xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision a273862e37f1d43bee748f2a6353320a2f52f6f4)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3.ExcitingUtils._
21import chisel3._
22import chisel3.util._
23import xiangshan._
24import utils._
25import xiangshan.frontend.FtqPtr
26import difftest._
27
28class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr](
29  p => p(XSCoreParamsKey).RobSize
30) with HasCircularQueuePtrHelper {
31
32  def needFlush(redirect: Valid[Redirect]): Bool = {
33    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
34    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
35  }
36
37  override def cloneType = (new RobPtr).asInstanceOf[this.type]
38}
39
40object RobPtr {
41  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
42    val ptr = Wire(new RobPtr)
43    ptr.flag := f
44    ptr.value := v
45    ptr
46  }
47}
48
49class RobCSRIO(implicit p: Parameters) extends XSBundle {
50  val intrBitSet = Input(Bool())
51  val trapTarget = Input(UInt(VAddrBits.W))
52  val isXRet = Input(Bool())
53
54  val fflags = Output(Valid(UInt(5.W)))
55  val dirty_fs = Output(Bool())
56  val perfinfo = new Bundle {
57    val retiredInstr = Output(UInt(3.W))
58  }
59}
60
61class RobLsqIO(implicit p: Parameters) extends XSBundle {
62  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
63  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
64  val pendingld = Output(Bool())
65  val pendingst = Output(Bool())
66  val commit = Output(Bool())
67  val storeDataRobWb = Input(Vec(StorePipelineWidth, Valid(new RobPtr)))
68}
69
70class RobEnqIO(implicit p: Parameters) extends XSBundle {
71  val canAccept = Output(Bool())
72  val isEmpty = Output(Bool())
73  // valid vector, for robIdx gen and walk
74  val needAlloc = Vec(RenameWidth, Input(Bool()))
75  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
76  val resp = Vec(RenameWidth, Output(new RobPtr))
77}
78
79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
80
81class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
82  val io = IO(new Bundle {
83    // for commits/flush
84    val state = Input(UInt(2.W))
85    val deq_v = Vec(CommitWidth, Input(Bool()))
86    val deq_w = Vec(CommitWidth, Input(Bool()))
87    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
88    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
89    val intrBitSetReg = Input(Bool())
90    val hasNoSpecExec = Input(Bool())
91    val commitType = Input(CommitType())
92    val misPredBlock = Input(Bool())
93    val isReplaying = Input(Bool())
94    // output: the CommitWidth deqPtr
95    val out = Vec(CommitWidth, Output(new RobPtr))
96    val next_out = Vec(CommitWidth, Output(new RobPtr))
97  })
98
99  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
100
101  // for exceptions (flushPipe included) and interrupts:
102  // only consider the first instruction
103  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && !CommitType.isLoadStore(io.commitType)
104  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && !io.exception_state.bits.flushPipe && io.exception_state.bits.robIdx === deqPtrVec(0)
105  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
106
107  // for normal commits: only to consider when there're no exceptions
108  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
109  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
110  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying))
111  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
112  // when io.intrBitSetReg or there're possible exceptions in these instructions,
113  // only one instruction is allowed to commit
114  val allowOnlyOne = commit_exception || io.intrBitSetReg
115  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
116
117  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
118  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec)
119
120  deqPtrVec := deqPtrVec_next
121
122  io.next_out := deqPtrVec_next
123  io.out      := deqPtrVec
124
125  when (io.state === 0.U) {
126    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
127  }
128
129}
130
131class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
132  val io = IO(new Bundle {
133    // for input redirect
134    val redirect = Input(Valid(new Redirect))
135    // for enqueue
136    val allowEnqueue = Input(Bool())
137    val hasBlockBackward = Input(Bool())
138    val enq = Vec(RenameWidth, Input(Bool()))
139    val out = Output(new RobPtr)
140  })
141
142  val enqPtr = RegInit(0.U.asTypeOf(new RobPtr))
143
144  // enqueue
145  val canAccept = io.allowEnqueue && !io.hasBlockBackward
146  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
147
148  when (io.redirect.valid) {
149    enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U)
150  }.otherwise {
151    enqPtr := enqPtr + dispatchNum
152  }
153
154  io.out := enqPtr
155
156}
157
158class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
159  // val valid = Bool()
160  val robIdx = new RobPtr
161  val exceptionVec = ExceptionVec()
162  val flushPipe = Bool()
163  val replayInst = Bool() // redirect to that inst itself
164  val singleStep = Bool()
165  val crossPageIPFFix = Bool()
166
167  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst
168  // only exceptions are allowed to writeback when enqueue
169  def can_writeback = exceptionVec.asUInt.orR || singleStep
170}
171
172class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
173  val io = IO(new Bundle {
174    val redirect = Input(Valid(new Redirect))
175    val flush = Input(Bool())
176    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
177    val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo)))
178    val out = ValidIO(new RobExceptionInfo)
179    val state = ValidIO(new RobExceptionInfo)
180  })
181
182  val current = Reg(Valid(new RobExceptionInfo))
183
184  // orR the exceptionVec
185  val lastCycleFlush = RegNext(io.flush)
186  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
187  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
188
189  // s0: compare wb(1),wb(2) and wb(3),wb(4)
190  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
191  val csr_wb_bits = io.wb(0).bits
192  val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits)
193  val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits)
194  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4))))
195  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
196
197  // s1: compare last four and current flush
198  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
199  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
200  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
201  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
202  val s1_out_bits = RegNext(compare_bits)
203  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
204
205  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
206  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
207
208  // s2: compare the input exception with the current one
209  // priorities:
210  // (1) system reset
211  // (2) current is valid: flush, remain, merge, update
212  // (3) current is not valid: s1 or enq
213  val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush
214  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
215  when (reset.asBool) {
216    current.valid := false.B
217  }.elsewhen (current.valid) {
218    when (current_flush) {
219      current.valid := Mux(s1_flush, false.B, s1_out_valid)
220    }
221    when (s1_out_valid && !s1_flush) {
222      when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) {
223        current.bits := s1_out_bits
224      }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) {
225        current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec())
226        current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe
227        current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst
228        current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep
229      }
230    }
231  }.elsewhen (s1_out_valid && !s1_flush) {
232    current.valid := true.B
233    current.bits := s1_out_bits
234  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
235    current.valid := true.B
236    current.bits := enq_bits
237  }
238
239  io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback
240  io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits)
241  io.state := current
242
243}
244
245class RobFlushInfo(implicit p: Parameters) extends XSBundle {
246  val ftqIdx = new FtqPtr
247  val robIdx = new RobPtr
248  val ftqOffset = UInt(log2Up(PredictWidth).W)
249  val replayInst = Bool()
250}
251
252class Rob(numWbPorts: Int)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
253  val io = IO(new Bundle() {
254    val redirect = Input(Valid(new Redirect))
255    val enq = new RobEnqIO
256    val flushOut = ValidIO(new Redirect)
257    val exception = ValidIO(new ExceptionInfo)
258    // exu + brq
259    val exeWbResults = Vec(numWbPorts, Flipped(ValidIO(new ExuOutput)))
260    val commits = new RobCommitIO
261    val lsq = new RobLsqIO
262    val bcommit = Output(UInt(log2Up(CommitWidth + 1).W))
263    val robDeqPtr = Output(new RobPtr)
264    val csr = new RobCSRIO
265    val robFull = Output(Bool())
266  })
267
268  println("Rob: size:" + RobSize + " wbports:" + numWbPorts  + " commitwidth:" + CommitWidth)
269
270  // instvalid field
271  // val valid = RegInit(VecInit(List.fill(RobSize)(false.B)))
272  val valid = Mem(RobSize, Bool())
273  // writeback status
274  // val writebacked = Reg(Vec(RobSize, Bool()))
275  val writebacked = Mem(RobSize, Bool())
276  val store_data_writebacked = Mem(RobSize, Bool())
277  // data for redirect, exception, etc.
278  // val flagBkup = RegInit(VecInit(List.fill(RobSize)(false.B)))
279  val flagBkup = Mem(RobSize, Bool())
280  // record move elimination info for each instruction
281  val eliminatedMove = Mem(RobSize, Bool())
282
283  // data for debug
284  // Warn: debug_* prefix should not exist in generated verilog.
285  val debug_microOp = Mem(RobSize, new MicroOp)
286  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
287  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
288
289  // pointers
290  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
291  val enqPtr = Wire(new RobPtr)
292  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
293
294  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
295  val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W))
296  val allowEnqueue = RegInit(true.B)
297
298  val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i))))
299  val deqPtr = deqPtrVec(0)
300  val walkPtr = walkPtrVec(0)
301
302  val isEmpty = enqPtr === deqPtr
303  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
304
305  /**
306    * states of Rob
307    */
308  val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3)
309  val state = RegInit(s_idle)
310
311  /**
312    * Data Modules
313    *
314    * CommitDataModule: data from dispatch
315    * (1) read: commits/walk/exception
316    * (2) write: enqueue
317    *
318    * WritebackData: data from writeback
319    * (1) read: commits/walk/exception
320    * (2) write: write back from exe units
321    */
322  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
323  val dispatchDataRead = dispatchData.io.rdata
324
325  val exceptionGen = Module(new ExceptionGen)
326  val exceptionDataRead = exceptionGen.io.state
327  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
328
329  io.robDeqPtr := deqPtr
330
331  /**
332    * Enqueue (from dispatch)
333    */
334  // special cases
335  val hasBlockBackward = RegInit(false.B)
336  val hasNoSpecExec = RegInit(false.B)
337  val doingSvinval = RegInit(false.B)
338  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
339  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
340  when (isEmpty) { hasBlockBackward:= false.B }
341  // When any instruction commits, hasNoSpecExec should be set to false.B
342  when (io.commits.valid.asUInt.orR  && state =/= s_extrawalk) { hasNoSpecExec:= false.B }
343
344  io.enq.canAccept := allowEnqueue && !hasBlockBackward
345  io.enq.resp      := enqPtrVec
346  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
347  val timer = GTimer()
348  for (i <- 0 until RenameWidth) {
349    // we don't check whether io.redirect is valid here since redirect has higher priority
350    when (canEnqueue(i)) {
351      // store uop in data module and debug_microOp Vec
352      debug_microOp(enqPtrVec(i).value) := io.enq.req(i).bits
353      debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer
354      debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer
355      debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer
356      debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer
357      debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer
358      when (io.enq.req(i).bits.ctrl.blockBackward) {
359        hasBlockBackward := true.B
360      }
361      when (io.enq.req(i).bits.ctrl.noSpecExec) {
362        hasNoSpecExec := true.B
363      }
364      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
365      when(!Cat(io.enq.req(i).bits.cf.exceptionVec).orR && FuType.isSvinvalBegin(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe))
366      {
367        doingSvinval := true.B
368      }
369      // the end instruction of Svinval enqs so clear doingSvinval
370      when(!Cat(io.enq.req(i).bits.cf.exceptionVec).orR && FuType.isSvinvalEnd(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe))
371      {
372        doingSvinval := false.B
373      }
374      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
375      assert( !doingSvinval || (FuType.isSvinval(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe) || FuType.isSvinvalEnd(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe)))
376    }
377  }
378  val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U)
379  io.enq.isEmpty   := RegNext(isEmpty && dispatchNum === 0.U)
380
381  // debug info for enqueue (dispatch)
382  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
383  XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n")
384
385
386  /**
387    * Writeback (from execution units)
388    */
389  for (i <- 0 until numWbPorts) {
390    when (io.exeWbResults(i).valid) {
391      val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value
392      debug_microOp(wbIdx).cf.exceptionVec := io.exeWbResults(i).bits.uop.cf.exceptionVec
393      debug_microOp(wbIdx).ctrl.flushPipe := io.exeWbResults(i).bits.uop.ctrl.flushPipe
394      debug_microOp(wbIdx).ctrl.replayInst := io.exeWbResults(i).bits.uop.ctrl.replayInst
395      debug_microOp(wbIdx).diffTestDebugLrScValid := io.exeWbResults(i).bits.uop.diffTestDebugLrScValid
396      debug_exuData(wbIdx) := io.exeWbResults(i).bits.data
397      debug_exuDebug(wbIdx) := io.exeWbResults(i).bits.debug
398      debug_microOp(wbIdx).debugInfo.enqRsTime := io.exeWbResults(i).bits.uop.debugInfo.enqRsTime
399      debug_microOp(wbIdx).debugInfo.selectTime := io.exeWbResults(i).bits.uop.debugInfo.selectTime
400      debug_microOp(wbIdx).debugInfo.issueTime := io.exeWbResults(i).bits.uop.debugInfo.issueTime
401      debug_microOp(wbIdx).debugInfo.writebackTime := io.exeWbResults(i).bits.uop.debugInfo.writebackTime
402
403      val debug_Uop = debug_microOp(wbIdx)
404      XSInfo(true.B,
405        p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " +
406        p"data 0x${Hexadecimal(io.exeWbResults(i).bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " +
407        p"skip ${io.exeWbResults(i).bits.debug.isMMIO} robIdx: ${io.exeWbResults(i).bits.uop.robIdx}\n"
408      )
409    }
410  }
411  val writebackNum = PopCount(io.exeWbResults.map(_.valid))
412  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
413
414
415  /**
416    * RedirectOut: Interrupt and Exceptions
417    */
418  val deqDispatchData = dispatchDataRead(0)
419  val debug_deqUop = debug_microOp(deqPtr.value)
420
421  // For MMIO instructions, they should not trigger interrupts since they may be sent to lower level before it writes back.
422  // However, we cannot determine whether a load/store instruction is MMIO.
423  // Thus, we don't allow load/store instructions to trigger an interrupt.
424  val intrBitSetReg = RegNext(io.csr.intrBitSet)
425  val intrEnable = intrBitSetReg && !hasNoSpecExec && !CommitType.isLoadStore(deqDispatchData.commitType)
426  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
427  val deqHasException = deqHasExceptionOrFlush && exceptionDataRead.bits.exceptionVec.asUInt.orR
428  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
429  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
430  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
431  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
432
433  // io.flushOut will trigger redirect at the next cycle.
434  // Block any redirect or commit at the next cycle.
435  val lastCycleFlush = RegNext(io.flushOut.valid)
436
437  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
438  io.flushOut.bits := DontCare
439  io.flushOut.bits.robIdx := deqPtr
440  io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx
441  io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset
442  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter)
443  io.flushOut.bits.interrupt := true.B
444  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
445  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
446  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
447  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
448
449  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
450  io.exception.valid := RegNext(exceptionHappen)
451  io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen)
452  io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen)
453  io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
454  io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
455  io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
456  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
457
458  XSDebug(io.flushOut.valid,
459    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " +
460    p"excp $exceptionEnable flushPipe $isFlushPipe " +
461    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
462
463
464  /**
465    * Commits (and walk)
466    * They share the same width.
467    */
468  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
469  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
470  val walkFinished = walkCounter <= CommitWidth.U
471
472  // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap
473  require(RenameWidth <= CommitWidth)
474  val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData))
475  val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool()))
476  when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) {
477    usedSpaceForMPR := io.enq.needAlloc
478    extraSpaceForMPR := dispatchData.io.wdata
479    XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt)
480  }
481
482  // wiring to csr
483  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
484    val v = io.commits.valid(i)
485    val info = io.commits.info(i)
486    (v & info.wflags, v & info.fpWen)
487  }).unzip
488  val fflags = Wire(Valid(UInt(5.W)))
489  fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR())
490  fflags.bits := wflags.zip(fflagsDataRead).map({
491    case (w, f) => Mux(w, f, 0.U)
492  }).reduce(_|_)
493  val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR())
494
495  // when mispredict branches writeback, stop commit in the next 2 cycles
496  // TODO: don't check all exu write back
497  val misPredWb = Cat(VecInit((0 until numWbPorts).map(i =>
498    io.exeWbResults(i).bits.redirect.cfiUpdate.isMisPred && io.exeWbResults(i).bits.redirectValid
499  ))).orR()
500  val misPredBlockCounter = Reg(UInt(3.W))
501  misPredBlockCounter := Mux(misPredWb,
502    "b111".U,
503    misPredBlockCounter >> 1.U
504  )
505  val misPredBlock = misPredBlockCounter(0)
506
507  io.commits.isWalk := state =/= s_idle
508  val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value))))
509  // store will be commited iff both sta & std have been writebacked
510  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
511  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
512  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
513  val allowOnlyOneCommit = commit_exception || intrBitSetReg
514  // for instructions that may block others, we don't allow them to commit
515  for (i <- 0 until CommitWidth) {
516    // defaults: state === s_idle and instructions commit
517    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
518    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
519    io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush
520    io.commits.info(i)  := dispatchDataRead(i)
521
522    when (state === s_walk) {
523      io.commits.valid(i) := commit_v(i) && shouldWalkVec(i)
524    }.elsewhen(state === s_extrawalk) {
525      io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B)
526      io.commits.info(i)  := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare)
527    }
528
529    XSInfo(state === s_idle && io.commits.valid(i),
530      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
531      debug_microOp(deqPtrVec(i).value).cf.pc,
532      io.commits.info(i).rfWen,
533      io.commits.info(i).ldest,
534      io.commits.info(i).pdest,
535      io.commits.info(i).old_pdest,
536      debug_exuData(deqPtrVec(i).value),
537      fflagsDataRead(i)
538    )
539    XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n",
540      debug_microOp(walkPtrVec(i).value).cf.pc,
541      io.commits.info(i).rfWen,
542      io.commits.info(i).ldest,
543      debug_exuData(walkPtrVec(i).value)
544    )
545    XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n",
546      io.commits.info(i).rfWen,
547      io.commits.info(i).ldest
548    )
549  }
550  if (!env.FPGAPlatform) {
551    io.commits.info.map(info => dontTouch(info.pc))
552  }
553
554  // sync fflags/dirty_fs to csr
555  io.csr.fflags := fflags
556  io.csr.dirty_fs := dirty_fs
557
558  // commit branch to brq
559  val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)})
560  io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec))
561
562  // commit load/store to lsq
563  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD))
564  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE))
565  io.lsq.lcommit := Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec))
566  io.lsq.scommit := Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec))
567  io.lsq.pendingld := !io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)
568  io.lsq.pendingst := !io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)
569  io.lsq.commit := !io.commits.isWalk && io.commits.valid(0)
570
571  /**
572    * state changes
573    * (1) exceptions: when exception occurs, cancels all and switch to s_idle
574    * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1)
575    * (3) walk: when walking comes to the end, switch to s_walk
576    * (4) s_extrawalk to s_walk
577    */
578  val state_next = Mux(io.redirect.valid,
579    Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk),
580    Mux(state === s_walk && walkFinished,
581      s_idle,
582      Mux(state === s_extrawalk, s_walk, state)
583    )
584  )
585  state := state_next
586
587  /**
588    * pointers and counters
589    */
590  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
591  deqPtrGenModule.io.state := state
592  deqPtrGenModule.io.deq_v := commit_v
593  deqPtrGenModule.io.deq_w := commit_w
594  deqPtrGenModule.io.exception_state := exceptionDataRead
595  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
596  deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec
597  deqPtrGenModule.io.commitType := deqDispatchData.commitType
598
599  deqPtrGenModule.io.misPredBlock := misPredBlock
600  deqPtrGenModule.io.isReplaying := isReplaying
601  deqPtrVec := deqPtrGenModule.io.out
602  val deqPtrVec_next = deqPtrGenModule.io.next_out
603
604  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
605  enqPtrGenModule.io.redirect := io.redirect
606  enqPtrGenModule.io.allowEnqueue := allowEnqueue
607  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
608  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
609  enqPtr := enqPtrGenModule.io.out
610
611  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
612  // next walkPtrVec:
613  // (1) redirect occurs: update according to state
614  // (2) walk: move backwards
615  val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk,
616    Mux(state === s_walk,
617      VecInit(walkPtrVec.map(_ - thisCycleWalkCount)),
618      VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U))
619    ),
620    Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec)
621  )
622  walkPtrVec := walkPtrVec_next
623
624  val lastCycleRedirect = RegNext(io.redirect.valid)
625  val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter)
626  val commitCnt = PopCount(io.commits.valid)
627  validCounter := Mux(state === s_idle,
628    (validCounter - commitCnt) + dispatchNum,
629    trueValidCounter
630  )
631
632  allowEnqueue := Mux(state === s_idle,
633    validCounter + dispatchNum <= (RobSize - RenameWidth).U,
634    trueValidCounter <= (RobSize - RenameWidth).U
635  )
636
637  val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U)
638  val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx)
639  when (io.redirect.valid) {
640    walkCounter := Mux(state === s_walk,
641      // NOTE: +& is used here because:
642      // When rob is full and the head instruction causes an exception,
643      // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is
644      // enqPtr - 1.U and redirectWalkDistance is RobSize - 1.
645      // Since exceptions flush the instruction itself, flushItSelf is true.B.
646      // Previously we use `+` to count the walk distance and it causes overflows
647      // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
648      // The width of walkCounter also needs to be changed.
649      redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt,
650      redirectWalkDistance +& io.redirect.bits.flushItself()
651    )
652  }.elsewhen (state === s_walk) {
653    walkCounter := walkCounter - commitCnt
654    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
655  }
656
657
658  /**
659    * States
660    * We put all the stage bits changes here.
661
662    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
663    * All states: (1) valid; (2) writebacked; (3) flagBkup
664    */
665  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
666
667  // enqueue logic writes 6 valid
668  for (i <- 0 until RenameWidth) {
669    when (canEnqueue(i) && !io.redirect.valid) {
670      valid(enqPtrVec(i).value) := true.B
671    }
672  }
673  // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time
674  for (i <- 0 until CommitWidth) {
675    when (io.commits.valid(i) && state =/= s_extrawalk) {
676      valid(commitReadAddr(i)) := false.B
677    }
678  }
679  // reset: when exception, reset all valid to false
680  when (reset.asBool) {
681    for (i <- 0 until RobSize) {
682      valid(i) := false.B
683    }
684  }
685
686  // status field: writebacked
687  // enqueue logic set 6 writebacked to false
688  for (i <- 0 until RenameWidth) {
689    when (canEnqueue(i)) {
690      eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
691      writebacked(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove && !io.enq.req(i).bits.cf.exceptionVec.asUInt.orR
692      val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu
693      store_data_writebacked(enqPtrVec(i).value) := !isStu
694    }
695  }
696  when (exceptionGen.io.out.valid) {
697    val wbIdx = exceptionGen.io.out.bits.robIdx.value
698    writebacked(wbIdx) := true.B
699    store_data_writebacked(wbIdx) := true.B
700  }
701  // writeback logic set numWbPorts writebacked to true
702  for (i <- 0 until numWbPorts) {
703    when (io.exeWbResults(i).valid) {
704      val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value
705      val block_wb =
706        selectAll(io.exeWbResults(i).bits.uop.cf.exceptionVec, false, true).asUInt.orR ||
707        io.exeWbResults(i).bits.uop.ctrl.flushPipe ||
708        io.exeWbResults(i).bits.uop.ctrl.replayInst
709      writebacked(wbIdx) := !block_wb
710    }
711  }
712  // store data writeback logic mark store as data_writebacked
713  for (i <- 0 until StorePipelineWidth) {
714    when(io.lsq.storeDataRobWb(i).valid) {
715      store_data_writebacked(io.lsq.storeDataRobWb(i).bits.value) := true.B
716    }
717  }
718
719  // flagBkup
720  // enqueue logic set 6 flagBkup at most
721  for (i <- 0 until RenameWidth) {
722    when (canEnqueue(i)) {
723      flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag
724    }
725  }
726
727
728  /**
729    * read and write of data modules
730    */
731  val commitReadAddr_next = Mux(state_next === s_idle,
732    VecInit(deqPtrVec_next.map(_.value)),
733    VecInit(walkPtrVec_next.map(_.value))
734  )
735  dispatchData.io.wen := canEnqueue
736  dispatchData.io.waddr := enqPtrVec.map(_.value)
737  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
738    wdata.ldest := req.ctrl.ldest
739    wdata.rfWen := req.ctrl.rfWen
740    wdata.fpWen := req.ctrl.fpWen
741    wdata.wflags := req.ctrl.fpu.wflags
742    wdata.commitType := req.ctrl.commitType
743    wdata.eliminatedMove := req.eliminatedMove
744    wdata.pdest := req.pdest
745    wdata.old_pdest := req.old_pdest
746    wdata.ftqIdx := req.cf.ftqPtr
747    wdata.ftqOffset := req.cf.ftqOffset
748    wdata.pc := req.cf.pc
749  }
750  dispatchData.io.raddr := commitReadAddr_next
751
752  exceptionGen.io.redirect <> io.redirect
753  exceptionGen.io.flush := io.flushOut.valid
754  for (i <- 0 until RenameWidth) {
755    exceptionGen.io.enq(i).valid := canEnqueue(i)
756    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
757    exceptionGen.io.enq(i).bits.exceptionVec := selectFrontend(io.enq.req(i).bits.cf.exceptionVec, false, true)
758    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe
759    exceptionGen.io.enq(i).bits.replayInst := io.enq.req(i).bits.ctrl.replayInst
760    assert(exceptionGen.io.enq(i).bits.replayInst === false.B)
761    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep
762    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix
763  }
764
765  // TODO: don't hard code these idxes
766  val numIntWbPorts = exuParameters.AluCnt + exuParameters.LduCnt + exuParameters.MduCnt
767  // CSR is after Alu and Load
768  def csr_wb_idx = exuParameters.AluCnt + exuParameters.LduCnt
769  def atomic_wb_idx = exuParameters.AluCnt // first port for load
770  def load_wb_idxes = Seq(exuParameters.AluCnt + 1) // second port for load
771  def store_wb_idxes = io.exeWbResults.indices.takeRight(2)
772  val all_exception_possibilities = Seq(csr_wb_idx, atomic_wb_idx) ++ load_wb_idxes ++ store_wb_idxes
773  all_exception_possibilities.zipWithIndex.map{ case (p, i) => connect_exception(i, p) }
774  def connect_exception(index: Int, wb_index: Int) = {
775    exceptionGen.io.wb(index).valid             := io.exeWbResults(wb_index).valid
776    // A temporary fix for float load writeback
777    // TODO: let int/fp load use the same two wb ports
778    if (wb_index == atomic_wb_idx || load_wb_idxes.contains(wb_index)) {
779      when (io.exeWbResults(wb_index - exuParameters.AluCnt + numIntWbPorts + exuParameters.FmacCnt).valid) {
780        exceptionGen.io.wb(index).valid := true.B
781      }
782    }
783    exceptionGen.io.wb(index).bits.robIdx       := io.exeWbResults(wb_index).bits.uop.robIdx
784    val selectFunc = if (wb_index == csr_wb_idx) selectCSR _
785    else if (wb_index == atomic_wb_idx) selectAtomics _
786    else if (load_wb_idxes.contains(wb_index)) selectLoad _
787    else {
788      assert(store_wb_idxes.contains(wb_index))
789      selectStore _
790    }
791    exceptionGen.io.wb(index).bits.exceptionVec    := selectFunc(io.exeWbResults(wb_index).bits.uop.cf.exceptionVec, false, true)
792    exceptionGen.io.wb(index).bits.flushPipe       := io.exeWbResults(wb_index).bits.uop.ctrl.flushPipe
793    exceptionGen.io.wb(index).bits.replayInst      := io.exeWbResults(wb_index).bits.uop.ctrl.replayInst
794    exceptionGen.io.wb(index).bits.singleStep      := false.B
795    exceptionGen.io.wb(index).bits.crossPageIPFFix := false.B
796  }
797
798  // 4 fmac + 2 fmisc + 1 i2f
799  val fmacWb = (0 until exuParameters.FmacCnt).map(_ + numIntWbPorts)
800  val fmiscWb = (0 until exuParameters.FmiscCnt).map(_ + numIntWbPorts + exuParameters.FmacCnt + 2)
801  val i2fWb = Seq(numIntWbPorts - 1) // last port in int
802  val fflags_wb = io.exeWbResults.zipWithIndex.filter(w => {
803    (fmacWb ++ fmiscWb ++ i2fWb).contains(w._2)
804  }).map(_._1)
805  val fflagsDataModule = Module(new SyncDataModuleTemplate(
806    UInt(5.W), RobSize, CommitWidth, fflags_wb.size)
807  )
808  for(i <- fflags_wb.indices){
809    fflagsDataModule.io.wen  (i) := fflags_wb(i).valid
810    fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value
811    fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags
812  }
813  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
814  fflagsDataRead := fflagsDataModule.io.rdata
815
816
817  val instrCnt = RegInit(0.U(64.W))
818  val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) })
819  val trueCommitCnt = commitCnt +& fuseCommitCnt
820  val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U)
821  instrCnt := instrCnt + retireCounter
822  io.csr.perfinfo.retiredInstr := RegNext(retireCounter)
823  io.robFull := !allowEnqueue
824
825  /**
826    * debug info
827    */
828  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
829  XSDebug("")
830  for(i <- 0 until RobSize){
831    XSDebug(false, !valid(i), "-")
832    XSDebug(false, valid(i) && writebacked(i), "w")
833    XSDebug(false, valid(i) && !writebacked(i), "v")
834  }
835  XSDebug(false, true.B, "\n")
836
837  for(i <- 0 until RobSize) {
838    if(i % 4 == 0) XSDebug("")
839    XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc)
840    XSDebug(false, !valid(i), "- ")
841    XSDebug(false, valid(i) && writebacked(i), "w ")
842    XSDebug(false, valid(i) && !writebacked(i), "v ")
843    if(i % 4 == 3) XSDebug(false, true.B, "\n")
844  }
845
846  def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter)
847
848  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
849  XSPerfAccumulate("clock_cycle", 1.U)
850  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
851  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
852  XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt))
853  val commitIsMove = commitDebugUop.map(_.ctrl.isMove)
854  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })))
855  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
856  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e })))
857  XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt))
858  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
859  val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t }
860  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
861  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
862  val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t }
863  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
864  val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit)
865  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
866  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
867  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })))
868  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
869  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire())))
870  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
871  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U))
872  XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk)
873  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
874  val deqUopCommitType = io.commits.info(0).commitType
875  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
876  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
877  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
878  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
879  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
880  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
881  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
882  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
883  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
884  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
885  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
886  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
887  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
888    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
889  }
890  for (fuType <- FuType.functionNameMap.keys) {
891    val fuName = FuType.functionNameMap(fuType)
892    val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U )
893    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
894    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
895    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
896    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
897    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
898    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
899    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
900    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
901    if (fuType == FuType.fmac.litValue()) {
902      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 )
903      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
904      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
905      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
906    }
907  }
908  val l1Miss = Wire(Bool())
909  l1Miss := false.B
910  ExcitingUtils.addSink(l1Miss, "TMA_l1miss")
911  XSPerfAccumulate("TMA_L1miss", deqNotWritebacked && deqUopCommitType === CommitType.LOAD && l1Miss)
912
913
914  //difftest signals
915  val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value
916
917  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
918  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
919  val trapVec = Wire(Vec(CommitWidth, Bool()))
920  for(i <- 0 until CommitWidth) {
921    val idx = deqPtrVec(i).value
922    wdata(i) := debug_exuData(idx)
923    wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN)
924    trapVec(i) := io.commits.valid(i) && (state===s_idle) && commitDebugUop(i).ctrl.isXSTrap
925  }
926  val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter)
927  val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN)
928  val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr)
929
930  val hitTrap = trapVec.reduce(_||_)
931  val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
932  val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
933
934  if (!env.FPGAPlatform) {
935    for (i <- 0 until CommitWidth) {
936      val difftest = Module(new DifftestInstrCommit)
937      difftest.io.clock    := clock
938      difftest.io.coreid   := hardId.U
939      difftest.io.index    := i.U
940
941      val ptr = deqPtrVec(i).value
942      val uop = commitDebugUop(i)
943      val exuOut = debug_exuDebug(ptr)
944      val exuData = debug_exuData(ptr)
945      difftest.io.valid    := RegNext(io.commits.valid(i) && !io.commits.isWalk)
946      difftest.io.pc       := RegNext(SignExt(uop.cf.pc, XLEN))
947      difftest.io.instr    := RegNext(uop.cf.instr)
948      difftest.io.special  := RegNext(CommitType.isFused(uop.ctrl.commitType))
949      // when committing an eliminated move instruction,
950      // we must make sure that skip is properly set to false (output from EXU is random value)
951      difftest.io.skip     := RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))
952      difftest.io.isRVC    := RegNext(uop.cf.pd.isRVC)
953      difftest.io.scFailed := RegNext(!uop.diffTestDebugLrScValid &&
954        uop.ctrl.fuType === FuType.mou &&
955        (uop.ctrl.fuOpType === LSUOpType.sc_d || uop.ctrl.fuOpType === LSUOpType.sc_w))
956      difftest.io.wen      := RegNext(io.commits.valid(i) && uop.ctrl.rfWen && uop.ctrl.ldest =/= 0.U)
957      difftest.io.wdata    := RegNext(exuData)
958      difftest.io.wdest    := RegNext(uop.ctrl.ldest)
959
960      // XSDebug(p"[difftest-instr-commit]valid:${difftest.io.valid},pc:${difftest.io.pc},instr:${difftest.io.instr},skip:${difftest.io.skip},isRVC:${difftest.io.isRVC},scFailed:${difftest.io.scFailed},wen:${difftest.io.wen},wdata:${difftest.io.wdata},wdest:${difftest.io.wdest}\n")
961
962      // runahead commit hint
963      val runahead_commit = Module(new DifftestRunaheadCommitEvent)
964      runahead_commit.io.clock := clock
965      runahead_commit.io.coreid := hardId.U
966      runahead_commit.io.index := i.U
967      runahead_commit.io.valid := difftest.io.valid &&
968        (commitBranchValid(i) || commitIsStore(i))
969      // TODO: is branch or store
970      runahead_commit.io.pc    := difftest.io.pc
971    }
972  }
973
974  if (!env.FPGAPlatform) {
975    for (i <- 0 until CommitWidth) {
976      val difftest = Module(new DifftestLoadEvent)
977      difftest.io.clock  := clock
978      difftest.io.coreid := hardId.U
979      difftest.io.index  := i.U
980
981      val ptr = deqPtrVec(i).value
982      val uop = commitDebugUop(i)
983      val exuOut = debug_exuDebug(ptr)
984      difftest.io.valid  := RegNext(io.commits.valid(i) && !io.commits.isWalk)
985      difftest.io.paddr  := RegNext(exuOut.paddr)
986      difftest.io.opType := RegNext(uop.ctrl.fuOpType)
987      difftest.io.fuType := RegNext(uop.ctrl.fuType)
988    }
989  }
990
991  if (!env.FPGAPlatform) {
992    val difftest = Module(new DifftestTrapEvent)
993    difftest.io.clock    := clock
994    difftest.io.coreid   := hardId.U
995    difftest.io.valid    := hitTrap
996    difftest.io.code     := trapCode
997    difftest.io.pc       := trapPC
998    difftest.io.cycleCnt := timer
999    difftest.io.instrCnt := instrCnt
1000  }
1001  val perfinfo = IO(new Bundle(){
1002    val perfEvents = Output(new PerfEventsBundle(18))
1003  })
1004  val perfEvents = Seq(
1005    ("rob_interrupt_num       ", io.flushOut.valid && intrEnable                                                                                                   ),
1006    ("rob_exception_num       ", io.flushOut.valid && exceptionEnable                                                                                              ),
1007    ("rob_flush_pipe_num      ", io.flushOut.valid && isFlushPipe                                                                                                  ),
1008    ("rob_replay_inst_num     ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                                                                              ),
1009    ("rob_commitUop           ", ifCommit(commitCnt)                                                                                                               ),
1010    ("rob_commitInstr         ", ifCommit(trueCommitCnt)                                                                                                           ),
1011    ("rob_commitInstrMove     ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))                                               ),
1012    ("rob_commitInstrFused    ", ifCommit(fuseCommitCnt)                                                                                                           ),
1013    ("rob_commitInstrLoad     ", ifCommit(PopCount(commitLoadValid))                                                                                               ),
1014    ("rob_commitInstrLoad     ", ifCommit(PopCount(commitBranchValid))                                                                                               ),
1015    ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))                                           ),
1016    ("rob_commitInstrStore    ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))                                              ),
1017    ("rob_walkInstr           ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)                                                                           ),
1018    ("rob_walkCycle           ", (state === s_walk || state === s_extrawalk)                                                                                       ),
1019    ("rob_1/4_valid           ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U))                                                                     ),
1020    ("rob_2/4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U))    ),
1021    ("rob_3/4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))),
1022    ("rob_4/4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U))                                                                 ),
1023  )
1024
1025  for (((perf_out,(perf_name,perf)),i) <- perfinfo.perfEvents.perf_events.zip(perfEvents).zipWithIndex) {
1026    perf_out.incr_step := RegNext(perf)
1027  }
1028}
1029