1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3.ExcitingUtils._ 21import chisel3._ 22import chisel3.util._ 23import xiangshan._ 24import utils._ 25import xiangshan.frontend.FtqPtr 26import difftest._ 27 28class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 29 p => p(XSCoreParamsKey).RobSize 30) with HasCircularQueuePtrHelper { 31 32 def needFlush(redirect: Valid[Redirect]): Bool = { 33 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 34 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 35 } 36 37 override def cloneType = (new RobPtr).asInstanceOf[this.type] 38} 39 40object RobPtr { 41 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 42 val ptr = Wire(new RobPtr) 43 ptr.flag := f 44 ptr.value := v 45 ptr 46 } 47} 48 49class RobCSRIO(implicit p: Parameters) extends XSBundle { 50 val intrBitSet = Input(Bool()) 51 val trapTarget = Input(UInt(VAddrBits.W)) 52 val isXRet = Input(Bool()) 53 54 val fflags = Output(Valid(UInt(5.W))) 55 val dirty_fs = Output(Bool()) 56 val perfinfo = new Bundle { 57 val retiredInstr = Output(UInt(3.W)) 58 } 59} 60 61class RobLsqIO(implicit p: Parameters) extends XSBundle { 62 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 63 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 64 val pendingld = Output(Bool()) 65 val pendingst = Output(Bool()) 66 val commit = Output(Bool()) 67 val storeDataRobWb = Input(Vec(StorePipelineWidth, Valid(new RobPtr))) 68} 69 70class RobEnqIO(implicit p: Parameters) extends XSBundle { 71 val canAccept = Output(Bool()) 72 val isEmpty = Output(Bool()) 73 // valid vector, for robIdx gen and walk 74 val needAlloc = Vec(RenameWidth, Input(Bool())) 75 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 76 val resp = Vec(RenameWidth, Output(new RobPtr)) 77} 78 79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 80 81class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 82 val io = IO(new Bundle { 83 // for commits/flush 84 val state = Input(UInt(2.W)) 85 val deq_v = Vec(CommitWidth, Input(Bool())) 86 val deq_w = Vec(CommitWidth, Input(Bool())) 87 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 88 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 89 val intrBitSetReg = Input(Bool()) 90 val hasNoSpecExec = Input(Bool()) 91 val commitType = Input(CommitType()) 92 val misPredBlock = Input(Bool()) 93 val isReplaying = Input(Bool()) 94 // output: the CommitWidth deqPtr 95 val out = Vec(CommitWidth, Output(new RobPtr)) 96 val next_out = Vec(CommitWidth, Output(new RobPtr)) 97 }) 98 99 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 100 101 // for exceptions (flushPipe included) and interrupts: 102 // only consider the first instruction 103 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && !CommitType.isLoadStore(io.commitType) 104 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && !io.exception_state.bits.flushPipe && io.exception_state.bits.robIdx === deqPtrVec(0) 105 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 106 107 // for normal commits: only to consider when there're no exceptions 108 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 109 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 110 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying)) 111 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 112 // when io.intrBitSetReg or there're possible exceptions in these instructions, 113 // only one instruction is allowed to commit 114 val allowOnlyOne = commit_exception || io.intrBitSetReg 115 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 116 117 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 118 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec) 119 120 deqPtrVec := deqPtrVec_next 121 122 io.next_out := deqPtrVec_next 123 io.out := deqPtrVec 124 125 when (io.state === 0.U) { 126 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 127 } 128 129} 130 131class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 132 val io = IO(new Bundle { 133 // for input redirect 134 val redirect = Input(Valid(new Redirect)) 135 // for enqueue 136 val allowEnqueue = Input(Bool()) 137 val hasBlockBackward = Input(Bool()) 138 val enq = Vec(RenameWidth, Input(Bool())) 139 val out = Output(new RobPtr) 140 }) 141 142 val enqPtr = RegInit(0.U.asTypeOf(new RobPtr)) 143 144 // enqueue 145 val canAccept = io.allowEnqueue && !io.hasBlockBackward 146 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 147 148 when (io.redirect.valid) { 149 enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U) 150 }.otherwise { 151 enqPtr := enqPtr + dispatchNum 152 } 153 154 io.out := enqPtr 155 156} 157 158class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 159 // val valid = Bool() 160 val robIdx = new RobPtr 161 val exceptionVec = ExceptionVec() 162 val flushPipe = Bool() 163 val replayInst = Bool() // redirect to that inst itself 164 val singleStep = Bool() 165 val crossPageIPFFix = Bool() 166 167 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst 168 // only exceptions are allowed to writeback when enqueue 169 def can_writeback = exceptionVec.asUInt.orR || singleStep 170} 171 172class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 173 val io = IO(new Bundle { 174 val redirect = Input(Valid(new Redirect)) 175 val flush = Input(Bool()) 176 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 177 val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo))) 178 val out = ValidIO(new RobExceptionInfo) 179 val state = ValidIO(new RobExceptionInfo) 180 }) 181 182 val current = Reg(Valid(new RobExceptionInfo)) 183 184 // orR the exceptionVec 185 val lastCycleFlush = RegNext(io.flush) 186 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 187 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 188 189 // s0: compare wb(1),wb(2) and wb(3),wb(4) 190 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 191 val csr_wb_bits = io.wb(0).bits 192 val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits) 193 val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits) 194 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4)))) 195 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 196 197 // s1: compare last four and current flush 198 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 199 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 200 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 201 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 202 val s1_out_bits = RegNext(compare_bits) 203 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 204 205 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 206 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 207 208 // s2: compare the input exception with the current one 209 // priorities: 210 // (1) system reset 211 // (2) current is valid: flush, remain, merge, update 212 // (3) current is not valid: s1 or enq 213 val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush 214 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 215 when (reset.asBool) { 216 current.valid := false.B 217 }.elsewhen (current.valid) { 218 when (current_flush) { 219 current.valid := Mux(s1_flush, false.B, s1_out_valid) 220 } 221 when (s1_out_valid && !s1_flush) { 222 when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) { 223 current.bits := s1_out_bits 224 }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) { 225 current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 226 current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe 227 current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst 228 current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep 229 } 230 } 231 }.elsewhen (s1_out_valid && !s1_flush) { 232 current.valid := true.B 233 current.bits := s1_out_bits 234 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 235 current.valid := true.B 236 current.bits := enq_bits 237 } 238 239 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 240 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 241 io.state := current 242 243} 244 245class RobFlushInfo(implicit p: Parameters) extends XSBundle { 246 val ftqIdx = new FtqPtr 247 val robIdx = new RobPtr 248 val ftqOffset = UInt(log2Up(PredictWidth).W) 249 val replayInst = Bool() 250} 251 252class Rob(numWbPorts: Int)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 253 val io = IO(new Bundle() { 254 val redirect = Input(Valid(new Redirect)) 255 val enq = new RobEnqIO 256 val flushOut = ValidIO(new Redirect) 257 val exception = ValidIO(new ExceptionInfo) 258 // exu + brq 259 val exeWbResults = Vec(numWbPorts, Flipped(ValidIO(new ExuOutput))) 260 val commits = new RobCommitIO 261 val lsq = new RobLsqIO 262 val bcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 263 val robDeqPtr = Output(new RobPtr) 264 val csr = new RobCSRIO 265 val robFull = Output(Bool()) 266 }) 267 268 println("Rob: size:" + RobSize + " wbports:" + numWbPorts + " commitwidth:" + CommitWidth) 269 270 // instvalid field 271 // val valid = RegInit(VecInit(List.fill(RobSize)(false.B))) 272 val valid = Mem(RobSize, Bool()) 273 // writeback status 274 // val writebacked = Reg(Vec(RobSize, Bool())) 275 val writebacked = Mem(RobSize, Bool()) 276 val store_data_writebacked = Mem(RobSize, Bool()) 277 // data for redirect, exception, etc. 278 // val flagBkup = RegInit(VecInit(List.fill(RobSize)(false.B))) 279 val flagBkup = Mem(RobSize, Bool()) 280 // record move elimination info for each instruction 281 val eliminatedMove = Mem(RobSize, Bool()) 282 283 // data for debug 284 // Warn: debug_* prefix should not exist in generated verilog. 285 val debug_microOp = Mem(RobSize, new MicroOp) 286 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 287 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 288 289 // pointers 290 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 291 val enqPtr = Wire(new RobPtr) 292 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 293 294 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 295 val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W)) 296 val allowEnqueue = RegInit(true.B) 297 298 val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i)))) 299 val deqPtr = deqPtrVec(0) 300 val walkPtr = walkPtrVec(0) 301 302 val isEmpty = enqPtr === deqPtr 303 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 304 305 /** 306 * states of Rob 307 */ 308 val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3) 309 val state = RegInit(s_idle) 310 311 /** 312 * Data Modules 313 * 314 * CommitDataModule: data from dispatch 315 * (1) read: commits/walk/exception 316 * (2) write: enqueue 317 * 318 * WritebackData: data from writeback 319 * (1) read: commits/walk/exception 320 * (2) write: write back from exe units 321 */ 322 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 323 val dispatchDataRead = dispatchData.io.rdata 324 325 val exceptionGen = Module(new ExceptionGen) 326 val exceptionDataRead = exceptionGen.io.state 327 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 328 329 io.robDeqPtr := deqPtr 330 331 /** 332 * Enqueue (from dispatch) 333 */ 334 // special cases 335 val hasBlockBackward = RegInit(false.B) 336 val hasNoSpecExec = RegInit(false.B) 337 val doingSvinval = RegInit(false.B) 338 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 339 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 340 when (isEmpty) { hasBlockBackward:= false.B } 341 // When any instruction commits, hasNoSpecExec should be set to false.B 342 when (io.commits.valid.asUInt.orR && state =/= s_extrawalk) { hasNoSpecExec:= false.B } 343 344 io.enq.canAccept := allowEnqueue && !hasBlockBackward 345 io.enq.resp := enqPtrVec 346 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 347 val timer = GTimer() 348 for (i <- 0 until RenameWidth) { 349 // we don't check whether io.redirect is valid here since redirect has higher priority 350 when (canEnqueue(i)) { 351 // store uop in data module and debug_microOp Vec 352 debug_microOp(enqPtrVec(i).value) := io.enq.req(i).bits 353 debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer 354 debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer 355 debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer 356 debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer 357 debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer 358 when (io.enq.req(i).bits.ctrl.blockBackward) { 359 hasBlockBackward := true.B 360 } 361 when (io.enq.req(i).bits.ctrl.noSpecExec) { 362 hasNoSpecExec := true.B 363 } 364 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 365 when(!Cat(io.enq.req(i).bits.cf.exceptionVec).orR && FuType.isSvinvalBegin(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe)) 366 { 367 doingSvinval := true.B 368 } 369 // the end instruction of Svinval enqs so clear doingSvinval 370 when(!Cat(io.enq.req(i).bits.cf.exceptionVec).orR && FuType.isSvinvalEnd(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe)) 371 { 372 doingSvinval := false.B 373 } 374 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 375 assert( !doingSvinval || (FuType.isSvinval(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe) || FuType.isSvinvalEnd(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe))) 376 } 377 } 378 val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U) 379 io.enq.isEmpty := RegNext(isEmpty && dispatchNum === 0.U) 380 381 // debug info for enqueue (dispatch) 382 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 383 XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n") 384 385 386 /** 387 * Writeback (from execution units) 388 */ 389 for (i <- 0 until numWbPorts) { 390 when (io.exeWbResults(i).valid) { 391 val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value 392 debug_microOp(wbIdx).cf.exceptionVec := io.exeWbResults(i).bits.uop.cf.exceptionVec 393 debug_microOp(wbIdx).ctrl.flushPipe := io.exeWbResults(i).bits.uop.ctrl.flushPipe 394 debug_microOp(wbIdx).ctrl.replayInst := io.exeWbResults(i).bits.uop.ctrl.replayInst 395 debug_microOp(wbIdx).diffTestDebugLrScValid := io.exeWbResults(i).bits.uop.diffTestDebugLrScValid 396 debug_exuData(wbIdx) := io.exeWbResults(i).bits.data 397 debug_exuDebug(wbIdx) := io.exeWbResults(i).bits.debug 398 debug_microOp(wbIdx).debugInfo.enqRsTime := io.exeWbResults(i).bits.uop.debugInfo.enqRsTime 399 debug_microOp(wbIdx).debugInfo.selectTime := io.exeWbResults(i).bits.uop.debugInfo.selectTime 400 debug_microOp(wbIdx).debugInfo.issueTime := io.exeWbResults(i).bits.uop.debugInfo.issueTime 401 debug_microOp(wbIdx).debugInfo.writebackTime := io.exeWbResults(i).bits.uop.debugInfo.writebackTime 402 403 val debug_Uop = debug_microOp(wbIdx) 404 XSInfo(true.B, 405 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 406 p"data 0x${Hexadecimal(io.exeWbResults(i).bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 407 p"skip ${io.exeWbResults(i).bits.debug.isMMIO} robIdx: ${io.exeWbResults(i).bits.uop.robIdx}\n" 408 ) 409 } 410 } 411 val writebackNum = PopCount(io.exeWbResults.map(_.valid)) 412 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 413 414 415 /** 416 * RedirectOut: Interrupt and Exceptions 417 */ 418 val deqDispatchData = dispatchDataRead(0) 419 val debug_deqUop = debug_microOp(deqPtr.value) 420 421 // For MMIO instructions, they should not trigger interrupts since they may be sent to lower level before it writes back. 422 // However, we cannot determine whether a load/store instruction is MMIO. 423 // Thus, we don't allow load/store instructions to trigger an interrupt. 424 val intrBitSetReg = RegNext(io.csr.intrBitSet) 425 val intrEnable = intrBitSetReg && !hasNoSpecExec && !CommitType.isLoadStore(deqDispatchData.commitType) 426 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 427 val deqHasException = deqHasExceptionOrFlush && exceptionDataRead.bits.exceptionVec.asUInt.orR 428 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 429 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 430 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 431 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 432 433 // io.flushOut will trigger redirect at the next cycle. 434 // Block any redirect or commit at the next cycle. 435 val lastCycleFlush = RegNext(io.flushOut.valid) 436 437 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 438 io.flushOut.bits := DontCare 439 io.flushOut.bits.robIdx := deqPtr 440 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 441 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 442 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) 443 io.flushOut.bits.interrupt := true.B 444 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 445 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 446 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 447 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 448 449 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 450 io.exception.valid := RegNext(exceptionHappen) 451 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 452 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 453 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 454 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 455 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 456 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 457 458 XSDebug(io.flushOut.valid, 459 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 460 p"excp $exceptionEnable flushPipe $isFlushPipe " + 461 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 462 463 464 /** 465 * Commits (and walk) 466 * They share the same width. 467 */ 468 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 469 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 470 val walkFinished = walkCounter <= CommitWidth.U 471 472 // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap 473 require(RenameWidth <= CommitWidth) 474 val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData)) 475 val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool())) 476 when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) { 477 usedSpaceForMPR := io.enq.needAlloc 478 extraSpaceForMPR := dispatchData.io.wdata 479 XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt) 480 } 481 482 // wiring to csr 483 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 484 val v = io.commits.valid(i) 485 val info = io.commits.info(i) 486 (v & info.wflags, v & info.fpWen) 487 }).unzip 488 val fflags = Wire(Valid(UInt(5.W))) 489 fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR()) 490 fflags.bits := wflags.zip(fflagsDataRead).map({ 491 case (w, f) => Mux(w, f, 0.U) 492 }).reduce(_|_) 493 val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR()) 494 495 // when mispredict branches writeback, stop commit in the next 2 cycles 496 // TODO: don't check all exu write back 497 val misPredWb = Cat(VecInit((0 until numWbPorts).map(i => 498 io.exeWbResults(i).bits.redirect.cfiUpdate.isMisPred && io.exeWbResults(i).bits.redirectValid 499 ))).orR() 500 val misPredBlockCounter = Reg(UInt(3.W)) 501 misPredBlockCounter := Mux(misPredWb, 502 "b111".U, 503 misPredBlockCounter >> 1.U 504 ) 505 val misPredBlock = misPredBlockCounter(0) 506 507 io.commits.isWalk := state =/= s_idle 508 val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value)))) 509 // store will be commited iff both sta & std have been writebacked 510 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 511 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 512 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 513 val allowOnlyOneCommit = commit_exception || intrBitSetReg 514 // for instructions that may block others, we don't allow them to commit 515 for (i <- 0 until CommitWidth) { 516 // defaults: state === s_idle and instructions commit 517 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 518 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 519 io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush 520 io.commits.info(i) := dispatchDataRead(i) 521 522 when (state === s_walk) { 523 io.commits.valid(i) := commit_v(i) && shouldWalkVec(i) 524 }.elsewhen(state === s_extrawalk) { 525 io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B) 526 io.commits.info(i) := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare) 527 } 528 529 XSInfo(state === s_idle && io.commits.valid(i), 530 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 531 debug_microOp(deqPtrVec(i).value).cf.pc, 532 io.commits.info(i).rfWen, 533 io.commits.info(i).ldest, 534 io.commits.info(i).pdest, 535 io.commits.info(i).old_pdest, 536 debug_exuData(deqPtrVec(i).value), 537 fflagsDataRead(i) 538 ) 539 XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n", 540 debug_microOp(walkPtrVec(i).value).cf.pc, 541 io.commits.info(i).rfWen, 542 io.commits.info(i).ldest, 543 debug_exuData(walkPtrVec(i).value) 544 ) 545 XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n", 546 io.commits.info(i).rfWen, 547 io.commits.info(i).ldest 548 ) 549 } 550 if (!env.FPGAPlatform) { 551 io.commits.info.map(info => dontTouch(info.pc)) 552 } 553 554 // sync fflags/dirty_fs to csr 555 io.csr.fflags := fflags 556 io.csr.dirty_fs := dirty_fs 557 558 // commit branch to brq 559 val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)}) 560 io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec)) 561 562 // commit load/store to lsq 563 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 564 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE)) 565 io.lsq.lcommit := Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec)) 566 io.lsq.scommit := Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec)) 567 io.lsq.pendingld := !io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) 568 io.lsq.pendingst := !io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value) 569 io.lsq.commit := !io.commits.isWalk && io.commits.valid(0) 570 571 /** 572 * state changes 573 * (1) exceptions: when exception occurs, cancels all and switch to s_idle 574 * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1) 575 * (3) walk: when walking comes to the end, switch to s_walk 576 * (4) s_extrawalk to s_walk 577 */ 578 val state_next = Mux(io.redirect.valid, 579 Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk), 580 Mux(state === s_walk && walkFinished, 581 s_idle, 582 Mux(state === s_extrawalk, s_walk, state) 583 ) 584 ) 585 state := state_next 586 587 /** 588 * pointers and counters 589 */ 590 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 591 deqPtrGenModule.io.state := state 592 deqPtrGenModule.io.deq_v := commit_v 593 deqPtrGenModule.io.deq_w := commit_w 594 deqPtrGenModule.io.exception_state := exceptionDataRead 595 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 596 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 597 deqPtrGenModule.io.commitType := deqDispatchData.commitType 598 599 deqPtrGenModule.io.misPredBlock := misPredBlock 600 deqPtrGenModule.io.isReplaying := isReplaying 601 deqPtrVec := deqPtrGenModule.io.out 602 val deqPtrVec_next = deqPtrGenModule.io.next_out 603 604 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 605 enqPtrGenModule.io.redirect := io.redirect 606 enqPtrGenModule.io.allowEnqueue := allowEnqueue 607 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 608 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 609 enqPtr := enqPtrGenModule.io.out 610 611 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 612 // next walkPtrVec: 613 // (1) redirect occurs: update according to state 614 // (2) walk: move backwards 615 val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk, 616 Mux(state === s_walk, 617 VecInit(walkPtrVec.map(_ - thisCycleWalkCount)), 618 VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U)) 619 ), 620 Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec) 621 ) 622 walkPtrVec := walkPtrVec_next 623 624 val lastCycleRedirect = RegNext(io.redirect.valid) 625 val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter) 626 val commitCnt = PopCount(io.commits.valid) 627 validCounter := Mux(state === s_idle, 628 (validCounter - commitCnt) + dispatchNum, 629 trueValidCounter 630 ) 631 632 allowEnqueue := Mux(state === s_idle, 633 validCounter + dispatchNum <= (RobSize - RenameWidth).U, 634 trueValidCounter <= (RobSize - RenameWidth).U 635 ) 636 637 val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U) 638 val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx) 639 when (io.redirect.valid) { 640 walkCounter := Mux(state === s_walk, 641 // NOTE: +& is used here because: 642 // When rob is full and the head instruction causes an exception, 643 // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is 644 // enqPtr - 1.U and redirectWalkDistance is RobSize - 1. 645 // Since exceptions flush the instruction itself, flushItSelf is true.B. 646 // Previously we use `+` to count the walk distance and it causes overflows 647 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 648 // The width of walkCounter also needs to be changed. 649 redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt, 650 redirectWalkDistance +& io.redirect.bits.flushItself() 651 ) 652 }.elsewhen (state === s_walk) { 653 walkCounter := walkCounter - commitCnt 654 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 655 } 656 657 658 /** 659 * States 660 * We put all the stage bits changes here. 661 662 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 663 * All states: (1) valid; (2) writebacked; (3) flagBkup 664 */ 665 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 666 667 // enqueue logic writes 6 valid 668 for (i <- 0 until RenameWidth) { 669 when (canEnqueue(i) && !io.redirect.valid) { 670 valid(enqPtrVec(i).value) := true.B 671 } 672 } 673 // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time 674 for (i <- 0 until CommitWidth) { 675 when (io.commits.valid(i) && state =/= s_extrawalk) { 676 valid(commitReadAddr(i)) := false.B 677 } 678 } 679 // reset: when exception, reset all valid to false 680 when (reset.asBool) { 681 for (i <- 0 until RobSize) { 682 valid(i) := false.B 683 } 684 } 685 686 // status field: writebacked 687 // enqueue logic set 6 writebacked to false 688 for (i <- 0 until RenameWidth) { 689 when (canEnqueue(i)) { 690 eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 691 writebacked(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove && !io.enq.req(i).bits.cf.exceptionVec.asUInt.orR 692 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 693 store_data_writebacked(enqPtrVec(i).value) := !isStu 694 } 695 } 696 when (exceptionGen.io.out.valid) { 697 val wbIdx = exceptionGen.io.out.bits.robIdx.value 698 writebacked(wbIdx) := true.B 699 store_data_writebacked(wbIdx) := true.B 700 } 701 // writeback logic set numWbPorts writebacked to true 702 for (i <- 0 until numWbPorts) { 703 when (io.exeWbResults(i).valid) { 704 val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value 705 val block_wb = 706 selectAll(io.exeWbResults(i).bits.uop.cf.exceptionVec, false, true).asUInt.orR || 707 io.exeWbResults(i).bits.uop.ctrl.flushPipe || 708 io.exeWbResults(i).bits.uop.ctrl.replayInst 709 writebacked(wbIdx) := !block_wb 710 } 711 } 712 // store data writeback logic mark store as data_writebacked 713 for (i <- 0 until StorePipelineWidth) { 714 when(io.lsq.storeDataRobWb(i).valid) { 715 store_data_writebacked(io.lsq.storeDataRobWb(i).bits.value) := true.B 716 } 717 } 718 719 // flagBkup 720 // enqueue logic set 6 flagBkup at most 721 for (i <- 0 until RenameWidth) { 722 when (canEnqueue(i)) { 723 flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag 724 } 725 } 726 727 728 /** 729 * read and write of data modules 730 */ 731 val commitReadAddr_next = Mux(state_next === s_idle, 732 VecInit(deqPtrVec_next.map(_.value)), 733 VecInit(walkPtrVec_next.map(_.value)) 734 ) 735 dispatchData.io.wen := canEnqueue 736 dispatchData.io.waddr := enqPtrVec.map(_.value) 737 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 738 wdata.ldest := req.ctrl.ldest 739 wdata.rfWen := req.ctrl.rfWen 740 wdata.fpWen := req.ctrl.fpWen 741 wdata.wflags := req.ctrl.fpu.wflags 742 wdata.commitType := req.ctrl.commitType 743 wdata.eliminatedMove := req.eliminatedMove 744 wdata.pdest := req.pdest 745 wdata.old_pdest := req.old_pdest 746 wdata.ftqIdx := req.cf.ftqPtr 747 wdata.ftqOffset := req.cf.ftqOffset 748 wdata.pc := req.cf.pc 749 } 750 dispatchData.io.raddr := commitReadAddr_next 751 752 exceptionGen.io.redirect <> io.redirect 753 exceptionGen.io.flush := io.flushOut.valid 754 for (i <- 0 until RenameWidth) { 755 exceptionGen.io.enq(i).valid := canEnqueue(i) 756 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 757 exceptionGen.io.enq(i).bits.exceptionVec := selectFrontend(io.enq.req(i).bits.cf.exceptionVec, false, true) 758 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 759 exceptionGen.io.enq(i).bits.replayInst := io.enq.req(i).bits.ctrl.replayInst 760 assert(exceptionGen.io.enq(i).bits.replayInst === false.B) 761 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 762 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 763 } 764 765 // TODO: don't hard code these idxes 766 val numIntWbPorts = exuParameters.AluCnt + exuParameters.LduCnt + exuParameters.MduCnt 767 // CSR is after Alu and Load 768 def csr_wb_idx = exuParameters.AluCnt + exuParameters.LduCnt 769 def atomic_wb_idx = exuParameters.AluCnt // first port for load 770 def load_wb_idxes = Seq(exuParameters.AluCnt + 1) // second port for load 771 def store_wb_idxes = io.exeWbResults.indices.takeRight(2) 772 val all_exception_possibilities = Seq(csr_wb_idx, atomic_wb_idx) ++ load_wb_idxes ++ store_wb_idxes 773 all_exception_possibilities.zipWithIndex.map{ case (p, i) => connect_exception(i, p) } 774 def connect_exception(index: Int, wb_index: Int) = { 775 exceptionGen.io.wb(index).valid := io.exeWbResults(wb_index).valid 776 // A temporary fix for float load writeback 777 // TODO: let int/fp load use the same two wb ports 778 if (wb_index == atomic_wb_idx || load_wb_idxes.contains(wb_index)) { 779 when (io.exeWbResults(wb_index - exuParameters.AluCnt + numIntWbPorts + exuParameters.FmacCnt).valid) { 780 exceptionGen.io.wb(index).valid := true.B 781 } 782 } 783 exceptionGen.io.wb(index).bits.robIdx := io.exeWbResults(wb_index).bits.uop.robIdx 784 val selectFunc = if (wb_index == csr_wb_idx) selectCSR _ 785 else if (wb_index == atomic_wb_idx) selectAtomics _ 786 else if (load_wb_idxes.contains(wb_index)) selectLoad _ 787 else { 788 assert(store_wb_idxes.contains(wb_index)) 789 selectStore _ 790 } 791 exceptionGen.io.wb(index).bits.exceptionVec := selectFunc(io.exeWbResults(wb_index).bits.uop.cf.exceptionVec, false, true) 792 exceptionGen.io.wb(index).bits.flushPipe := io.exeWbResults(wb_index).bits.uop.ctrl.flushPipe 793 exceptionGen.io.wb(index).bits.replayInst := io.exeWbResults(wb_index).bits.uop.ctrl.replayInst 794 exceptionGen.io.wb(index).bits.singleStep := false.B 795 exceptionGen.io.wb(index).bits.crossPageIPFFix := false.B 796 } 797 798 // 4 fmac + 2 fmisc + 1 i2f 799 val fmacWb = (0 until exuParameters.FmacCnt).map(_ + numIntWbPorts) 800 val fmiscWb = (0 until exuParameters.FmiscCnt).map(_ + numIntWbPorts + exuParameters.FmacCnt + 2) 801 val i2fWb = Seq(numIntWbPorts - 1) // last port in int 802 val fflags_wb = io.exeWbResults.zipWithIndex.filter(w => { 803 (fmacWb ++ fmiscWb ++ i2fWb).contains(w._2) 804 }).map(_._1) 805 val fflagsDataModule = Module(new SyncDataModuleTemplate( 806 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 807 ) 808 for(i <- fflags_wb.indices){ 809 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 810 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 811 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 812 } 813 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 814 fflagsDataRead := fflagsDataModule.io.rdata 815 816 817 val instrCnt = RegInit(0.U(64.W)) 818 val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) }) 819 val trueCommitCnt = commitCnt +& fuseCommitCnt 820 val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U) 821 instrCnt := instrCnt + retireCounter 822 io.csr.perfinfo.retiredInstr := RegNext(retireCounter) 823 io.robFull := !allowEnqueue 824 825 /** 826 * debug info 827 */ 828 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 829 XSDebug("") 830 for(i <- 0 until RobSize){ 831 XSDebug(false, !valid(i), "-") 832 XSDebug(false, valid(i) && writebacked(i), "w") 833 XSDebug(false, valid(i) && !writebacked(i), "v") 834 } 835 XSDebug(false, true.B, "\n") 836 837 for(i <- 0 until RobSize) { 838 if(i % 4 == 0) XSDebug("") 839 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 840 XSDebug(false, !valid(i), "- ") 841 XSDebug(false, valid(i) && writebacked(i), "w ") 842 XSDebug(false, valid(i) && !writebacked(i), "v ") 843 if(i % 4 == 3) XSDebug(false, true.B, "\n") 844 } 845 846 def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter) 847 848 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 849 XSPerfAccumulate("clock_cycle", 1.U) 850 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 851 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 852 XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt)) 853 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 854 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))) 855 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 856 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e }))) 857 XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt)) 858 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 859 val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t } 860 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 861 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 862 val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t } 863 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 864 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 865 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 866 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 867 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))) 868 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 869 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire()))) 870 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 871 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)) 872 XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk) 873 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 874 val deqUopCommitType = io.commits.info(0).commitType 875 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 876 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 877 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 878 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 879 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 880 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 881 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 882 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 883 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 884 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 885 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 886 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 887 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 888 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 889 } 890 for (fuType <- FuType.functionNameMap.keys) { 891 val fuName = FuType.functionNameMap(fuType) 892 val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 893 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 894 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 895 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 896 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 897 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 898 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 899 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 900 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 901 if (fuType == FuType.fmac.litValue()) { 902 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 903 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 904 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 905 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 906 } 907 } 908 val l1Miss = Wire(Bool()) 909 l1Miss := false.B 910 ExcitingUtils.addSink(l1Miss, "TMA_l1miss") 911 XSPerfAccumulate("TMA_L1miss", deqNotWritebacked && deqUopCommitType === CommitType.LOAD && l1Miss) 912 913 914 //difftest signals 915 val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value 916 917 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 918 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 919 val trapVec = Wire(Vec(CommitWidth, Bool())) 920 for(i <- 0 until CommitWidth) { 921 val idx = deqPtrVec(i).value 922 wdata(i) := debug_exuData(idx) 923 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 924 trapVec(i) := io.commits.valid(i) && (state===s_idle) && commitDebugUop(i).ctrl.isXSTrap 925 } 926 val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter) 927 val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN) 928 val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr) 929 930 val hitTrap = trapVec.reduce(_||_) 931 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 932 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 933 934 if (!env.FPGAPlatform) { 935 for (i <- 0 until CommitWidth) { 936 val difftest = Module(new DifftestInstrCommit) 937 difftest.io.clock := clock 938 difftest.io.coreid := hardId.U 939 difftest.io.index := i.U 940 941 val ptr = deqPtrVec(i).value 942 val uop = commitDebugUop(i) 943 val exuOut = debug_exuDebug(ptr) 944 val exuData = debug_exuData(ptr) 945 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 946 difftest.io.pc := RegNext(SignExt(uop.cf.pc, XLEN)) 947 difftest.io.instr := RegNext(uop.cf.instr) 948 difftest.io.special := RegNext(CommitType.isFused(uop.ctrl.commitType)) 949 // when committing an eliminated move instruction, 950 // we must make sure that skip is properly set to false (output from EXU is random value) 951 difftest.io.skip := RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)) 952 difftest.io.isRVC := RegNext(uop.cf.pd.isRVC) 953 difftest.io.scFailed := RegNext(!uop.diffTestDebugLrScValid && 954 uop.ctrl.fuType === FuType.mou && 955 (uop.ctrl.fuOpType === LSUOpType.sc_d || uop.ctrl.fuOpType === LSUOpType.sc_w)) 956 difftest.io.wen := RegNext(io.commits.valid(i) && uop.ctrl.rfWen && uop.ctrl.ldest =/= 0.U) 957 difftest.io.wdata := RegNext(exuData) 958 difftest.io.wdest := RegNext(uop.ctrl.ldest) 959 960 // XSDebug(p"[difftest-instr-commit]valid:${difftest.io.valid},pc:${difftest.io.pc},instr:${difftest.io.instr},skip:${difftest.io.skip},isRVC:${difftest.io.isRVC},scFailed:${difftest.io.scFailed},wen:${difftest.io.wen},wdata:${difftest.io.wdata},wdest:${difftest.io.wdest}\n") 961 962 // runahead commit hint 963 val runahead_commit = Module(new DifftestRunaheadCommitEvent) 964 runahead_commit.io.clock := clock 965 runahead_commit.io.coreid := hardId.U 966 runahead_commit.io.index := i.U 967 runahead_commit.io.valid := difftest.io.valid && 968 (commitBranchValid(i) || commitIsStore(i)) 969 // TODO: is branch or store 970 runahead_commit.io.pc := difftest.io.pc 971 } 972 } 973 974 if (!env.FPGAPlatform) { 975 for (i <- 0 until CommitWidth) { 976 val difftest = Module(new DifftestLoadEvent) 977 difftest.io.clock := clock 978 difftest.io.coreid := hardId.U 979 difftest.io.index := i.U 980 981 val ptr = deqPtrVec(i).value 982 val uop = commitDebugUop(i) 983 val exuOut = debug_exuDebug(ptr) 984 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 985 difftest.io.paddr := RegNext(exuOut.paddr) 986 difftest.io.opType := RegNext(uop.ctrl.fuOpType) 987 difftest.io.fuType := RegNext(uop.ctrl.fuType) 988 } 989 } 990 991 if (!env.FPGAPlatform) { 992 val difftest = Module(new DifftestTrapEvent) 993 difftest.io.clock := clock 994 difftest.io.coreid := hardId.U 995 difftest.io.valid := hitTrap 996 difftest.io.code := trapCode 997 difftest.io.pc := trapPC 998 difftest.io.cycleCnt := timer 999 difftest.io.instrCnt := instrCnt 1000 } 1001 val perfinfo = IO(new Bundle(){ 1002 val perfEvents = Output(new PerfEventsBundle(18)) 1003 }) 1004 val perfEvents = Seq( 1005 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1006 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1007 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1008 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1009 ("rob_commitUop ", ifCommit(commitCnt) ), 1010 ("rob_commitInstr ", ifCommit(trueCommitCnt) ), 1011 ("rob_commitInstrMove ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })) ), 1012 ("rob_commitInstrFused ", ifCommit(fuseCommitCnt) ), 1013 ("rob_commitInstrLoad ", ifCommit(PopCount(commitLoadValid)) ), 1014 ("rob_commitInstrLoad ", ifCommit(PopCount(commitBranchValid)) ), 1015 ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })) ), 1016 ("rob_commitInstrStore ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })) ), 1017 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U) ), 1018 ("rob_walkCycle ", (state === s_walk || state === s_extrawalk) ), 1019 ("rob_1/4_valid ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U)) ), 1020 ("rob_2/4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U)) ), 1021 ("rob_3/4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))), 1022 ("rob_4/4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U)) ), 1023 ) 1024 1025 for (((perf_out,(perf_name,perf)),i) <- perfinfo.perfEvents.perf_events.zip(perfEvents).zipWithIndex) { 1026 perf_out.incr_step := RegNext(perf) 1027 } 1028} 1029