise {
346      topdown_stage.reasons(TopDownCounters.OtherRedirectBubble.id) := true.B
347    }
348  }
349
350
351  val dequeueInsufficient = Wire(Bool())
352  val matchBubble = Wire(UInt(log2Up(TopDownCounters.NumStallReasons.id).W))
353  val deqValidCount = PopCount(validVec.asBools)
354  val deqWasteCount = DecodeWidth.U - deqValidCount
355  dequeueInsufficient := deqValidCount < DecodeWidth.U
356  matchBubble := (TopDownCounters.NumStallReasons.id - 1).U - PriorityEncoder(topdown_stage.reasons.reverse)
357
358  io.stallReason.reason.map(_ := 0.U)
359  for (i <- 0 until DecodeWidth) {
360    when(i.U < deqWasteCount) {
361      io.stallReason.reason(DecodeWidth - i - 1) := matchBubble
362    }
363  }
364
365  when(!(deqWasteCount === DecodeWidth.U || topdown_stage.reasons.asUInt.orR)) {
366    // should set reason for FetchFragmentationStall
367    // topdown_stage.reasons(TopDownCounters.FetchFragmentationStall.id) := true.B
368    for (i <- 0 until DecodeWidth) {
369      when(i.U < deqWasteCount) {
370        io.stallReason.reason(DecodeWidth - i - 1) := TopDownCounters.FetchFragBubble.id.U
371      }
372    }
373  }
374
375  when(io.stallReason.backReason.valid) {
376    io.stallReason.reason.map(_ := io.stallReason.backReason.bits)
377  }
378
379  // Debug info
380  XSError(
381    deqPtr.value =/= deqBankPtr.value + deqInBankPtr(deqBankPtr.value).value * IBufNBank.asUInt,
382    "Dequeue PTR mismatch"
383  )
384  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
385
386  XSDebug(io.flush, "IBuffer Flushed\n")
387
388  when(io.in.fire) {
389    XSDebug("Enque:\n")
390    XSDebug(p"MASK=${Binary(io.in.bits.valid)}\n")
391    for(i <- 0 until PredictWidth){
392      XSDebug(p"PC=${Hexadecimal(io.in.bits.pc(i))} ${Hexadecimal(io.in.bits.instrs(i))}\n")
393    }
394  }
395
396  for (i <- 0 until DecodeWidth) {
397    XSDebug(io.out(i).fire,
398      p"deq: ${Hexadecimal(io.out(i).bits.instr)} PC=${Hexadecimal(io.out(i).bits.pc)}" +
399      p"v=${io.out(i).valid} r=${io.out(i).ready} " +
400      p"excpVec=${Binary(io.out(i).bits.exceptionVec.asUInt)} crossPageIPF=${io.out(i).bits.crossPageIPFFix}\n")
401  }
402
403  XSDebug(p"numValid: ${numValid}\n")
404  XSDebug(p"EnqNum: ${numEnq}\n")
405  XSDebug(p"DeqNum: ${numDeq}\n")
406
407  val afterInit = RegInit(false.B)
408  val headBubble = RegInit(false.B)
409  when (io.in.fire) { afterInit := true.B }
410  when (io.flush) {
411    headBubble := true.B
412  } .elsewhen(numValid =/= 0.U) {
413    headBubble := false.B
414  }
415  val instrHungry = afterInit && (numValid === 0.U) && !headBubble
416
417  QueuePerf(IBufSize, numValid, !allowEnq)
418  XSPerfAccumulate("flush", io.flush)
419  XSPerfAccumulate("hungry", instrHungry)
420
421  val ibuffer_IDWidth_hvButNotFull = afterInit && (numValid =/= 0.U) && (numValid < DecodeWidth.U) && !headBubble
422  XSPerfAccumulate("ibuffer_IDWidth_hvButNotFull", ibuffer_IDWidth_hvButNotFull)
423  /*
424  XSPerfAccumulate("ICacheMissBubble", Mux(matchBubbleVec(TopDownCounters.ICacheMissBubble.id), deqWasteCount, 0.U))
425  XSPerfAccumulate("ITLBMissBubble", Mux(matchBubbleVec(TopDownCounters.ITLBMissBubble.id), deqWasteCount, 0.U))
426  XSPerfAccumulate("ControlRedirectBubble", Mux(matchBubbleVec(TopDownCounters.ControlRedirectBubble.id), deqWasteCount, 0.U))
427  XSPerfAccumulate("MemVioRedirectBubble", Mux(matchBubbleVec(TopDownCounters.MemVioRedirectBubble.id), deqWasteCount, 0.U))
428  XSPerfAccumulate("OtherRedirectBubble", Mux(matchBubbleVec(TopDownCounters.OtherRedirectBubble.id), deqWasteCount, 0.U))
429  XSPerfAccumulate("BTBMissBubble", Mux(matchBubbleVec(TopDownCounters.BTBMissBubble.id), deqWasteCount, 0.U))
430  XSPerfAccumulate("OverrideBubble", Mux(matchBubbleVec(TopDownCounters.OverrideBubble.id), deqWasteCount, 0.U))
431  XSPerfAccumulate("FtqUpdateBubble", Mux(matchBubbleVec(TopDownCounters.FtqUpdateBubble.id), deqWasteCount, 0.U))
432  XSPerfAccumulate("FtqFullStall", Mux(matchBubbleVec(TopDownCounters.FtqFullStall.id), deqWasteCount, 0.U))
433  XSPerfAccumulate("FetchFragmentBubble",
434  Mux(deqWasteCount === DecodeWidth.U || topdown_stage.reasons.asUInt.orR, 0.U, deqWasteCount))
435  XSPerfAccumulate("TAGEMissBubble", Mux(matchBubbleVec(TopDownCounters.TAGEMissBubble.id), deqWasteCount, 0.U))
436  XSPerfAccumulate("SCMissBubble", Mux(matchBubbleVec(TopDownCounters.SCMissBubble.id), deqWasteCount, 0.U))
437  XSPerfAccumulate("ITTAGEMissBubble", Mux(matchBubbleVec(TopDownCounters.ITTAGEMissBubble.id), deqWasteCount, 0.U))
438  XSPerfAccumulate("RASMissBubble", Mux(matchBubbleVec(TopDownCounters.RASMissBubble.id), deqWasteCount, 0.U))
439  */
440
441  val perfEvents = Seq(
442    ("IBuffer_Flushed  ", io.flush                                                                     ),
443    ("IBuffer_hungry   ", instrHungry                                                                  ),
444    ("IBuffer_1_4_valid", (numValid >  (0*(IBufSize/4)).U) & (numValid < (1*(IBufSize/4)).U)   ),
445    ("IBuffer_2_4_valid", (numValid >= (1*(IBufSize/4)).U) & (numValid < (2*(IBufSize/4)).U)   ),
446    ("IBuffer_3_4_valid", (numValid >= (2*(IBufSize/4)).U) & (numValid < (3*(IBufSize/4)).U)   ),
447    ("IBuffer_4_4_valid", (numValid >= (3*(IBufSize/4)).U) & (numValid < (4*(IBufSize/4)).U)   ),
448    ("IBuffer_full     ",  numValid.andR                                                           ),
449    ("Front_Bubble     ", PopCount((0 until DecodeWidth).map(i => io.out(i).ready && !io.out(i).valid)))
450  )
451  generatePerfEvent()
452}
453