xref: /XiangShan/src/main/scala/xiangshan/cache/mmu/PageTableWalker.scala (revision 67ba96b4871c459c09df20e3052738174021a830)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.cache.mmu
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import chisel3.internal.naming.chiselName
23import xiangshan._
24import xiangshan.cache.{HasDCacheParameters, MemoryOpConstants}
25import utils._
26import utility._
27import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
28import freechips.rocketchip.tilelink._
29import xiangshan.backend.fu.{PMPReqBundle, PMPRespBundle}
30
31/** Page Table Walk is divided into two parts
32  * One,   PTW: page walk for pde, except for leaf entries, one by one
33  * Two, LLPTW: page walk for pte, only the leaf entries(4KB), in parallel
34  */
35
36
37/** PTW : page table walker
38  * a finite state machine
39  * only take 1GB and 2MB page walks
40  * or in other words, except the last level(leaf)
41  **/
42class PTWIO()(implicit p: Parameters) extends MMUIOBaseBundle with HasPtwConst {
43  val req = Flipped(DecoupledIO(new Bundle {
44    val req_info = new L2TlbInnerBundle()
45    val l1Hit = Bool()
46    val ppn = UInt(ppnLen.W)
47  }))
48  val resp = DecoupledIO(new Bundle {
49    val source = UInt(bSourceWidth.W)
50    val resp = new PtwResp
51  })
52
53  val llptw = DecoupledIO(new LLPTWInBundle())
54  // NOTE: llptw change from "connect to llptw" to "connect to page cache"
55  // to avoid corner case that caused duplicate entries
56
57  val mem = new Bundle {
58    val req = DecoupledIO(new L2TlbMemReqBundle())
59    val resp = Flipped(ValidIO(UInt(XLEN.W)))
60    val mask = Input(Bool())
61  }
62  val pmp = new Bundle {
63    val req = ValidIO(new PMPReqBundle())
64    val resp = Flipped(new PMPRespBundle())
65  }
66
67  val refill = Output(new Bundle {
68    val req_info = new L2TlbInnerBundle()
69    val level = UInt(log2Up(Level).W)
70  })
71}
72
73@chiselName
74class PTW()(implicit p: Parameters) extends XSModule with HasPtwConst with HasPerfEvents {
75  val io = IO(new PTWIO)
76  val sfence = io.sfence
77  val mem = io.mem
78  val satp = io.csr.satp
79  val flush = io.sfence.valid || io.csr.satp.changed
80
81  val level = RegInit(0.U(log2Up(Level).W))
82  val af_level = RegInit(0.U(log2Up(Level).W)) // access fault return this level
83  val ppn = Reg(UInt(ppnLen.W))
84  val vpn = Reg(UInt(vpnLen.W))
85  val levelNext = level + 1.U
86  val l1Hit = Reg(Bool())
87  val memPte = mem.resp.bits.asTypeOf(new PteBundle().cloneType)
88
89  // s/w register
90  val s_pmp_check = RegInit(true.B)
91  val s_mem_req = RegInit(true.B)
92  val s_llptw_req = RegInit(true.B)
93  val w_mem_resp = RegInit(true.B)
94  // for updating "level"
95  val mem_addr_update = RegInit(false.B)
96
97  val idle = RegInit(true.B)
98  val sent_to_pmp = idle === false.B && (s_pmp_check === false.B || mem_addr_update)
99
100  val pageFault = memPte.isPf(level)
101  val accessFault = RegEnable(io.pmp.resp.ld || io.pmp.resp.mmio, sent_to_pmp)
102
103  val find_pte = memPte.isLeaf() || pageFault
104  val to_find_pte = level === 1.U && find_pte === false.B
105  val source = RegEnable(io.req.bits.req_info.source, io.req.fire())
106
107  val l1addr = MakeAddr(satp.ppn, getVpnn(vpn, 2))
108  val l2addr = MakeAddr(Mux(l1Hit, ppn, memPte.ppn), getVpnn(vpn, 1))
109  val mem_addr = Mux(af_level === 0.U, l1addr, l2addr)
110
111  io.req.ready := idle
112
113  io.resp.valid := idle === false.B && mem_addr_update && ((w_mem_resp && find_pte) || (s_pmp_check && accessFault))
114  io.resp.bits.source := source
115  io.resp.bits.resp.apply(pageFault && !accessFault, accessFault, Mux(accessFault, af_level,level), memPte, vpn, satp.asid)
116
117  io.llptw.valid := s_llptw_req === false.B && to_find_pte && !accessFault
118  io.llptw.bits.req_info.source := source
119  io.llptw.bits.req_info.vpn := vpn
120  io.llptw.bits.ppn := memPte.ppn
121
122  io.pmp.req.valid := DontCare // samecycle, do not use valid
123  io.pmp.req.bits.addr := mem_addr
124  io.pmp.req.bits.size := 3.U // TODO: fix it
125  io.pmp.req.bits.cmd := TlbCmd.read
126
127  mem.req.valid := s_mem_req === false.B && !mem.mask && !accessFault && s_pmp_check
128  mem.req.bits.addr := mem_addr
129  mem.req.bits.id := FsmReqID.U(bMemID.W)
130
131  io.refill.req_info.vpn := vpn
132  io.refill.level := level
133  io.refill.req_info.source := source
134
135  when (io.req.fire()){
136    val req = io.req.bits
137    level := Mux(req.l1Hit, 1.U, 0.U)
138    af_level := Mux(req.l1Hit, 1.U, 0.U)
139    ppn := Mux(req.l1Hit, io.req.bits.ppn, satp.ppn)
140    vpn := io.req.bits.req_info.vpn
141    l1Hit := req.l1Hit
142    accessFault := false.B
143    s_pmp_check := false.B
144    idle := false.B
145  }
146
147  when(sent_to_pmp && mem_addr_update === false.B){
148    s_mem_req := false.B
149    s_pmp_check := true.B
150  }
151
152  when(accessFault && idle === false.B){
153    s_pmp_check := true.B
154    s_mem_req := true.B
155    w_mem_resp := true.B
156    s_llptw_req := true.B
157    mem_addr_update := true.B
158  }
159
160  when (mem.req.fire()){
161    s_mem_req := true.B
162    w_mem_resp := false.B
163  }
164
165  when(mem.resp.fire() &&  w_mem_resp === false.B){
166    w_mem_resp := true.B
167    af_level := af_level + 1.U
168    s_llptw_req := false.B
169    mem_addr_update := true.B
170  }
171
172  when(mem_addr_update){
173    when(level === 0.U && !(find_pte||accessFault)){
174      level := levelNext
175      s_mem_req := false.B
176      s_llptw_req := true.B
177      mem_addr_update := false.B
178    }.elsewhen(io.llptw.fire()){
179      idle := true.B
180      s_llptw_req := true.B
181      mem_addr_update := false.B
182    }.elsewhen(io.resp.fire()){
183      idle := true.B
184      s_llptw_req := true.B
185      mem_addr_update := false.B
186      accessFault := false.B
187    }
188  }
189
190
191  when (sfence.valid) {
192    idle := true.B
193    s_pmp_check := true.B
194    s_mem_req := true.B
195    s_llptw_req := true.B
196    w_mem_resp := true.B
197    accessFault := false.B
198    mem_addr_update := false.B
199  }
200
201
202  XSDebug(p"[ptw] level:${level} notFound:${pageFault}\n")
203
204  // perf
205  XSPerfAccumulate("fsm_count", io.req.fire())
206  for (i <- 0 until PtwWidth) {
207    XSPerfAccumulate(s"fsm_count_source${i}", io.req.fire() && io.req.bits.req_info.source === i.U)
208  }
209  XSPerfAccumulate("fsm_busy", !idle)
210  XSPerfAccumulate("fsm_idle", idle)
211  XSPerfAccumulate("resp_blocked", io.resp.valid && !io.resp.ready)
212  XSPerfAccumulate("mem_count", mem.req.fire())
213  XSPerfAccumulate("mem_cycle", BoolStopWatch(mem.req.fire, mem.resp.fire(), true))
214  XSPerfAccumulate("mem_blocked", mem.req.valid && !mem.req.ready)
215
216  TimeOutAssert(!idle, timeOutThreshold, "page table walker time out")
217
218  val perfEvents = Seq(
219    ("fsm_count         ", io.req.fire()                                     ),
220    ("fsm_busy          ", !idle                                             ),
221    ("fsm_idle          ", idle                                              ),
222    ("resp_blocked      ", io.resp.valid && !io.resp.ready                   ),
223    ("mem_count         ", mem.req.fire()                                    ),
224    ("mem_cycle         ", BoolStopWatch(mem.req.fire, mem.resp.fire(), true)),
225    ("mem_blocked       ", mem.req.valid && !mem.req.ready                   ),
226  )
227  generatePerfEvent()
228}
229
230/*========================= LLPTW ==============================*/
231
232/** LLPTW : Last Level Page Table Walker
233  * the page walker that only takes 4KB(last level) page walk.
234  **/
235
236class LLPTWInBundle(implicit p: Parameters) extends XSBundle with HasPtwConst {
237  val req_info = Output(new L2TlbInnerBundle())
238  val ppn = Output(UInt(PAddrBits.W))
239}
240
241class LLPTWIO(implicit p: Parameters) extends MMUIOBaseBundle with HasPtwConst {
242  val in = Flipped(DecoupledIO(new LLPTWInBundle()))
243  val out = DecoupledIO(new Bundle {
244    val req_info = Output(new L2TlbInnerBundle())
245    val id = Output(UInt(bMemID.W))
246    val af = Output(Bool())
247  })
248  val mem = new Bundle {
249    val req = DecoupledIO(new L2TlbMemReqBundle())
250    val resp = Flipped(Valid(new Bundle {
251      val id = Output(UInt(log2Up(l2tlbParams.llptwsize).W))
252    }))
253    val enq_ptr = Output(UInt(log2Ceil(l2tlbParams.llptwsize).W))
254    val buffer_it = Output(Vec(l2tlbParams.llptwsize, Bool()))
255    val refill = Output(new L2TlbInnerBundle())
256    val req_mask = Input(Vec(l2tlbParams.llptwsize, Bool()))
257  }
258  val cache = DecoupledIO(new L2TlbInnerBundle())
259  val pmp = new Bundle {
260    val req = Valid(new PMPReqBundle())
261    val resp = Flipped(new PMPRespBundle())
262  }
263}
264
265class LLPTWEntry(implicit p: Parameters) extends XSBundle with HasPtwConst {
266  val req_info = new L2TlbInnerBundle()
267  val ppn = UInt(ppnLen.W)
268  val wait_id = UInt(log2Up(l2tlbParams.llptwsize).W)
269  val af = Bool()
270}
271
272
273@chiselName
274class LLPTW(implicit p: Parameters) extends XSModule with HasPtwConst with HasPerfEvents {
275  val io = IO(new LLPTWIO())
276
277  val flush = io.sfence.valid || io.csr.satp.changed
278  val entries = Reg(Vec(l2tlbParams.llptwsize, new LLPTWEntry()))
279  val state_idle :: state_addr_check :: state_mem_req :: state_mem_waiting :: state_mem_out :: state_cache :: Nil = Enum(6)
280  val state = RegInit(VecInit(Seq.fill(l2tlbParams.llptwsize)(state_idle)))
281
282  val is_emptys = state.map(_ === state_idle)
283  val is_mems = state.map(_ === state_mem_req)
284  val is_waiting = state.map(_ === state_mem_waiting)
285  val is_having = state.map(_ === state_mem_out)
286  val is_cache = state.map(_ === state_cache)
287
288  val full = !ParallelOR(is_emptys).asBool()
289  val enq_ptr = ParallelPriorityEncoder(is_emptys)
290
291  val mem_ptr = ParallelPriorityEncoder(is_having) // TODO: optimize timing, bad: entries -> ptr -> entry
292  val mem_arb = Module(new RRArbiter(new LLPTWEntry(), l2tlbParams.llptwsize))
293  for (i <- 0 until l2tlbParams.llptwsize) {
294    mem_arb.io.in(i).bits := entries(i)
295    mem_arb.io.in(i).valid := is_mems(i) && !io.mem.req_mask(i)
296  }
297
298  val cache_ptr = ParallelMux(is_cache, (0 until l2tlbParams.llptwsize).map(_.U(log2Up(l2tlbParams.llptwsize).W)))
299
300  // duplicate req
301  // to_wait: wait for the last to access mem, set to mem_resp
302  // to_cache: the last is back just right now, set to mem_cache
303  val dup_vec = state.indices.map(i =>
304    dup(io.in.bits.req_info.vpn, entries(i).req_info.vpn)
305  )
306  val dup_req_fire = mem_arb.io.out.fire() && dup(io.in.bits.req_info.vpn, mem_arb.io.out.bits.req_info.vpn) // dup with the req fire entry
307  val dup_vec_wait = dup_vec.zip(is_waiting).map{case (d, w) => d && w} // dup with "mem_waiting" entres, sending mem req already
308  val dup_vec_having = dup_vec.zipWithIndex.map{case (d, i) => d && is_having(i)} // dup with the "mem_out" entry recv the data just now
309  val wait_id = Mux(dup_req_fire, mem_arb.io.chosen, ParallelMux(dup_vec_wait zip entries.map(_.wait_id)))
310  val dup_wait_resp = io.mem.resp.fire() && VecInit(dup_vec_wait)(io.mem.resp.bits.id) // dup with the entry that data coming next cycle
311  val to_wait = Cat(dup_vec_wait).orR || dup_req_fire
312  val to_mem_out = dup_wait_resp
313  val to_cache = Cat(dup_vec_having).orR
314  XSError(RegNext(dup_req_fire && Cat(dup_vec_wait).orR, init = false.B), "mem req but some entries already waiting, should not happed")
315
316  XSError(io.in.fire() && ((to_mem_out && to_cache) || (to_wait && to_cache)), "llptw enq, to cache conflict with to mem")
317  val mem_resp_hit = RegInit(VecInit(Seq.fill(l2tlbParams.llptwsize)(false.B)))
318  val enq_state_normal = Mux(to_mem_out, state_mem_out, // same to the blew, but the mem resp now
319    Mux(to_wait, state_mem_waiting,
320    Mux(to_cache, state_cache, state_addr_check)))
321  val enq_state = Mux(from_pre(io.in.bits.req_info.source) && enq_state_normal =/= state_addr_check, state_idle, enq_state_normal)
322  when (io.in.fire()) {
323    // if prefetch req does not need mem access, just give it up.
324    // so there will be at most 1 + FilterSize entries that needs re-access page cache
325    // so 2 + FilterSize is enough to avoid dead-lock
326    state(enq_ptr) := enq_state
327    entries(enq_ptr).req_info := io.in.bits.req_info
328    entries(enq_ptr).ppn := io.in.bits.ppn
329    entries(enq_ptr).wait_id := Mux(to_wait, wait_id, enq_ptr)
330    entries(enq_ptr).af := false.B
331    mem_resp_hit(enq_ptr) := to_mem_out
332  }
333
334  val enq_ptr_reg = RegNext(enq_ptr)
335  val need_addr_check = RegNext(enq_state === state_addr_check && io.in.fire() && !flush)
336  val last_enq_vpn = RegEnable(io.in.bits.req_info.vpn, io.in.fire())
337
338  io.pmp.req.valid := need_addr_check
339  io.pmp.req.bits.addr := RegEnable(MakeAddr(io.in.bits.ppn, getVpnn(io.in.bits.req_info.vpn, 0)), io.in.fire())
340  io.pmp.req.bits.cmd := TlbCmd.read
341  io.pmp.req.bits.size := 3.U // TODO: fix it
342  val pmp_resp_valid = io.pmp.req.valid // same cycle
343  when (pmp_resp_valid) {
344    // NOTE: when pmp resp but state is not addr check, then the entry is dup with other entry, the state was changed before
345    //       when dup with the req-ing entry, set to mem_waiting (above codes), and the ld must be false, so dontcare
346    val accessFault = io.pmp.resp.ld || io.pmp.resp.mmio
347    entries(enq_ptr_reg).af := accessFault
348    state(enq_ptr_reg) := Mux(accessFault, state_mem_out, state_mem_req)
349  }
350
351  when (mem_arb.io.out.fire()) {
352    for (i <- state.indices) {
353      when (state(i) =/= state_idle && dup(entries(i).req_info.vpn, mem_arb.io.out.bits.req_info.vpn)) {
354        // NOTE: "dup enq set state to mem_wait" -> "sending req set other dup entries to mem_wait"
355        state(i) := state_mem_waiting
356        entries(i).wait_id := mem_arb.io.chosen
357      }
358    }
359  }
360  when (io.mem.resp.fire()) {
361    state.indices.map{i =>
362      when (state(i) === state_mem_waiting && io.mem.resp.bits.id === entries(i).wait_id) {
363        state(i) := state_mem_out
364        mem_resp_hit(i) := true.B
365      }
366    }
367  }
368  when (io.out.fire()) {
369    assert(state(mem_ptr) === state_mem_out)
370    state(mem_ptr) := state_idle
371  }
372  mem_resp_hit.map(a => when (a) { a := false.B } )
373
374  when (io.cache.fire) {
375    state(cache_ptr) := state_idle
376  }
377  XSError(io.out.fire && io.cache.fire && (mem_ptr === cache_ptr), "mem resp and cache fire at the same time at same entry")
378
379  when (flush) {
380    state.map(_ := state_idle)
381  }
382
383  io.in.ready := !full
384
385  io.out.valid := ParallelOR(is_having).asBool()
386  io.out.bits.req_info := entries(mem_ptr).req_info
387  io.out.bits.id := mem_ptr
388  io.out.bits.af := entries(mem_ptr).af
389
390  io.mem.req.valid := mem_arb.io.out.valid && !flush
391  io.mem.req.bits.addr := MakeAddr(mem_arb.io.out.bits.ppn, getVpnn(mem_arb.io.out.bits.req_info.vpn, 0))
392  io.mem.req.bits.id := mem_arb.io.chosen
393  mem_arb.io.out.ready := io.mem.req.ready
394  io.mem.refill := entries(RegNext(io.mem.resp.bits.id(log2Up(l2tlbParams.llptwsize)-1, 0))).req_info
395  io.mem.buffer_it := mem_resp_hit
396  io.mem.enq_ptr := enq_ptr
397
398  io.cache.valid := Cat(is_cache).orR
399  io.cache.bits := ParallelMux(is_cache, entries.map(_.req_info))
400
401  XSPerfAccumulate("llptw_in_count", io.in.fire())
402  XSPerfAccumulate("llptw_in_block", io.in.valid && !io.in.ready)
403  for (i <- 0 until 7) {
404    XSPerfAccumulate(s"enq_state${i}", io.in.fire() && enq_state === i.U)
405  }
406  for (i <- 0 until (l2tlbParams.llptwsize + 1)) {
407    XSPerfAccumulate(s"util${i}", PopCount(is_emptys.map(!_)) === i.U)
408    XSPerfAccumulate(s"mem_util${i}", PopCount(is_mems) === i.U)
409    XSPerfAccumulate(s"waiting_util${i}", PopCount(is_waiting) === i.U)
410  }
411  XSPerfAccumulate("mem_count", io.mem.req.fire())
412  XSPerfAccumulate("mem_cycle", PopCount(is_waiting) =/= 0.U)
413  XSPerfAccumulate("blocked_in", io.in.valid && !io.in.ready)
414
415  for (i <- 0 until l2tlbParams.llptwsize) {
416    TimeOutAssert(state(i) =/= state_idle, timeOutThreshold, s"missqueue time out no out ${i}")
417  }
418
419  val perfEvents = Seq(
420    ("tlbllptw_incount           ", io.in.fire()               ),
421    ("tlbllptw_inblock           ", io.in.valid && !io.in.ready),
422    ("tlbllptw_memcount          ", io.mem.req.fire()          ),
423    ("tlbllptw_memcycle          ", PopCount(is_waiting)       ),
424  )
425  generatePerfEvent()
426}
427