1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utils._ 25import utility._ 26import xiangshan._ 27import xiangshan.backend.exu.ExuConfig 28import xiangshan.frontend.FtqPtr 29import xiangshan.mem.{LsqEnqIO, LqPtr} 30 31class DebugMdpInfo(implicit p: Parameters) extends XSBundle{ 32 val ssid = UInt(SSIDWidth.W) 33 val waitAllStore = Bool() 34} 35 36class DebugLsInfo(implicit p: Parameters) extends XSBundle { 37 val s1 = new Bundle { 38 val isTlbFirstMiss = Bool() // in s1 39 val isBankConflict = Bool() // in s1 40 val isLoadToLoadForward = Bool() 41 val isReplayFast = Bool() 42 } 43 val s2 = new Bundle{ 44 val isDcacheFirstMiss = Bool() // in s2 (predicted result is in s1 when using WPU, real result is in s2) 45 val isForwardFail = Bool() // in s2 46 val isReplaySlow = Bool() 47 val isLoadReplayTLBMiss = Bool() 48 val isLoadReplayCacheMiss = Bool() 49 } 50 val replayCnt = UInt(XLEN.W) 51 52 def s1SignalEnable(ena: DebugLsInfo) = { 53 when(ena.s1.isTlbFirstMiss) { s1.isTlbFirstMiss := true.B } 54 when(ena.s1.isBankConflict) { s1.isBankConflict := true.B } 55 when(ena.s1.isLoadToLoadForward) { s1.isLoadToLoadForward := true.B } 56 when(ena.s1.isReplayFast) { 57 s1.isReplayFast := true.B 58 replayCnt := replayCnt + 1.U 59 } 60 } 61 62 def s2SignalEnable(ena: DebugLsInfo) = { 63 when(ena.s2.isDcacheFirstMiss) { s2.isDcacheFirstMiss := true.B } 64 when(ena.s2.isForwardFail) { s2.isForwardFail := true.B } 65 when(ena.s2.isLoadReplayTLBMiss) { s2.isLoadReplayTLBMiss := true.B } 66 when(ena.s2.isLoadReplayCacheMiss) { s2.isLoadReplayCacheMiss := true.B } 67 when(ena.s2.isReplaySlow) { 68 s2.isReplaySlow := true.B 69 replayCnt := replayCnt + 1.U 70 } 71 } 72 73} 74object DebugLsInfo { 75 def init(implicit p: Parameters): DebugLsInfo = { 76 val lsInfo = Wire(new DebugLsInfo) 77 lsInfo.s1.isTlbFirstMiss := false.B 78 lsInfo.s1.isBankConflict := false.B 79 lsInfo.s1.isLoadToLoadForward := false.B 80 lsInfo.s1.isReplayFast := false.B 81 lsInfo.s2.isDcacheFirstMiss := false.B 82 lsInfo.s2.isForwardFail := false.B 83 lsInfo.s2.isReplaySlow := false.B 84 lsInfo.s2.isLoadReplayTLBMiss := false.B 85 lsInfo.s2.isLoadReplayCacheMiss := false.B 86 lsInfo.replayCnt := 0.U 87 lsInfo 88 } 89 90} 91class DebugLsInfoBundle(implicit p: Parameters) extends DebugLsInfo { 92 // unified processing at the end stage of load/store ==> s2 ==> bug that will write error robIdx data 93 val s1_robIdx = UInt(log2Ceil(RobSize).W) 94 val s2_robIdx = UInt(log2Ceil(RobSize).W) 95} 96class DebugLSIO(implicit p: Parameters) extends XSBundle { 97 val debugLsInfo = Vec(exuParameters.LduCnt + exuParameters.StuCnt, Output(new DebugLsInfoBundle)) 98} 99 100class LsTopdownInfo(implicit p: Parameters) extends XSBundle { 101 val s1 = new Bundle { 102 val robIdx = UInt(log2Ceil(RobSize).W) 103 val vaddr_valid = Bool() 104 val vaddr_bits = UInt(VAddrBits.W) 105 } 106 val s2 = new Bundle { 107 val robIdx = UInt(log2Ceil(RobSize).W) 108 val paddr_valid = Bool() 109 val paddr_bits = UInt(PAddrBits.W) 110 } 111 112 def s1SignalEnable(ena: LsTopdownInfo) = { 113 when(ena.s1.vaddr_valid) { 114 s1.vaddr_valid := true.B 115 s1.vaddr_bits := ena.s1.vaddr_bits 116 } 117 } 118 119 def s2SignalEnable(ena: LsTopdownInfo) = { 120 when(ena.s2.paddr_valid) { 121 s2.paddr_valid := true.B 122 s2.paddr_bits := ena.s2.paddr_bits 123 } 124 } 125} 126 127object LsTopdownInfo { 128 def init(implicit p: Parameters): LsTopdownInfo = 0.U.asTypeOf(new LsTopdownInfo) 129} 130 131class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 132 p => p(XSCoreParamsKey).RobSize 133) with HasCircularQueuePtrHelper { 134 135 def needFlush(redirect: Valid[Redirect]): Bool = { 136 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 137 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 138 } 139 140 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 141} 142 143object RobPtr { 144 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 145 val ptr = Wire(new RobPtr) 146 ptr.flag := f 147 ptr.value := v 148 ptr 149 } 150} 151 152class RobCSRIO(implicit p: Parameters) extends XSBundle { 153 val intrBitSet = Input(Bool()) 154 val trapTarget = Input(UInt(VAddrBits.W)) 155 val isXRet = Input(Bool()) 156 val wfiEvent = Input(Bool()) 157 158 val fflags = Output(Valid(UInt(5.W))) 159 val dirty_fs = Output(Bool()) 160 val perfinfo = new Bundle { 161 val retiredInstr = Output(UInt(3.W)) 162 } 163} 164 165class RobLsqIO(implicit p: Parameters) extends XSBundle { 166 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 167 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 168 val pendingld = Output(Bool()) 169 val pendingst = Output(Bool()) 170 val commit = Output(Bool()) 171 val pendingPtr = Output(new RobPtr) 172 173 val mmio = Input(Vec(LoadPipelineWidth, Bool())) 174 val uop = Input(Vec(LoadPipelineWidth, new MicroOp)) 175} 176 177class RobEnqIO(implicit p: Parameters) extends XSBundle { 178 val canAccept = Output(Bool()) 179 val isEmpty = Output(Bool()) 180 // valid vector, for robIdx gen and walk 181 val needAlloc = Vec(RenameWidth, Input(Bool())) 182 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 183 val resp = Vec(RenameWidth, Output(new RobPtr)) 184} 185 186class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 187 val io = IO(new Bundle { 188 // for commits/flush 189 val state = Input(UInt(2.W)) 190 val deq_v = Vec(CommitWidth, Input(Bool())) 191 val deq_w = Vec(CommitWidth, Input(Bool())) 192 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 193 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 194 val intrBitSetReg = Input(Bool()) 195 val hasNoSpecExec = Input(Bool()) 196 val interrupt_safe = Input(Bool()) 197 val blockCommit = Input(Bool()) 198 // output: the CommitWidth deqPtr 199 val out = Vec(CommitWidth, Output(new RobPtr)) 200 val next_out = Vec(CommitWidth, Output(new RobPtr)) 201 }) 202 203 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 204 205 // for exceptions (flushPipe included) and interrupts: 206 // only consider the first instruction 207 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 208 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 209 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 210 211 // for normal commits: only to consider when there're no exceptions 212 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 213 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 214 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 215 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 216 // when io.intrBitSetReg or there're possible exceptions in these instructions, 217 // only one instruction is allowed to commit 218 val allowOnlyOne = commit_exception || io.intrBitSetReg 219 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 220 221 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 222 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 223 224 deqPtrVec := deqPtrVec_next 225 226 io.next_out := deqPtrVec_next 227 io.out := deqPtrVec 228 229 when (io.state === 0.U) { 230 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 231 } 232 233} 234 235class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 236 val io = IO(new Bundle { 237 // for input redirect 238 val redirect = Input(Valid(new Redirect)) 239 // for enqueue 240 val allowEnqueue = Input(Bool()) 241 val hasBlockBackward = Input(Bool()) 242 val enq = Vec(RenameWidth, Input(Bool())) 243 val out = Output(Vec(RenameWidth, new RobPtr)) 244 }) 245 246 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 247 248 // enqueue 249 val canAccept = io.allowEnqueue && !io.hasBlockBackward 250 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 251 252 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 253 when(io.redirect.valid) { 254 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 255 }.otherwise { 256 ptr := ptr + dispatchNum 257 } 258 } 259 260 io.out := enqPtrVec 261 262} 263 264class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 265 // val valid = Bool() 266 val robIdx = new RobPtr 267 val exceptionVec = ExceptionVec() 268 val flushPipe = Bool() 269 val replayInst = Bool() // redirect to that inst itself 270 val singleStep = Bool() // TODO add frontend hit beneath 271 val crossPageIPFFix = Bool() 272 val trigger = new TriggerCf 273 274// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 275// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 276 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 277 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 278 // only exceptions are allowed to writeback when enqueue 279 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 280} 281 282class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 283 val io = IO(new Bundle { 284 val redirect = Input(Valid(new Redirect)) 285 val flush = Input(Bool()) 286 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 287 val wb = Vec(1 + LoadPipelineWidth + StorePipelineWidth, Flipped(ValidIO(new RobExceptionInfo))) 288 val out = ValidIO(new RobExceptionInfo) 289 val state = ValidIO(new RobExceptionInfo) 290 }) 291 292 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 293 assert(valid.length == bits.length) 294 assert(isPow2(valid.length)) 295 if (valid.length == 1) { 296 (valid, bits) 297 } else if (valid.length == 2) { 298 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 299 for (i <- res.indices) { 300 res(i).valid := valid(i) 301 res(i).bits := bits(i) 302 } 303 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 304 (Seq(oldest.valid), Seq(oldest.bits)) 305 } else { 306 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 307 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 308 getOldest(left._1 ++ right._1, left._2 ++ right._2) 309 } 310 } 311 312 val currentValid = RegInit(false.B) 313 val current = Reg(new RobExceptionInfo) 314 315 // orR the exceptionVec 316 val lastCycleFlush = RegNext(io.flush) 317 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 318 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 319 320 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 321 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 322 val csr_wb_bits = io.wb(0).bits 323 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 324 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 325 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 326 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 327 328 // s1: compare last four and current flush 329 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 330 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 331 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 332 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 333 val s1_out_bits = RegNext(compare_bits) 334 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 335 336 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 337 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 338 339 // s2: compare the input exception with the current one 340 // priorities: 341 // (1) system reset 342 // (2) current is valid: flush, remain, merge, update 343 // (3) current is not valid: s1 or enq 344 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 345 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 346 when (currentValid) { 347 when (current_flush) { 348 currentValid := Mux(s1_flush, false.B, s1_out_valid) 349 } 350 when (s1_out_valid && !s1_flush) { 351 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 352 current := s1_out_bits 353 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 354 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 355 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 356 current.replayInst := s1_out_bits.replayInst || current.replayInst 357 current.singleStep := s1_out_bits.singleStep || current.singleStep 358 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 359 } 360 } 361 }.elsewhen (s1_out_valid && !s1_flush) { 362 currentValid := true.B 363 current := s1_out_bits 364 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 365 currentValid := true.B 366 current := enq_bits 367 } 368 369 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 370 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 371 io.state.valid := currentValid 372 io.state.bits := current 373 374} 375 376class RobFlushInfo(implicit p: Parameters) extends XSBundle { 377 val ftqIdx = new FtqPtr 378 val robIdx = new RobPtr 379 val ftqOffset = UInt(log2Up(PredictWidth).W) 380 val replayInst = Bool() 381} 382 383class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter { 384 385 lazy val module = new RobImp(this) 386 387 override def generateWritebackIO( 388 thisMod: Option[HasWritebackSource] = None, 389 thisModImp: Option[HasWritebackSourceImp] = None 390 ): Unit = { 391 val sources = writebackSinksImp(thisMod, thisModImp) 392 module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 393 } 394} 395 396class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer) 397 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 398 val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs) 399 val numWbPorts = wbExuConfigs.map(_.length) 400 401 val io = IO(new Bundle() { 402 val hartId = Input(UInt(8.W)) 403 val redirect = Input(Valid(new Redirect)) 404 val enq = new RobEnqIO 405 val flushOut = ValidIO(new Redirect) 406 val exception = ValidIO(new ExceptionInfo) 407 // exu + brq 408 val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 409 val commits = Output(new RobCommitIO) 410 val lsq = new RobLsqIO 411 val robDeqPtr = Output(new RobPtr) 412 val csr = new RobCSRIO 413 val robFull = Output(Bool()) 414 val headNotReady = Output(Bool()) 415 val cpu_halt = Output(Bool()) 416 val wfi_enable = Input(Bool()) 417 val debug_ls = Flipped(new DebugLSIO) 418 val debugRobHead = Output(new MicroOp) 419 val debugEnqLsq = Input(new LsqEnqIO) 420 val debugHeadLsIssue = Input(Bool()) 421 val lsTopdownInfo = Vec(exuParameters.LduCnt, Input(new LsTopdownInfo)) 422 }) 423 424 def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = { 425 wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1)) 426 } 427 val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length) 428 val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags))) 429 val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags)) 430 val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen))) 431 val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen)) 432 val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg)) 433 val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg)) 434 println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth") 435 println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 436 println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 437 println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 438 439 440 val exuWriteback = exuWbPorts.map(_._2) 441 val stdWriteback = stdWbPorts.map(_._2) 442 443 // instvalid field 444 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 445 // writeback status 446 val writebacked = Mem(RobSize, Bool()) 447 val store_data_writebacked = Mem(RobSize, Bool()) 448 val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 449 // data for redirect, exception, etc. 450 val flagBkup = Mem(RobSize, Bool()) 451 // some instructions are not allowed to trigger interrupts 452 // They have side effects on the states of the processor before they write back 453 val interrupt_safe = Mem(RobSize, Bool()) 454 455 // data for debug 456 // Warn: debug_* prefix should not exist in generated verilog. 457 val debug_microOp = Mem(RobSize, new MicroOp) 458 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 459 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 460 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 461 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 462 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 463 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 464 465 // pointers 466 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 467 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 468 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 469 470 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 471 val allowEnqueue = RegInit(true.B) 472 473 val enqPtr = enqPtrVec.head 474 val deqPtr = deqPtrVec(0) 475 val walkPtr = walkPtrVec(0) 476 477 val isEmpty = enqPtr === deqPtr 478 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 479 480 val debug_lsIssue = WireDefault(debug_lsIssued) 481 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 482 483 /** 484 * states of Rob 485 */ 486 val s_idle :: s_walk :: Nil = Enum(2) 487 val state = RegInit(s_idle) 488 489 /** 490 * Data Modules 491 * 492 * CommitDataModule: data from dispatch 493 * (1) read: commits/walk/exception 494 * (2) write: enqueue 495 * 496 * WritebackData: data from writeback 497 * (1) read: commits/walk/exception 498 * (2) write: write back from exe units 499 */ 500 val dispatchData = Module(new SyncDataModuleTemplate(new RobCommitInfo, RobSize, CommitWidth, RenameWidth)) 501 val dispatchDataRead = dispatchData.io.rdata 502 503 val exceptionGen = Module(new ExceptionGen) 504 val exceptionDataRead = exceptionGen.io.state 505 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 506 507 io.robDeqPtr := deqPtr 508 io.debugRobHead := debug_microOp(deqPtr.value) 509 510 /** 511 * Enqueue (from dispatch) 512 */ 513 // special cases 514 val hasBlockBackward = RegInit(false.B) 515 val hasNoSpecExec = RegInit(false.B) 516 val doingSvinval = RegInit(false.B) 517 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 518 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 519 when (isEmpty) { hasBlockBackward:= false.B } 520 // When any instruction commits, hasNoSpecExec should be set to false.B 521 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasNoSpecExec:= false.B } 522 523 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 524 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 525 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 526 val hasWFI = RegInit(false.B) 527 io.cpu_halt := hasWFI 528 // WFI Timeout: 2^20 = 1M cycles 529 val wfi_cycles = RegInit(0.U(20.W)) 530 when (hasWFI) { 531 wfi_cycles := wfi_cycles + 1.U 532 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 533 wfi_cycles := 0.U 534 } 535 val wfi_timeout = wfi_cycles.andR 536 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 537 hasWFI := false.B 538 } 539 540 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i))))) 541 io.enq.canAccept := allowEnqueue && !hasBlockBackward 542 io.enq.resp := allocatePtrVec 543 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 544 val timer = GTimer() 545 for (i <- 0 until RenameWidth) { 546 // we don't check whether io.redirect is valid here since redirect has higher priority 547 when (canEnqueue(i)) { 548 val enqUop = io.enq.req(i).bits 549 val enqIndex = allocatePtrVec(i).value 550 // store uop in data module and debug_microOp Vec 551 debug_microOp(enqIndex) := enqUop 552 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 553 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 554 debug_microOp(enqIndex).debugInfo.selectTime := timer 555 debug_microOp(enqIndex).debugInfo.issueTime := timer 556 debug_microOp(enqIndex).debugInfo.writebackTime := timer 557 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 558 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 559 debug_lsInfo(enqIndex) := DebugLsInfo.init 560 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 561 debug_lqIdxValid(enqIndex) := false.B 562 debug_lsIssued(enqIndex) := false.B 563 when (enqUop.ctrl.blockBackward) { 564 hasBlockBackward := true.B 565 } 566 when (enqUop.ctrl.noSpecExec) { 567 hasNoSpecExec := true.B 568 } 569 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 570 val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR 571 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 572 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 573 { 574 doingSvinval := true.B 575 } 576 // the end instruction of Svinval enqs so clear doingSvinval 577 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 578 { 579 doingSvinval := false.B 580 } 581 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 582 assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) || 583 FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))) 584 when (enqUop.ctrl.isWFI && !enqHasException && !enqHasTriggerHit) { 585 hasWFI := true.B 586 } 587 588 mmio(enqIndex) := false.B 589 } 590 } 591 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 592 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 593 594 when (!io.wfi_enable) { 595 hasWFI := false.B 596 } 597 598 // lqEnq 599 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 600 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 601 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 602 debug_lqIdxValid(req.bits.robIdx.value) := true.B 603 } 604 } 605 606 // lsIssue 607 when(io.debugHeadLsIssue) { 608 debug_lsIssued(deqPtr.value) := true.B 609 } 610 611 /** 612 * Writeback (from execution units) 613 */ 614 for (wb <- exuWriteback) { 615 when (wb.valid) { 616 val wbIdx = wb.bits.uop.robIdx.value 617 debug_exuData(wbIdx) := wb.bits.data 618 debug_exuDebug(wbIdx) := wb.bits.debug 619 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime 620 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime 621 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime 622 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime 623 debug_microOp(wbIdx).debugInfo.tlbFirstReqTime := wb.bits.uop.debugInfo.tlbFirstReqTime 624 debug_microOp(wbIdx).debugInfo.tlbRespTime := wb.bits.uop.debugInfo.tlbRespTime 625 626 // debug for lqidx and sqidx 627 debug_microOp(wbIdx).lqIdx := wb.bits.uop.lqIdx 628 debug_microOp(wbIdx).sqIdx := wb.bits.uop.sqIdx 629 630 val debug_Uop = debug_microOp(wbIdx) 631 XSInfo(true.B, 632 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 633 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 634 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n" 635 ) 636 } 637 } 638 val writebackNum = PopCount(exuWriteback.map(_.valid)) 639 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 640 641 for (i <- 0 until LoadPipelineWidth) { 642 when (RegNext(io.lsq.mmio(i))) { 643 mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B 644 } 645 } 646 647 /** 648 * RedirectOut: Interrupt and Exceptions 649 */ 650 val deqDispatchData = dispatchDataRead(0) 651 val debug_deqUop = debug_microOp(deqPtr.value) 652 653 val intrBitSetReg = RegNext(io.csr.intrBitSet) 654 val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value) 655 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 656 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 657 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 658 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 659 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 660 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 661 662 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 663 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 664 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 665 666 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 667 668 // io.flushOut will trigger redirect at the next cycle. 669 // Block any redirect or commit at the next cycle. 670 val lastCycleFlush = RegNext(io.flushOut.valid) 671 672 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 673 io.flushOut.bits := DontCare 674 io.flushOut.bits.robIdx := deqPtr 675 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 676 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 677 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 678 io.flushOut.bits.interrupt := true.B 679 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 680 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 681 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 682 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 683 684 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 685 io.exception.valid := RegNext(exceptionHappen) 686 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 687 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 688 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 689 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 690 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 691 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 692 io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 693 694 XSDebug(io.flushOut.valid, 695 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 696 p"excp $exceptionEnable flushPipe $isFlushPipe " + 697 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 698 699 700 /** 701 * Commits (and walk) 702 * They share the same width. 703 */ 704 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 705 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 706 val walkFinished = walkCounter <= CommitWidth.U 707 708 require(RenameWidth <= CommitWidth) 709 710 // wiring to csr 711 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 712 val v = io.commits.commitValid(i) 713 val info = io.commits.info(i) 714 (v & info.wflags, v & info.fpWen) 715 }).unzip 716 val fflags = Wire(Valid(UInt(5.W))) 717 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 718 fflags.bits := wflags.zip(fflagsDataRead).map({ 719 case (w, f) => Mux(w, f, 0.U) 720 }).reduce(_|_) 721 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 722 723 // when mispredict branches writeback, stop commit in the next 2 cycles 724 // TODO: don't check all exu write back 725 val misPredWb = Cat(VecInit(exuWriteback.map(wb => 726 wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid 727 ))).orR 728 val misPredBlockCounter = Reg(UInt(3.W)) 729 misPredBlockCounter := Mux(misPredWb, 730 "b111".U, 731 misPredBlockCounter >> 1.U 732 ) 733 val misPredBlock = misPredBlockCounter(0) 734 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI 735 736 io.commits.isWalk := state === s_walk 737 io.commits.isCommit := state === s_idle && !blockCommit 738 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 739 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 740 // store will be commited iff both sta & std have been writebacked 741 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 742 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 743 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 744 val allowOnlyOneCommit = commit_exception || intrBitSetReg 745 // for instructions that may block others, we don't allow them to commit 746 for (i <- 0 until CommitWidth) { 747 // defaults: state === s_idle and instructions commit 748 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 749 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 750 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 751 io.commits.info(i) := dispatchDataRead(i) 752 753 when (state === s_walk) { 754 io.commits.walkValid(i) := shouldWalkVec(i) 755 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 756 XSError(!walk_v(i), s"why not $i???\n") 757 } 758 } 759 760 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 761 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 762 debug_microOp(deqPtrVec(i).value).cf.pc, 763 io.commits.info(i).rfWen, 764 io.commits.info(i).ldest, 765 io.commits.info(i).pdest, 766 io.commits.info(i).old_pdest, 767 debug_exuData(deqPtrVec(i).value), 768 fflagsDataRead(i) 769 ) 770 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 771 debug_microOp(walkPtrVec(i).value).cf.pc, 772 io.commits.info(i).rfWen, 773 io.commits.info(i).ldest, 774 debug_exuData(walkPtrVec(i).value) 775 ) 776 } 777 if (env.EnableDifftest) { 778 io.commits.info.map(info => dontTouch(info.pc)) 779 } 780 781 // sync fflags/dirty_fs to csr 782 io.csr.fflags := RegNext(fflags) 783 io.csr.dirty_fs := RegNext(dirty_fs) 784 785 // commit load/store to lsq 786 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 787 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 788 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 789 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 790 // indicate a pending load or store 791 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) 792 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 793 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 794 io.lsq.pendingPtr := RegNext(deqPtr) 795 796 /** 797 * state changes 798 * (1) redirect: switch to s_walk 799 * (2) walk: when walking comes to the end, switch to s_idle 800 */ 801 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state)) 802 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 803 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 804 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 805 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 806 state := state_next 807 808 /** 809 * pointers and counters 810 */ 811 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 812 deqPtrGenModule.io.state := state 813 deqPtrGenModule.io.deq_v := commit_v 814 deqPtrGenModule.io.deq_w := commit_w 815 deqPtrGenModule.io.exception_state := exceptionDataRead 816 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 817 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 818 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 819 deqPtrGenModule.io.blockCommit := blockCommit 820 deqPtrVec := deqPtrGenModule.io.out 821 val deqPtrVec_next = deqPtrGenModule.io.next_out 822 823 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 824 enqPtrGenModule.io.redirect := io.redirect 825 enqPtrGenModule.io.allowEnqueue := allowEnqueue 826 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 827 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 828 enqPtrVec := enqPtrGenModule.io.out 829 830 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 831 // next walkPtrVec: 832 // (1) redirect occurs: update according to state 833 // (2) walk: move forwards 834 val walkPtrVec_next = Mux(io.redirect.valid, 835 deqPtrVec_next, 836 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 837 ) 838 walkPtrVec := walkPtrVec_next 839 840 val numValidEntries = distanceBetween(enqPtr, deqPtr) 841 val commitCnt = PopCount(io.commits.commitValid) 842 843 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 844 845 val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0)) 846 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 847 when (io.redirect.valid) { 848 // full condition: 849 // +& is used here because: 850 // When rob is full and the tail instruction causes a misprediction, 851 // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance 852 // is RobSize - 1. 853 // Since misprediction does not flush the instruction itself, flushItSelf is false.B. 854 // Previously we use `+` to count the walk distance and it causes overflows 855 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 856 // The width of walkCounter also needs to be changed. 857 // empty condition: 858 // When the last instruction in ROB commits and causes a flush, a redirect 859 // will be raised later. In such circumstances, the redirect robIdx is before 860 // the deqPtrVec_next(0) and will cause underflow. 861 walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U, 862 redirectWalkDistance +& !io.redirect.bits.flushItself()) 863 }.elsewhen (state === s_walk) { 864 walkCounter := walkCounter - thisCycleWalkCount 865 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 866 } 867 868 869 /** 870 * States 871 * We put all the stage bits changes here. 872 873 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 874 * All states: (1) valid; (2) writebacked; (3) flagBkup 875 */ 876 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 877 878 // redirect logic writes 6 valid 879 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 880 val redirectTail = Reg(new RobPtr) 881 val redirectIdle :: redirectBusy :: Nil = Enum(2) 882 val redirectState = RegInit(redirectIdle) 883 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 884 when(redirectState === redirectBusy) { 885 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 886 redirectHeadVec zip invMask foreach { 887 case (redirectHead, inv) => when(inv) { 888 valid(redirectHead.value) := false.B 889 } 890 } 891 when(!invMask.last) { 892 redirectState := redirectIdle 893 } 894 } 895 when(io.redirect.valid) { 896 redirectState := redirectBusy 897 when(redirectState === redirectIdle) { 898 redirectTail := enqPtr 899 } 900 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 901 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 902 } 903 } 904 // enqueue logic writes 6 valid 905 for (i <- 0 until RenameWidth) { 906 when (canEnqueue(i) && !io.redirect.valid) { 907 valid(allocatePtrVec(i).value) := true.B 908 } 909 } 910 // dequeue logic writes 6 valid 911 for (i <- 0 until CommitWidth) { 912 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 913 when (commitValid) { 914 valid(commitReadAddr(i)) := false.B 915 } 916 } 917 918 // debug_inst update 919 for(i <- 0 until (exuParameters.LduCnt + exuParameters.StuCnt)) { 920 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 921 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 922 } 923 for (i <- 0 until exuParameters.LduCnt) { 924 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 925 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 926 } 927 928 // status field: writebacked 929 // enqueue logic set 6 writebacked to false 930 for (i <- 0 until RenameWidth) { 931 when (canEnqueue(i)) { 932 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR 933 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 934 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 935 writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit 936 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 937 store_data_writebacked(allocatePtrVec(i).value) := !isStu 938 } 939 } 940 when (exceptionGen.io.out.valid) { 941 val wbIdx = exceptionGen.io.out.bits.robIdx.value 942 writebacked(wbIdx) := true.B 943 store_data_writebacked(wbIdx) := true.B 944 } 945 // writeback logic set numWbPorts writebacked to true 946 for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) { 947 when (wb.valid) { 948 val wbIdx = wb.bits.uop.robIdx.value 949 val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR 950 val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend 951 val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 952 val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 953 val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 954 writebacked(wbIdx) := !block_wb 955 } 956 } 957 // store data writeback logic mark store as data_writebacked 958 for (wb <- stdWriteback) { 959 when(RegNext(wb.valid)) { 960 store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B 961 } 962 } 963 964 // flagBkup 965 // enqueue logic set 6 flagBkup at most 966 for (i <- 0 until RenameWidth) { 967 when (canEnqueue(i)) { 968 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 969 } 970 } 971 972 // interrupt_safe 973 for (i <- 0 until RenameWidth) { 974 // We RegNext the updates for better timing. 975 // Note that instructions won't change the system's states in this cycle. 976 when (RegNext(canEnqueue(i))) { 977 // For now, we allow non-load-store instructions to trigger interrupts 978 // For MMIO instructions, they should not trigger interrupts since they may 979 // be sent to lower level before it writes back. 980 // However, we cannot determine whether a load/store instruction is MMIO. 981 // Thus, we don't allow load/store instructions to trigger an interrupt. 982 // TODO: support non-MMIO load-store instructions to trigger interrupts 983 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType) 984 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 985 } 986 } 987 988 /** 989 * read and write of data modules 990 */ 991 val commitReadAddr_next = Mux(state_next === s_idle, 992 VecInit(deqPtrVec_next.map(_.value)), 993 VecInit(walkPtrVec_next.map(_.value)) 994 ) 995 // NOTE: dispatch info will record the uop of inst 996 dispatchData.io.wen := canEnqueue 997 dispatchData.io.waddr := allocatePtrVec.map(_.value) 998 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 999 wdata.ldest := req.ctrl.ldest 1000 wdata.rfWen := req.ctrl.rfWen 1001 wdata.fpWen := req.ctrl.fpWen 1002 wdata.wflags := req.ctrl.fpu.wflags 1003 wdata.commitType := req.ctrl.commitType 1004 wdata.pdest := req.pdest 1005 wdata.old_pdest := req.old_pdest 1006 wdata.ftqIdx := req.cf.ftqPtr 1007 wdata.ftqOffset := req.cf.ftqOffset 1008 wdata.isMove := req.eliminatedMove 1009 wdata.pc := req.cf.pc 1010 } 1011 dispatchData.io.raddr := commitReadAddr_next 1012 1013 exceptionGen.io.redirect <> io.redirect 1014 exceptionGen.io.flush := io.flushOut.valid 1015 for (i <- 0 until RenameWidth) { 1016 exceptionGen.io.enq(i).valid := canEnqueue(i) 1017 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1018 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec) 1019 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 1020 exceptionGen.io.enq(i).bits.replayInst := false.B 1021 XSError(canEnqueue(i) && io.enq.req(i).bits.ctrl.replayInst, "enq should not set replayInst") 1022 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 1023 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 1024 exceptionGen.io.enq(i).bits.trigger.clear() 1025 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit 1026 } 1027 1028 println(s"ExceptionGen:") 1029 val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted) 1030 require(exceptionCases.length == exceptionGen.io.wb.length) 1031 for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) { 1032 exc_wb.valid := wb.valid 1033 exc_wb.bits.robIdx := wb.bits.uop.robIdx 1034 exc_wb.bits.exceptionVec := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs) 1035 exc_wb.bits.flushPipe := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 1036 exc_wb.bits.replayInst := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 1037 exc_wb.bits.singleStep := false.B 1038 exc_wb.bits.crossPageIPFFix := false.B 1039 // TODO: make trigger configurable 1040 exc_wb.bits.trigger.clear() 1041 exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit 1042 println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1043 s"flushPipe ${configs.exists(_.flushPipe)}, " + 1044 s"replayInst ${configs.exists(_.replayInst)}") 1045 } 1046 1047 val fflags_wb = fflagsPorts.map(_._2) 1048 val fflagsDataModule = Module(new SyncDataModuleTemplate( 1049 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 1050 ) 1051 for(i <- fflags_wb.indices){ 1052 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 1053 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 1054 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 1055 } 1056 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 1057 fflagsDataRead := fflagsDataModule.io.rdata 1058 1059 val instrCntReg = RegInit(0.U(64.W)) 1060 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1061 val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt 1062 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1063 val instrCnt = instrCntReg + retireCounter 1064 instrCntReg := instrCnt 1065 io.csr.perfinfo.retiredInstr := retireCounter 1066 io.robFull := !allowEnqueue 1067 io.headNotReady := commit_v.head && !commit_w.head 1068 1069 /** 1070 * debug info 1071 */ 1072 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1073 XSDebug("") 1074 for(i <- 0 until RobSize){ 1075 XSDebug(false, !valid(i), "-") 1076 XSDebug(false, valid(i) && writebacked(i), "w") 1077 XSDebug(false, valid(i) && !writebacked(i), "v") 1078 } 1079 XSDebug(false, true.B, "\n") 1080 1081 for(i <- 0 until RobSize) { 1082 if(i % 4 == 0) XSDebug("") 1083 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 1084 XSDebug(false, !valid(i), "- ") 1085 XSDebug(false, valid(i) && writebacked(i), "w ") 1086 XSDebug(false, valid(i) && !writebacked(i), "v ") 1087 if(i % 4 == 3) XSDebug(false, true.B, "\n") 1088 } 1089 1090 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1091 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1092 1093 val commitDebugExu = deqPtrVec.map(_.value).map(debug_exuDebug(_)) 1094 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1095 val commitDebugLsInfo = deqPtrVec.map(_.value).map(debug_lsInfo(_)) 1096 XSPerfAccumulate("clock_cycle", 1.U) 1097 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 1098 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1099 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1100 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 1101 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1102 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1103 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1104 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1105 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1106 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1107 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1108 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1109 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1110 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1111 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 1112 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1113 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1114 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1115 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 1116 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1117 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1118 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1119 XSPerfAccumulate("walkCycle", state === s_walk) 1120 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 1121 val deqUopCommitType = io.commits.info(0).commitType 1122 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1123 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1124 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1125 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1126 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1127 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1128 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1129 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1130 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1131 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1132 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1133 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1134 val accessLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1135 val tlbLatency = commitDebugUop.map(uop => uop.debugInfo.tlbRespTime - uop.debugInfo.tlbFirstReqTime) 1136 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1137 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1138 } 1139 for (fuType <- FuType.functionNameMap.keys) { 1140 val fuName = FuType.functionNameMap(fuType) 1141 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 1142 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1143 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1144 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1145 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1146 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1147 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1148 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1149 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1150 if (fuType == FuType.fmac.litValue) { 1151 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 1152 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 1153 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 1154 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 1155 } 1156 } 1157 1158 val sourceVaddr = Wire(Valid(UInt(VAddrBits.W))) 1159 sourceVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1160 sourceVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1161 val sourcePaddr = Wire(Valid(UInt(PAddrBits.W))) 1162 sourcePaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1163 sourcePaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1164 val sourceLqIdx = Wire(Valid(new LqPtr)) 1165 sourceLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1166 sourceLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1167 val sourceHeadLsIssue = WireDefault(debug_lsIssue(deqPtr.value)) 1168 ExcitingUtils.addSource(sourceVaddr, s"rob_head_vaddr_${coreParams.HartId}", ExcitingUtils.Perf, true) 1169 ExcitingUtils.addSource(sourcePaddr, s"rob_head_paddr_${coreParams.HartId}", ExcitingUtils.Perf, true) 1170 ExcitingUtils.addSource(sourceLqIdx, s"rob_head_lqIdx_${coreParams.HartId}", ExcitingUtils.Perf, true) 1171 ExcitingUtils.addSource(sourceHeadLsIssue, s"rob_head_ls_issue_${coreParams.HartId}", ExcitingUtils.Perf, true) 1172 // dummy sink 1173 ExcitingUtils.addSink(WireDefault(sourceLqIdx), s"rob_head_lqIdx_${coreParams.HartId}", ExcitingUtils.Perf) 1174 1175 /** 1176 * DataBase info: 1177 * log trigger is at writeback valid 1178 * */ 1179 if(!env.FPGAPlatform){ 1180 val isWriteInstInfoTable = WireInit(Constantin.createRecord("isWriteInstInfoTable" + p(XSCoreParamsKey).HartId.toString)) 1181 val instTableName = "InstTable" + p(XSCoreParamsKey).HartId.toString 1182 val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString 1183 val debug_instTable = ChiselDB.createTable(instTableName, new InstInfoEntry) 1184 // FIXME lyq: only get inst (alu, bj, ls) in exuWriteback 1185 for (wb <- exuWriteback) { 1186 when(wb.valid) { 1187 val debug_instData = Wire(new InstInfoEntry) 1188 val idx = wb.bits.uop.robIdx.value 1189 debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID 1190 debug_instData.robIdx := idx 1191 debug_instData.instType := wb.bits.uop.ctrl.fuType 1192 debug_instData.ivaddr := wb.bits.uop.cf.pc 1193 debug_instData.dvaddr := wb.bits.debug.vaddr 1194 debug_instData.dpaddr := wb.bits.debug.paddr 1195 debug_instData.tlbLatency := wb.bits.uop.debugInfo.tlbRespTime - wb.bits.uop.debugInfo.tlbFirstReqTime 1196 debug_instData.accessLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime 1197 debug_instData.executeLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime 1198 debug_instData.issueLatency := wb.bits.uop.debugInfo.issueTime - wb.bits.uop.debugInfo.selectTime 1199 debug_instData.exceptType := Cat(wb.bits.uop.cf.exceptionVec) 1200 debug_instData.lsInfo := debug_lsInfo(idx) 1201 debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid 1202 debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit 1203 debug_instData.issueTime := wb.bits.uop.debugInfo.issueTime 1204 debug_instData.writebackTime := wb.bits.uop.debugInfo.writebackTime 1205 debug_instTable.log( 1206 data = debug_instData, 1207 en = wb.valid, 1208 site = instSiteName, 1209 clock = clock, 1210 reset = reset 1211 ) 1212 } 1213 } 1214 } 1215 1216 1217 //difftest signals 1218 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1219 1220 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1221 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1222 1223 for(i <- 0 until CommitWidth) { 1224 val idx = deqPtrVec(i).value 1225 wdata(i) := debug_exuData(idx) 1226 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 1227 } 1228 1229 if (env.EnableDifftest) { 1230 for (i <- 0 until CommitWidth) { 1231 val difftest = Module(new DifftestInstrCommit) 1232 // assgin default value 1233 difftest.io := DontCare 1234 1235 difftest.io.clock := clock 1236 difftest.io.coreid := io.hartId 1237 difftest.io.index := i.U 1238 1239 val ptr = deqPtrVec(i).value 1240 val uop = commitDebugUop(i) 1241 val exuOut = debug_exuDebug(ptr) 1242 val exuData = debug_exuData(ptr) 1243 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1244 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN)))) 1245 difftest.io.instr := RegNext(RegNext(RegNext(uop.cf.instr))) 1246 difftest.io.robIdx := RegNext(RegNext(RegNext(ZeroExt(ptr, 10)))) 1247 difftest.io.lqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7)))) 1248 difftest.io.sqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7)))) 1249 difftest.io.isLoad := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD))) 1250 difftest.io.isStore := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE))) 1251 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 1252 // when committing an eliminated move instruction, 1253 // we must make sure that skip is properly set to false (output from EXU is random value) 1254 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1255 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.cf.pd.isRVC))) 1256 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 1257 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen))) 1258 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1259 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1260 1261 // // runahead commit hint 1262 // val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1263 // runahead_commit.io.clock := clock 1264 // runahead_commit.io.coreid := io.hartId 1265 // runahead_commit.io.index := i.U 1266 // runahead_commit.io.valid := difftest.io.valid && 1267 // (commitBranchValid(i) || commitIsStore(i)) 1268 // // TODO: is branch or store 1269 // runahead_commit.io.pc := difftest.io.pc 1270 } 1271 } 1272 else if (env.AlwaysBasicDiff) { 1273 // These are the structures used by difftest only and should be optimized after synthesis. 1274 val dt_eliminatedMove = Mem(RobSize, Bool()) 1275 val dt_isRVC = Mem(RobSize, Bool()) 1276 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1277 for (i <- 0 until RenameWidth) { 1278 when (canEnqueue(i)) { 1279 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1280 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC 1281 } 1282 } 1283 for (wb <- exuWriteback) { 1284 when (wb.valid) { 1285 val wbIdx = wb.bits.uop.robIdx.value 1286 dt_exuDebug(wbIdx) := wb.bits.debug 1287 } 1288 } 1289 // Always instantiate basic difftest modules. 1290 for (i <- 0 until CommitWidth) { 1291 val commitInfo = io.commits.info(i) 1292 val ptr = deqPtrVec(i).value 1293 val exuOut = dt_exuDebug(ptr) 1294 val eliminatedMove = dt_eliminatedMove(ptr) 1295 val isRVC = dt_isRVC(ptr) 1296 1297 val difftest = Module(new DifftestBasicInstrCommit) 1298 difftest.io.clock := clock 1299 difftest.io.coreid := io.hartId 1300 difftest.io.index := i.U 1301 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1302 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1303 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1304 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1305 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1306 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen))) 1307 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1308 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1309 } 1310 } 1311 1312 if (env.EnableDifftest) { 1313 for (i <- 0 until CommitWidth) { 1314 val difftest = Module(new DifftestLoadEvent) 1315 difftest.io.clock := clock 1316 difftest.io.coreid := io.hartId 1317 difftest.io.index := i.U 1318 1319 val ptr = deqPtrVec(i).value 1320 val uop = commitDebugUop(i) 1321 val exuOut = debug_exuDebug(ptr) 1322 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1323 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1324 difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType))) 1325 difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType))) 1326 } 1327 } 1328 1329 // Always instantiate basic difftest modules. 1330 if (env.EnableDifftest) { 1331 val dt_isXSTrap = Mem(RobSize, Bool()) 1332 for (i <- 0 until RenameWidth) { 1333 when (canEnqueue(i)) { 1334 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1335 } 1336 } 1337 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1338 val hitTrap = trapVec.reduce(_||_) 1339 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1340 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1341 val difftest = Module(new DifftestTrapEvent) 1342 difftest.io.clock := clock 1343 difftest.io.coreid := io.hartId 1344 difftest.io.valid := hitTrap 1345 difftest.io.code := trapCode 1346 difftest.io.pc := trapPC 1347 difftest.io.cycleCnt := timer 1348 difftest.io.instrCnt := instrCnt 1349 difftest.io.hasWFI := hasWFI 1350 } 1351 else if (env.AlwaysBasicDiff) { 1352 val dt_isXSTrap = Mem(RobSize, Bool()) 1353 for (i <- 0 until RenameWidth) { 1354 when (canEnqueue(i)) { 1355 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1356 } 1357 } 1358 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1359 val hitTrap = trapVec.reduce(_||_) 1360 val difftest = Module(new DifftestBasicTrapEvent) 1361 difftest.io.clock := clock 1362 difftest.io.coreid := io.hartId 1363 difftest.io.valid := hitTrap 1364 difftest.io.cycleCnt := timer 1365 difftest.io.instrCnt := instrCnt 1366 } 1367 1368 val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64)))) 1369 val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b)) 1370 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1371 val commitLoadVec = VecInit(commitLoadValid) 1372 val commitBranchVec = VecInit(commitBranchValid) 1373 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1374 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1375 val perfEvents = Seq( 1376 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1377 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1378 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1379 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1380 ("rob_commitUop ", ifCommit(commitCnt) ), 1381 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1382 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1383 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1384 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1385 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1386 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1387 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1388 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1389 ("rob_walkCycle ", (state === s_walk) ), 1390 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1391 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1392 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1393 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1394 ) 1395 generatePerfEvent() 1396} 1397