xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 4ab7f02c251981009225c54bc740213e3937eeab)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.backend.BackendParams
28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
29import xiangshan.backend.fu.{FuConfig, FuType}
30import xiangshan.frontend.FtqPtr
31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr}
32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo}
34import xiangshan.backend.fu.vector.Bundles.VType
35import xiangshan.backend.rename.SnapshotGenerator
36import yunsuan.VfaluType
37import xiangshan.backend.rob.RobBundles._
38
39class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
40  override def shouldBeInlined: Boolean = false
41
42  lazy val module = new RobImp(this)(p, params)
43}
44
45class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
46  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
47
48  private val LduCnt = params.LduCnt
49  private val StaCnt = params.StaCnt
50  private val HyuCnt = params.HyuCnt
51
52  val io = IO(new Bundle() {
53    val hartId = Input(UInt(hartIdLen.W))
54    val redirect = Input(Valid(new Redirect))
55    val enq = new RobEnqIO
56    val flushOut = ValidIO(new Redirect)
57    val exception = ValidIO(new ExceptionInfo)
58    // exu + brq
59    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
60    val writebackNums = Flipped(Vec(writeback.size - params.StdCnt, ValidIO(UInt(writeback.size.U.getWidth.W))))
61    val writebackNeedFlush = Input(Vec(params.allExuParams.filter(_.needExceptionGen).length, Bool()))
62    val commits = Output(new RobCommitIO)
63    val rabCommits = Output(new RabCommitIO)
64    val diffCommits = if (backendParams.debugEn) Some(Output(new DiffCommitIO)) else None
65    val isVsetFlushPipe = Output(Bool())
66    val lsq = new RobLsqIO
67    val robDeqPtr = Output(new RobPtr)
68    val csr = new RobCSRIO
69    val snpt = Input(new SnapshotPort)
70    val robFull = Output(Bool())
71    val headNotReady = Output(Bool())
72    val cpu_halt = Output(Bool())
73    val wfi_enable = Input(Bool())
74    val toDecode = new Bundle {
75      val isResumeVType = Output(Bool())
76      val walkVType = ValidIO(VType())
77      val commitVType = new Bundle {
78        val vtype = ValidIO(VType())
79        val hasVsetvl = Output(Bool())
80      }
81    }
82    val readGPAMemAddr = ValidIO(new Bundle {
83      val ftqPtr = new FtqPtr()
84      val ftqOffset = UInt(log2Up(PredictWidth).W)
85    })
86    val readGPAMemData = Input(UInt(GPAddrBits.W))
87    val vstartIsZero = Input(Bool())
88
89    val debug_ls = Flipped(new DebugLSIO)
90    val debugRobHead = Output(new DynInst)
91    val debugEnqLsq = Input(new LsqEnqIO)
92    val debugHeadLsIssue = Input(Bool())
93    val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo))
94    val debugTopDown = new Bundle {
95      val toCore = new RobCoreTopDownIO
96      val toDispatch = new RobDispatchTopDownIO
97      val robHeadLqIdx = Valid(new LqPtr)
98    }
99    val debugRolling = new RobDebugRollingIO
100  })
101
102  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq
103  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq
104  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty).toSeq
105  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty).toSeq
106  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty).toSeq
107  val vxsatWBs = io.writeback.filter(x => x.bits.vxsat.nonEmpty).toSeq
108
109  val numExuWbPorts = exuWBs.length
110  val numStdWbPorts = stdWBs.length
111  val bankAddrWidth = log2Up(CommitWidth)
112
113  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
114
115  val rab = Module(new RenameBuffer(RabSize))
116  val vtypeBuffer = Module(new VTypeBuffer(VTypeBufferSize))
117  val bankNum = 8
118  assert(RobSize % bankNum == 0, "RobSize % bankNum must be 0")
119  val robEntries = Reg(Vec(RobSize, new RobEntryBundle))
120  // pointers
121  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
122  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
123  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
124  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
125  val walkPtrTrue = Reg(new RobPtr)
126  val lastWalkPtr = Reg(new RobPtr)
127  val allowEnqueue = RegInit(true.B)
128
129  /**
130   * Enqueue (from dispatch)
131   */
132  // special cases
133  val hasBlockBackward = RegInit(false.B)
134  val hasWaitForward = RegInit(false.B)
135  val doingSvinval = RegInit(false.B)
136  val enqPtr = enqPtrVec(0)
137  val deqPtr = deqPtrVec(0)
138  val walkPtr = walkPtrVec(0)
139  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop)))))
140  io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq && vtypeBuffer.io.canEnq
141  io.enq.resp := allocatePtrVec
142  val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept))
143  val timer = GTimer()
144  // robEntries enqueue
145  for (i <- 0 until RobSize) {
146    val enqOH = VecInit(canEnqueue.zip(allocatePtrVec.map(_.value === i.U)).map(x => x._1 && x._2))
147    assert(PopCount(enqOH) < 2.U, s"robEntries$i enqOH is not one hot")
148    when(enqOH.asUInt.orR && !io.redirect.valid){
149      connectEnq(robEntries(i), Mux1H(enqOH, io.enq.req.map(_.bits)))
150    }
151  }
152  // robBanks0 include robidx : 0 8 16 24 32 ...
153  val robBanks = VecInit((0 until bankNum).map(i => VecInit(robEntries.zipWithIndex.filter(_._2 % bankNum == i).map(_._1))))
154  // each Bank has 20 Entries, read addr is one hot
155  // all banks use same raddr
156  val eachBankEntrieNum = robBanks(0).length
157  val robBanksRaddrThisLine = RegInit(1.U(eachBankEntrieNum.W))
158  val robBanksRaddrNextLine = Wire(UInt(eachBankEntrieNum.W))
159  robBanksRaddrThisLine := robBanksRaddrNextLine
160  val bankNumWidth = log2Up(bankNum)
161  val deqPtrWidth = deqPtr.value.getWidth
162  val robIdxThisLine = VecInit((0 until bankNum).map(i => Cat(deqPtr.value(deqPtrWidth - 1, bankNumWidth), i.U(bankNumWidth.W))))
163  val robIdxNextLine = VecInit((0 until bankNum).map(i => Cat(deqPtr.value(deqPtrWidth - 1, bankNumWidth) + 1.U, i.U(bankNumWidth.W))))
164  // robBanks read
165  val robBanksRdataThisLine = VecInit(robBanks.map{ case bank =>
166    Mux1H(robBanksRaddrThisLine, bank)
167  })
168  val robBanksRdataNextLine = VecInit(robBanks.map{ case bank =>
169    val shiftBank = bank.drop(1) :+ bank(0)
170    Mux1H(robBanksRaddrThisLine, shiftBank)
171  })
172  val robBanksRdataThisLineUpdate = Wire(Vec(CommitWidth, new RobEntryBundle))
173  val robBanksRdataNextLineUpdate = Wire(Vec(CommitWidth, new RobEntryBundle))
174  val commitValidThisLine = Wire(Vec(CommitWidth, Bool()))
175  val hasCommitted = RegInit(VecInit(Seq.fill(CommitWidth)(false.B)))
176  val donotNeedWalk = RegInit(VecInit(Seq.fill(CommitWidth)(false.B)))
177  val allCommitted = Wire(Bool())
178
179  when(allCommitted) {
180    hasCommitted := 0.U.asTypeOf(hasCommitted)
181  }.elsewhen(io.commits.isCommit){
182    for (i <- 0 until CommitWidth){
183      hasCommitted(i) := commitValidThisLine(i) || hasCommitted(i)
184    }
185  }
186  allCommitted := io.commits.isCommit && commitValidThisLine.last
187  val walkPtrHead = Wire(new RobPtr)
188  val changeBankAddrToDeqPtr = (walkPtrVec.head + CommitWidth.U) > lastWalkPtr
189  when(io.redirect.valid){
190    robBanksRaddrNextLine := UIntToOH(walkPtrHead.value(walkPtrHead.value.getWidth-1, bankAddrWidth))
191  }.elsewhen(allCommitted || io.commits.isWalk && !changeBankAddrToDeqPtr){
192    robBanksRaddrNextLine := Mux(robBanksRaddrThisLine.head(1) === 1.U, 1.U, robBanksRaddrThisLine << 1)
193  }.elsewhen(io.commits.isWalk && changeBankAddrToDeqPtr){
194    robBanksRaddrNextLine := UIntToOH(deqPtr.value(deqPtr.value.getWidth-1, bankAddrWidth))
195  }.otherwise(
196    robBanksRaddrNextLine := robBanksRaddrThisLine
197  )
198  val robDeqGroup = Reg(Vec(bankNum, new RobCommitEntryBundle))
199  val commitInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(deqPtrVec(i).value(bankAddrWidth-1,0)))).toSeq
200  val walkInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(walkPtrVec(i).value(bankAddrWidth-1, 0)))).toSeq
201  for (i <- 0 until CommitWidth) {
202    connectCommitEntry(robDeqGroup(i), robBanksRdataThisLineUpdate(i))
203    when(allCommitted){
204      connectCommitEntry(robDeqGroup(i), robBanksRdataNextLineUpdate(i))
205    }
206  }
207  // data for debug
208  // Warn: debug_* prefix should not exist in generated verilog.
209  val debug_microOp = DebugMem(RobSize, new DynInst)
210  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W))) //for debug
211  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle)) //for debug
212  val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init)))
213  val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init)))
214  val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B))
215  val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B))
216
217  val isEmpty = enqPtr === deqPtr
218  val snptEnq = io.enq.canAccept && io.enq.req.map(x => x.valid && x.bits.snapshot).reduce(_ || _)
219  val snapshotPtrVec = Wire(Vec(CommitWidth, new RobPtr))
220  snapshotPtrVec(0) := io.enq.req(0).bits.robIdx
221  for (i <- 1 until CommitWidth) {
222    snapshotPtrVec(i) := snapshotPtrVec(0) + i.U
223  }
224  val snapshots = SnapshotGenerator(snapshotPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec)
225  val debug_lsIssue = WireDefault(debug_lsIssued)
226  debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue
227
228  /**
229   * states of Rob
230   */
231  val s_idle :: s_walk :: Nil = Enum(2)
232  val state = RegInit(s_idle)
233
234  val exceptionGen = Module(new ExceptionGen(params))
235  val exceptionDataRead = exceptionGen.io.state
236  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
237  val vxsatDataRead = Wire(Vec(CommitWidth, Bool()))
238  io.robDeqPtr := deqPtr
239  io.debugRobHead := debug_microOp(deqPtr.value)
240
241  /**
242   * connection of [[rab]]
243   */
244  rab.io.redirect.valid := io.redirect.valid
245
246  rab.io.req.zip(io.enq.req).map { case (dest, src) =>
247    dest.bits := src.bits
248    dest.valid := src.valid && io.enq.canAccept
249  }
250
251  val walkDestSizeDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W))))
252  val realDestSizeSeq = VecInit(robDeqGroup.zip(hasCommitted).map{case (r, h) => Mux(h, 0.U, r.realDestSize)})
253  val walkDestSizeSeq = VecInit(robDeqGroup.zip(donotNeedWalk).map{case (r, d) => Mux(d, 0.U, r.realDestSize)})
254  val commitSizeSumSeq = VecInit((0 until CommitWidth).map(i => realDestSizeSeq.take(i + 1).reduce(_ +& _)))
255  val walkSizeSumSeq   = VecInit((0 until CommitWidth).map(i => walkDestSizeSeq.take(i + 1).reduce(_ +& _)))
256  val commitSizeSumCond = VecInit(commitValidThisLine.zip(hasCommitted).map{case (c,h) => (c || h) && io.commits.isCommit})
257  val walkSizeSumCond   = VecInit(io.commits.walkValid.zip(donotNeedWalk).map{case (w,d) => (w || d) && io.commits.isWalk})
258  val commitSizeSum = PriorityMuxDefault(commitSizeSumCond.reverse.zip(commitSizeSumSeq.reverse), 0.U)
259  val walkSizeSum   = PriorityMuxDefault(walkSizeSumCond.reverse.zip(walkSizeSumSeq.reverse), 0.U)
260
261  rab.io.fromRob.commitSize := commitSizeSum
262  rab.io.fromRob.walkSize := walkSizeSum
263  rab.io.snpt := io.snpt
264  rab.io.snpt.snptEnq := snptEnq
265
266  io.rabCommits := rab.io.commits
267  io.diffCommits.foreach(_ := rab.io.diffCommits.get)
268
269  /**
270   * connection of [[vtypeBuffer]]
271   */
272
273  vtypeBuffer.io.redirect.valid := io.redirect.valid
274
275  vtypeBuffer.io.req.zip(io.enq.req).map { case (sink, source) =>
276    sink.valid := source.valid && io.enq.canAccept
277    sink.bits := source.bits
278  }
279
280  private val commitIsVTypeVec = VecInit(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.isVset })
281  private val walkIsVTypeVec = VecInit(io.commits.walkValid.zip(walkInfo).map { case (valid, info) => io.commits.isWalk && valid && info.isVset })
282  vtypeBuffer.io.fromRob.commitSize := PopCount(commitIsVTypeVec)
283  vtypeBuffer.io.fromRob.walkSize := PopCount(walkIsVTypeVec)
284  vtypeBuffer.io.snpt := io.snpt
285  vtypeBuffer.io.snpt.snptEnq := snptEnq
286  io.toDecode.isResumeVType := vtypeBuffer.io.toDecode.isResumeVType
287  io.toDecode.commitVType := vtypeBuffer.io.toDecode.commitVType
288  io.toDecode.walkVType := vtypeBuffer.io.toDecode.walkVType
289
290  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
291  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
292  when(isEmpty) {
293    hasBlockBackward := false.B
294  }
295  // When any instruction commits, hasNoSpecExec should be set to false.B
296  when(io.commits.hasWalkInstr || io.commits.hasCommitInstr) {
297    hasWaitForward := false.B
298  }
299
300  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
301  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
302  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
303  val hasWFI = RegInit(false.B)
304  io.cpu_halt := hasWFI
305  // WFI Timeout: 2^20 = 1M cycles
306  val wfi_cycles = RegInit(0.U(20.W))
307  when(hasWFI) {
308    wfi_cycles := wfi_cycles + 1.U
309  }.elsewhen(!hasWFI && RegNext(hasWFI)) {
310    wfi_cycles := 0.U
311  }
312  val wfi_timeout = wfi_cycles.andR
313  when(RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
314    hasWFI := false.B
315  }
316
317  for (i <- 0 until RenameWidth) {
318    // we don't check whether io.redirect is valid here since redirect has higher priority
319    when(canEnqueue(i)) {
320      val enqUop = io.enq.req(i).bits
321      val enqIndex = allocatePtrVec(i).value
322      // store uop in data module and debug_microOp Vec
323      debug_microOp(enqIndex) := enqUop
324      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
325      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
326      debug_microOp(enqIndex).debugInfo.selectTime := timer
327      debug_microOp(enqIndex).debugInfo.issueTime := timer
328      debug_microOp(enqIndex).debugInfo.writebackTime := timer
329      debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer
330      debug_microOp(enqIndex).debugInfo.tlbRespTime := timer
331      debug_lsInfo(enqIndex) := DebugLsInfo.init
332      debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init
333      debug_lqIdxValid(enqIndex) := false.B
334      debug_lsIssued(enqIndex) := false.B
335      when (enqUop.waitForward) {
336        hasWaitForward := true.B
337      }
338      val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire
339      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
340      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
341      when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) {
342        doingSvinval := true.B
343      }
344      // the end instruction of Svinval enqs so clear doingSvinval
345      when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) {
346        doingSvinval := false.B
347      }
348      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
349      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
350      when(enqUop.isWFI && !enqHasException && !enqHasTriggerCanFire) {
351        hasWFI := true.B
352      }
353
354      robEntries(enqIndex).mmio := false.B
355      robEntries(enqIndex).vls := enqUop.vlsInstr
356    }
357  }
358
359  for (i <- 0 until RenameWidth) {
360    val enqUop = io.enq.req(i)
361    when(enqUop.valid && enqUop.bits.blockBackward && io.enq.canAccept) {
362      hasBlockBackward := true.B
363    }
364  }
365
366  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U)
367  io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
368
369  when(!io.wfi_enable) {
370    hasWFI := false.B
371  }
372  // sel vsetvl's flush position
373  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
374  val vsetvlState = RegInit(vs_idle)
375
376  val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr))
377  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
378  val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr))
379
380  val enq0 = io.enq.req(0)
381  val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0)
382  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
383  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map { case (req, fire) => FuType.isVArith(req.bits.fuType) && fire }
384  // for vs_idle
385  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
386  // for vs_waitVinstr
387  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
388  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
389  when(vsetvlState === vs_idle) {
390    firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr
391    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
392    firstVInstrRobIdx := firstVInstrIdle.bits.robIdx
393  }.elsewhen(vsetvlState === vs_waitVinstr) {
394    when(Cat(enqIsVInstrOrVset).orR) {
395      firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr
396      firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
397      firstVInstrRobIdx := firstVInstrWait.bits.robIdx
398    }
399  }
400
401  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
402  when(vsetvlState === vs_idle && !io.redirect.valid) {
403    when(enq0IsVsetFlush) {
404      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
405    }
406  }.elsewhen(vsetvlState === vs_waitVinstr) {
407    when(io.redirect.valid) {
408      vsetvlState := vs_idle
409    }.elsewhen(Cat(enqIsVInstrOrVset).orR) {
410      vsetvlState := vs_waitFlush
411    }
412  }.elsewhen(vsetvlState === vs_waitFlush) {
413    when(io.redirect.valid) {
414      vsetvlState := vs_idle
415    }
416  }
417
418  // lqEnq
419  io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) =>
420    when(io.debugEnqLsq.canAccept && alloc && req.valid) {
421      debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx
422      debug_lqIdxValid(req.bits.robIdx.value) := true.B
423    }
424  }
425
426  // lsIssue
427  when(io.debugHeadLsIssue) {
428    debug_lsIssued(deqPtr.value) := true.B
429  }
430
431  /**
432   * Writeback (from execution units)
433   */
434  for (wb <- exuWBs) {
435    when(wb.valid) {
436      val wbIdx = wb.bits.robIdx.value
437      debug_exuData(wbIdx) := wb.bits.data(0)
438      debug_exuDebug(wbIdx) := wb.bits.debug
439      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
440      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
441      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
442      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
443
444      // debug for lqidx and sqidx
445      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
446      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
447
448      val debug_Uop = debug_microOp(wbIdx)
449      XSInfo(true.B,
450        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
451          p"data 0x${Hexadecimal(wb.bits.data(0))} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
452          p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
453      )
454    }
455  }
456
457  val writebackNum = PopCount(exuWBs.map(_.valid))
458  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
459
460  for (i <- 0 until LoadPipelineWidth) {
461    when(RegNext(io.lsq.mmio(i))) {
462      robEntries(RegEnable(io.lsq.uop(i).robIdx, io.lsq.mmio(i)).value).mmio := true.B
463    }
464  }
465
466
467  /**
468   * RedirectOut: Interrupt and Exceptions
469   */
470  val deqDispatchData = robEntries(deqPtr.value)
471  val debug_deqUop = debug_microOp(deqPtr.value)
472
473  val deqPtrEntry = robDeqGroup(deqPtr.value(bankAddrWidth-1,0))
474  val deqPtrEntryValid = deqPtrEntry.commit_v
475  val intrBitSetReg = RegNext(io.csr.intrBitSet)
476  val intrEnable = intrBitSetReg && !hasWaitForward && deqPtrEntry.interrupt_safe
477  val deqNeedFlush = deqPtrEntry.needFlush && deqPtrEntry.commit_v && deqPtrEntry.commit_w
478  val deqHitExceptionGenState = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
479  val deqNeedFlushAndHitExceptionGenState = deqNeedFlush && deqHitExceptionGenState
480  val exceptionGenStateIsException = exceptionDataRead.bits.exceptionVec.asUInt.orR || exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.canFire
481  val deqHasException = deqNeedFlushAndHitExceptionGenState && exceptionGenStateIsException
482  val deqHasFlushPipe = deqNeedFlushAndHitExceptionGenState && exceptionDataRead.bits.flushPipe
483  val deqHasReplayInst = deqNeedFlushAndHitExceptionGenState && exceptionDataRead.bits.replayInst
484
485  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
486  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getFrontendCanFire, "Debug Mode: Deq has frontend trigger exception\n")
487  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getBackendCanFire, "Debug Mode: Deq has backend trigger exception\n")
488
489  val isFlushPipe = deqPtrEntry.commit_w && (deqHasFlushPipe || deqHasReplayInst)
490
491  val isVsetFlushPipe = deqPtrEntry.commit_w && deqHasFlushPipe && exceptionDataRead.bits.isVset
492  //  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
493  val needModifyFtqIdxOffset = false.B
494  io.isVsetFlushPipe := isVsetFlushPipe
495  // io.flushOut will trigger redirect at the next cycle.
496  // Block any redirect or commit at the next cycle.
497  val lastCycleFlush = RegNext(io.flushOut.valid)
498
499  io.flushOut.valid := (state === s_idle) && deqPtrEntryValid && (intrEnable || deqHasException || isFlushPipe) && !lastCycleFlush
500  io.flushOut.bits := DontCare
501  io.flushOut.bits.isRVC := deqDispatchData.isRVC
502  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
503  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
504  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
505  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || deqHasException || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
506  io.flushOut.bits.interrupt := true.B
507  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
508  XSPerfAccumulate("exception_num", io.flushOut.valid && deqHasException)
509  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
510  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
511
512  val exceptionHappen = (state === s_idle) && deqPtrEntryValid && (intrEnable || deqHasException) && !lastCycleFlush
513  io.exception.valid := RegNext(exceptionHappen)
514  io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen)
515  io.exception.bits.gpaddr := io.readGPAMemData
516  io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen)
517  io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen)
518  io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
519  io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
520  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
521  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
522  io.exception.bits.isHls := RegEnable(deqDispatchData.isHls, exceptionHappen)
523  io.exception.bits.vls := RegEnable(robEntries(deqPtr.value).vls, exceptionHappen)
524  io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
525
526  // data will be one cycle after valid
527  io.readGPAMemAddr.valid := exceptionHappen
528  io.readGPAMemAddr.bits.ftqPtr := exceptionDataRead.bits.ftqPtr
529  io.readGPAMemAddr.bits.ftqOffset := exceptionDataRead.bits.ftqOffset
530
531  XSDebug(io.flushOut.valid,
532    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
533      p"excp $deqHasException flushPipe $isFlushPipe " +
534      p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
535
536
537  /**
538   * Commits (and walk)
539   * They share the same width.
540   */
541  // T redirect.valid, T+1 use walkPtrVec read robEntries, T+2 start walk, shouldWalkVec used in T+2
542  val shouldWalkVec = Wire(Vec(CommitWidth,Bool()))
543  val walkingPtrVec = RegNext(walkPtrVec)
544  when(io.redirect.valid){
545    shouldWalkVec := 0.U.asTypeOf(shouldWalkVec)
546  }.elsewhen(RegNext(io.redirect.valid)){
547    shouldWalkVec := 0.U.asTypeOf(shouldWalkVec)
548  }.elsewhen(state === s_walk){
549    shouldWalkVec := VecInit(walkingPtrVec.map(_ <= lastWalkPtr).zip(donotNeedWalk).map(x => x._1 && !x._2))
550  }.otherwise(
551    shouldWalkVec := 0.U.asTypeOf(shouldWalkVec)
552  )
553  val walkFinished = walkPtrTrue > lastWalkPtr
554  rab.io.fromRob.walkEnd := state === s_walk && walkFinished
555  vtypeBuffer.io.fromRob.walkEnd := state === s_walk && walkFinished
556
557  require(RenameWidth <= CommitWidth)
558
559  // wiring to csr
560  val (wflags, dirtyFs) = (0 until CommitWidth).map(i => {
561    val v = io.commits.commitValid(i)
562    val info = io.commits.info(i)
563    (v & info.wflags, v & info.dirtyFs)
564  }).unzip
565  val fflags = Wire(Valid(UInt(5.W)))
566  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
567  fflags.bits := wflags.zip(fflagsDataRead).map({
568    case (w, f) => Mux(w, f, 0.U)
569  }).reduce(_ | _)
570  val dirtyVs = (0 until CommitWidth).map(i => {
571    val v = io.commits.commitValid(i)
572    val info = io.commits.info(i)
573    v & info.dirtyVs
574  })
575  val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR
576  val dirty_vs = io.commits.isCommit && VecInit(dirtyVs).asUInt.orR
577
578  val resetVstart = dirty_vs && !io.vstartIsZero
579
580  io.csr.vstart.valid := RegNext(Mux(exceptionHappen, exceptionDataRead.bits.vstartEn, resetVstart))
581  io.csr.vstart.bits := RegNext(Mux(exceptionHappen, exceptionDataRead.bits.vstart, 0.U))
582
583  val vxsat = Wire(Valid(Bool()))
584  vxsat.valid := io.commits.isCommit && vxsat.bits
585  vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map {
586    case (valid, vxsat) => valid & vxsat
587  }.reduce(_ | _)
588
589  // when mispredict branches writeback, stop commit in the next 2 cycles
590  // TODO: don't check all exu write back
591  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
592    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
593  ).toSeq)).orR
594  val misPredBlockCounter = Reg(UInt(3.W))
595  misPredBlockCounter := Mux(misPredWb,
596    "b111".U,
597    misPredBlockCounter >> 1.U
598  )
599  val misPredBlock = misPredBlockCounter(0)
600  val deqFlushBlockCounter = Reg(UInt(3.W))
601  val deqFlushBlock = deqFlushBlockCounter(0)
602  val deqHasFlushed = Reg(Bool())
603  val deqHitRedirectReg = RegNext(io.redirect.valid && io.redirect.bits.robIdx === deqPtr)
604  when(deqNeedFlush && deqHitRedirectReg){
605    deqFlushBlockCounter := "b111".U
606  }.otherwise{
607    deqFlushBlockCounter := deqFlushBlockCounter >> 1.U
608  }
609  when(deqNeedFlush && io.flushOut.valid){
610    deqHasFlushed := true.B
611  }.elsewhen(!deqNeedFlush){
612    deqHasFlushed := false.B
613  }
614  val blockCommit = misPredBlock || lastCycleFlush || hasWFI || io.redirect.valid || (deqNeedFlush && !deqHasFlushed && !deqHasFlushPipe) || deqFlushBlock
615
616  io.commits.isWalk := state === s_walk
617  io.commits.isCommit := state === s_idle && !blockCommit
618
619  val walk_v = VecInit(walkingPtrVec.map(ptr => robEntries(ptr.value).valid))
620  val commit_vDeqGroup = VecInit(robDeqGroup.map(_.commit_v))
621  val commit_wDeqGroup = VecInit(robDeqGroup.map(_.commit_w))
622  val realCommitLast = deqPtrVec(0).lineHeadPtr + Fill(bankAddrWidth, 1.U)
623  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_wDeqGroup(i) && !hasCommitted(i)))
624  val allowOnlyOneCommit = VecInit(robDeqGroup.map(x => x.commit_v && x.needFlush)).asUInt.orR || intrBitSetReg
625  // for instructions that may block others, we don't allow them to commit
626  io.commits.commitValid := PriorityMux(commitValidThisLine, (0 until CommitWidth).map(i => (commitValidThisLine.asUInt >> i).asUInt.asTypeOf(io.commits.commitValid)))
627
628  for (i <- 0 until CommitWidth) {
629    // defaults: state === s_idle and instructions commit
630    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
631    val isBlocked = intrEnable || (deqNeedFlush && !deqHasFlushed && !deqHasFlushPipe)
632    val isBlockedByOlder = if (i != 0) commit_block.asUInt(i, 0).orR || allowOnlyOneCommit && !hasCommitted.asUInt(i - 1, 0).andR else false.B
633    commitValidThisLine(i) := commit_vDeqGroup(i) && commit_wDeqGroup(i) && !isBlocked && !isBlockedByOlder && !hasCommitted(i)
634    io.commits.info(i) := commitInfo(i)
635    io.commits.robIdx(i) := deqPtrVec(i)
636
637    io.commits.walkValid(i) := shouldWalkVec(i)
638    when(state === s_walk) {
639      when(io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
640        XSError(!walk_v(i), s"The walking entry($i) should be valid\n")
641      }
642    }
643
644    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
645      "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n",
646      debug_microOp(deqPtrVec(i).value).pc,
647      io.commits.info(i).rfWen,
648      io.commits.info(i).debug_ldest.getOrElse(0.U),
649      io.commits.info(i).debug_pdest.getOrElse(0.U),
650      debug_exuData(deqPtrVec(i).value),
651      fflagsDataRead(i),
652      vxsatDataRead(i)
653    )
654    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
655      debug_microOp(walkPtrVec(i).value).pc,
656      io.commits.info(i).rfWen,
657      io.commits.info(i).debug_ldest.getOrElse(0.U),
658      debug_exuData(walkPtrVec(i).value)
659    )
660  }
661
662  // sync fflags/dirty_fs/vxsat to csr
663  io.csr.fflags := RegNext(fflags)
664  io.csr.dirty_fs := RegNext(dirty_fs)
665  io.csr.dirty_vs := RegNext(dirty_vs)
666  io.csr.vxsat := RegNext(vxsat)
667
668  // commit load/store to lsq
669  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
670  // TODO: Check if meet the require that only set scommit when commit scala store uop
671  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE && !robEntries(deqPtrVec(i).value).vls ))
672  val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr)))
673  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
674  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
675  // indicate a pending load or store
676  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && robEntries(deqPtr.value).valid && robEntries(deqPtr.value).mmio)
677  // TODO: Check if need deassert pendingst when it is vst
678  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && robEntries(deqPtr.value).valid)
679  // TODO: Check if set correctly when vector store is at the head of ROB
680  io.lsq.pendingVst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && robEntries(deqPtr.value).valid && robEntries(deqPtr.value).vls)
681  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
682  io.lsq.pendingPtr := RegNext(deqPtr)
683  io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head)
684
685  /**
686   * state changes
687   * (1) redirect: switch to s_walk
688   * (2) walk: when walking comes to the end, switch to s_idle
689   */
690  val state_next = Mux(
691    io.redirect.valid || RegNext(io.redirect.valid), s_walk,
692    Mux(
693      state === s_walk && walkFinished && rab.io.status.walkEnd && vtypeBuffer.io.status.walkEnd, s_idle,
694      state
695    )
696  )
697  XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle)
698  XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk)
699  XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle)
700  XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk)
701  state := state_next
702
703  /**
704   * pointers and counters
705   */
706  val deqPtrGenModule = Module(new NewRobDeqPtrWrapper)
707  deqPtrGenModule.io.state := state
708  deqPtrGenModule.io.deq_v := commit_vDeqGroup
709  deqPtrGenModule.io.deq_w := commit_wDeqGroup
710  deqPtrGenModule.io.exception_state := exceptionDataRead
711  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
712  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
713  deqPtrGenModule.io.allowOnlyOneCommit := allowOnlyOneCommit
714  deqPtrGenModule.io.interrupt_safe := robDeqGroup(deqPtr.value(bankAddrWidth-1,0)).interrupt_safe
715  deqPtrGenModule.io.blockCommit := blockCommit
716  deqPtrGenModule.io.hasCommitted := hasCommitted
717  deqPtrGenModule.io.allCommitted := allCommitted
718  deqPtrVec := deqPtrGenModule.io.out
719  deqPtrVec_next := deqPtrGenModule.io.next_out
720
721  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
722  enqPtrGenModule.io.redirect := io.redirect
723  enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq
724  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
725  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop))
726  enqPtrVec := enqPtrGenModule.io.out
727
728  // next walkPtrVec:
729  // (1) redirect occurs: update according to state
730  // (2) walk: move forwards
731  val deqPtrReadBank = deqPtrVec_next(0).lineHeadPtr
732  val deqPtrVecForWalk = VecInit((0 until CommitWidth).map(i => deqPtrReadBank + i.U))
733  val snapPtrReadBank = snapshots(io.snpt.snptSelect)(0).lineHeadPtr
734  val snapPtrVecForWalk = VecInit((0 until CommitWidth).map(i => snapPtrReadBank + i.U))
735  val walkPtrVec_next: Vec[RobPtr] = Mux(io.redirect.valid,
736    Mux(io.snpt.useSnpt, snapPtrVecForWalk, deqPtrVecForWalk),
737    Mux((state === s_walk) && !walkFinished, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
738  )
739  val walkPtrTrue_next: RobPtr = Mux(io.redirect.valid,
740    Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect)(0), deqPtrVec_next(0)),
741    Mux((state === s_walk) && !walkFinished, walkPtrVec_next.head, walkPtrTrue)
742  )
743  walkPtrHead := walkPtrVec_next.head
744  walkPtrVec := walkPtrVec_next
745  walkPtrTrue := walkPtrTrue_next
746  // T io.redirect.valid, T+1 walkPtrLowBits update, T+2 donotNeedWalk update
747  val walkPtrLowBits = Reg(UInt(bankAddrWidth.W))
748  when(io.redirect.valid){
749    walkPtrLowBits := Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect)(0).value(bankAddrWidth-1, 0), deqPtrVec_next(0).value(bankAddrWidth-1, 0))
750  }
751  when(io.redirect.valid) {
752    donotNeedWalk := Fill(donotNeedWalk.length, true.B).asTypeOf(donotNeedWalk)
753  }.elsewhen(RegNext(io.redirect.valid)){
754    donotNeedWalk := (0 until CommitWidth).map(i => (i.U < walkPtrLowBits))
755  }.otherwise{
756    donotNeedWalk := 0.U.asTypeOf(donotNeedWalk)
757  }
758  walkDestSizeDeqGroup.zip(walkPtrVec_next).map {
759    case (reg, ptrNext) => reg := robEntries(deqPtr.value).realDestSize
760  }
761  val numValidEntries = distanceBetween(enqPtr, deqPtr)
762  val commitCnt = PopCount(io.commits.commitValid)
763
764  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - CommitWidth).U
765
766  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
767  when(io.redirect.valid) {
768    lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx)
769  }
770
771
772  /**
773   * States
774   * We put all the stage bits changes here.
775   *
776   * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
777   * All states: (1) valid; (2) writebacked; (3) flagBkup
778   */
779
780  val deqPtrGroup = Wire(Vec(2 * CommitWidth, new RobPtr))
781  deqPtrGroup.zipWithIndex.map { case (deq, i) => deq := deqPtrVec(0) + i.U }
782  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
783
784  val redirectValidReg = RegNext(io.redirect.valid)
785  val redirectBegin = Reg(UInt(log2Up(RobSize).W))
786  val redirectEnd = Reg(UInt(log2Up(RobSize).W))
787  when(io.redirect.valid){
788    redirectBegin := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx.value - 1.U, io.redirect.bits.robIdx.value)
789    redirectEnd := enqPtr.value
790  }
791
792  // update robEntries valid
793  for (i <- 0 until RobSize) {
794    val enqOH = VecInit(canEnqueue.zip(allocatePtrVec.map(_.value === i.U)).map(x => x._1 && x._2))
795    val commitCond = io.commits.isCommit && io.commits.commitValid.zip(deqPtrVec.map(_.value === i.U)).map(x => x._1 && x._2).reduce(_ || _)
796    assert(PopCount(enqOH) < 2.U, s"robEntries$i enqOH is not one hot")
797    val needFlush = redirectValidReg && Mux(
798      redirectEnd > redirectBegin,
799      (i.U > redirectBegin) && (i.U < redirectEnd),
800      (i.U > redirectBegin) || (i.U < redirectEnd)
801    )
802    when(reset.asBool) {
803      robEntries(i).valid := false.B
804    }.elsewhen(commitCond) {
805      robEntries(i).valid := false.B
806    }.elsewhen(enqOH.asUInt.orR && !io.redirect.valid) {
807      robEntries(i).valid := true.B
808    }.elsewhen(needFlush){
809      robEntries(i).valid := false.B
810    }
811  }
812
813  // debug_inst update
814  for (i <- 0 until (LduCnt + StaCnt)) {
815    debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i))
816    debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i))
817    debug_lsInfo(io.debug_ls.debugLsInfo(i).s3_robIdx).s3SignalEnable(io.debug_ls.debugLsInfo(i))
818  }
819  for (i <- 0 until LduCnt) {
820    debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i))
821    debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i))
822  }
823
824  // status field: writebacked
825  // enqueue logic set 6 writebacked to false
826  for (i <- 0 until RenameWidth) {
827    when(canEnqueue(i)) {
828      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR
829      val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire
830      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
831      val isStu = FuType.isStore(io.enq.req(i).bits.fuType)
832      robEntries(allocatePtrVec(i).value).commitTrigger := enqIsWritebacked && !enqHasException && !enqHasTriggerCanFire && !isStu
833    }
834  }
835  when(exceptionGen.io.out.valid) {
836    val wbIdx = exceptionGen.io.out.bits.robIdx.value
837    robEntries(wbIdx).commitTrigger := true.B
838  }
839
840  // writeback logic set numWbPorts writebacked to true
841  val blockWbSeq = Wire(Vec(exuWBs.length, Bool()))
842  blockWbSeq.map(_ := false.B)
843  for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) {
844    when(wb.valid) {
845      val wbIdx = wb.bits.robIdx.value
846      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
847      val wbHasTriggerCanFire = wb.bits.trigger.getOrElse(0.U).asTypeOf(io.enq.req(0).bits.trigger).getBackendCanFire //Todo: wb.bits.trigger.getHitBackend
848      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
849      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
850      blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerCanFire
851      robEntries(wbIdx).commitTrigger := !blockWb
852    }
853  }
854
855  // if the first uop of an instruction is valid , write writebackedCounter
856  val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid)
857  val instEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid && req.bits.firstUop)
858  val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf)
859  val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value)
860  val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops))
861  val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB))
862  val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove))
863
864  private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map {
865    req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType)
866  })
867  val fflags_wb = fflagsWBs
868  val vxsat_wb = vxsatWBs
869  for (i <- 0 until RobSize) {
870
871    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U)
872    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch }
873    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch }
874    val instCanEnqFlag = Cat(instCanEnqSeq).orR
875    val realDestEnqNum = PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid })
876    when(!robEntries(i).valid && instCanEnqFlag){
877      robEntries(i).realDestSize := realDestEnqNum
878    }.elsewhen(robEntries(i).valid && Cat(uopCanEnqSeq).orR){
879      robEntries(i).realDestSize := robEntries(i).realDestSize + realDestEnqNum
880    }
881    val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec)
882    val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec)
883    val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec)
884    val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec)
885
886    val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
887    val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map { case (canWb, blockWb) => canWb && !blockWb }
888    val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U))
889    val wbCnt = Mux1H(canWbSeq, io.writebackNums.map(_.bits))
890
891    val canWbExceptionSeq = exceptionWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
892    val needFlush = robEntries(i).needFlush
893    val needFlushWriteBack = Wire(Bool())
894    needFlushWriteBack := Mux1H(canWbExceptionSeq, io.writebackNeedFlush)
895    when(robEntries(i).valid){
896      needFlush := needFlush || needFlushWriteBack
897    }
898
899    when(robEntries(i).valid && (needFlush || needFlushWriteBack)) {
900      // exception flush
901      robEntries(i).uopNum := robEntries(i).uopNum - wbCnt
902      robEntries(i).stdWritebacked := true.B
903    }.elsewhen(!robEntries(i).valid && instCanEnqFlag) {
904      // enq set num of uops
905      robEntries(i).uopNum := enqWBNum
906      robEntries(i).stdWritebacked := Mux(enqWriteStd, false.B, true.B)
907    }.elsewhen(robEntries(i).valid) {
908      // update by writing back
909      robEntries(i).uopNum := robEntries(i).uopNum - wbCnt
910      assert(!(robEntries(i).uopNum - wbCnt > robEntries(i).uopNum), s"robEntries $i uopNum is overflow!")
911      when(canStdWbSeq.asUInt.orR) {
912        robEntries(i).stdWritebacked := true.B
913      }
914    }
915
916    val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B))
917    val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _)
918    robEntries(i).fflags := Mux(!robEntries(i).valid && instCanEnqFlag, 0.U, robEntries(i).fflags | fflagsRes)
919
920    val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
921    val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _)
922    robEntries(i).vxsat := Mux(!robEntries(i).valid && instCanEnqFlag, 0.U, robEntries(i).vxsat | vxsatRes)
923  }
924
925  // begin update robBanksRdata
926  val robBanksRdata = VecInit(robBanksRdataThisLine ++ robBanksRdataNextLine)
927  val needUpdate = Wire(Vec(2 * CommitWidth, new RobEntryBundle))
928  needUpdate := VecInit(robBanksRdataThisLine ++ robBanksRdataNextLine)
929  val needUpdateRobIdx = robIdxThisLine ++ robIdxNextLine
930  for (i <- 0 until 2 * CommitWidth) {
931    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === needUpdateRobIdx(i))
932    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch }
933    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch }
934    val instCanEnqFlag = Cat(instCanEnqSeq).orR
935    val realDestEnqNum = PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid })
936    when(!needUpdate(i).valid && instCanEnqFlag) {
937      needUpdate(i).realDestSize := realDestEnqNum
938    }.elsewhen(needUpdate(i).valid && instCanEnqFlag) {
939      needUpdate(i).realDestSize := robBanksRdata(i).realDestSize + realDestEnqNum
940    }
941    val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec)
942    val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec)
943    val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec)
944    val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec)
945
946    val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i))
947    val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map { case (canWb, blockWb) => canWb && !blockWb }
948    val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i)))
949    val wbCnt = Mux1H(canWbSeq, io.writebackNums.map(_.bits))
950
951    val canWbExceptionSeq = exceptionWBs.map(writeback => writeback.valid && (writeback.bits.robIdx.value === needUpdateRobIdx(i)))
952    val needFlush = robBanksRdata(i).needFlush
953    val needFlushWriteBack = Wire(Bool())
954    needFlushWriteBack := Mux1H(canWbExceptionSeq, io.writebackNeedFlush)
955    when(needUpdate(i).valid) {
956      needUpdate(i).needFlush := needFlush || needFlushWriteBack
957    }
958
959    when(needUpdate(i).valid && (needFlush || needFlushWriteBack)) {
960      // exception flush
961      needUpdate(i).uopNum := robBanksRdata(i).uopNum - wbCnt
962      needUpdate(i).stdWritebacked := true.B
963    }.elsewhen(!needUpdate(i).valid && instCanEnqFlag) {
964      // enq set num of uops
965      needUpdate(i).uopNum := enqWBNum
966      needUpdate(i).stdWritebacked := Mux(enqWriteStd, false.B, true.B)
967    }.elsewhen(needUpdate(i).valid) {
968      // update by writing back
969      needUpdate(i).uopNum := robBanksRdata(i).uopNum - wbCnt
970      when(canStdWbSeq.asUInt.orR) {
971        needUpdate(i).stdWritebacked := true.B
972      }
973    }
974
975    val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i) && writeback.bits.wflags.getOrElse(false.B))
976    val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _)
977    needUpdate(i).fflags := Mux(!robBanksRdata(i).valid && instCanEnqFlag, 0.U, robBanksRdata(i).fflags | fflagsRes)
978
979    val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i))
980    val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _)
981    needUpdate(i).vxsat := Mux(!robBanksRdata(i).valid && instCanEnqFlag, 0.U, robBanksRdata(i).vxsat | vxsatRes)
982  }
983  robBanksRdataThisLineUpdate := VecInit(needUpdate.take(8))
984  robBanksRdataNextLineUpdate := VecInit(needUpdate.drop(8))
985  // end update robBanksRdata
986
987  // interrupt_safe
988  for (i <- 0 until RenameWidth) {
989    // We RegNext the updates for better timing.
990    // Note that instructions won't change the system's states in this cycle.
991    when(RegNext(canEnqueue(i))) {
992      // For now, we allow non-load-store instructions to trigger interrupts
993      // For MMIO instructions, they should not trigger interrupts since they may
994      // be sent to lower level before it writes back.
995      // However, we cannot determine whether a load/store instruction is MMIO.
996      // Thus, we don't allow load/store instructions to trigger an interrupt.
997      // TODO: support non-MMIO load-store instructions to trigger interrupts
998      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
999      robEntries(RegEnable(allocatePtrVec(i).value, canEnqueue(i))).interrupt_safe := RegEnable(allow_interrupts, canEnqueue(i))
1000    }
1001  }
1002
1003  /**
1004   * read and write of data modules
1005   */
1006  val commitReadAddr_next = Mux(state_next === s_idle,
1007    VecInit(deqPtrVec_next.map(_.value)),
1008    VecInit(walkPtrVec_next.map(_.value))
1009  )
1010
1011  exceptionGen.io.redirect <> io.redirect
1012  exceptionGen.io.flush := io.flushOut.valid
1013
1014  val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept))
1015  for (i <- 0 until RenameWidth) {
1016    exceptionGen.io.enq(i).valid := canEnqueueEG(i)
1017    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1018    exceptionGen.io.enq(i).bits.ftqPtr := io.enq.req(i).bits.ftqPtr
1019    exceptionGen.io.enq(i).bits.ftqOffset := io.enq.req(i).bits.ftqOffset
1020    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
1021    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
1022    exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset
1023    exceptionGen.io.enq(i).bits.replayInst := false.B
1024    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
1025    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
1026    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
1027    exceptionGen.io.enq(i).bits.trigger.clear()
1028    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
1029    exceptionGen.io.enq(i).bits.trigger.frontendCanFire := io.enq.req(i).bits.trigger.frontendCanFire
1030    exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare
1031    exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare
1032  }
1033
1034  println(s"ExceptionGen:")
1035  println(s"num of exceptions: ${params.numException}")
1036  require(exceptionWBs.length == exceptionGen.io.wb.length,
1037    f"exceptionWBs.length: ${exceptionWBs.length}, " +
1038      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
1039  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
1040    exc_wb.valid       := wb.valid
1041    exc_wb.bits.robIdx := wb.bits.robIdx
1042    // only enq inst use ftqPtr to read gpa
1043    exc_wb.bits.ftqPtr          := 0.U.asTypeOf(exc_wb.bits.ftqPtr)
1044    exc_wb.bits.ftqOffset       := 0.U.asTypeOf(exc_wb.bits.ftqOffset)
1045    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
1046    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
1047    exc_wb.bits.isVset          := false.B
1048    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
1049    exc_wb.bits.singleStep      := false.B
1050    exc_wb.bits.crossPageIPFFix := false.B
1051    // TODO: make trigger configurable
1052    val trigger = wb.bits.trigger.getOrElse(0.U).asTypeOf(exc_wb.bits.trigger)
1053    exc_wb.bits.trigger.clear() // Don't care frontend timing, chain, hit and canFire
1054    exc_wb.bits.trigger.backendHit := trigger.backendHit
1055    exc_wb.bits.trigger.backendCanFire := trigger.backendCanFire
1056    exc_wb.bits.vstartEn := false.B //wb.bits.vstartEn.getOrElse(false.B) // todo need add vstart in ExuOutput
1057    exc_wb.bits.vstart := 0.U //wb.bits.vstart.getOrElse(0.U)
1058    //    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1059    //      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1060    //      s"replayInst ${configs.exists(_.replayInst)}")
1061  }
1062
1063  fflagsDataRead := (0 until CommitWidth).map(i => robEntries(deqPtrVec(i).value).fflags)
1064  vxsatDataRead := (0 until CommitWidth).map(i => robEntries(deqPtrVec(i).value).vxsat)
1065
1066  val instrCntReg = RegInit(0.U(64.W))
1067  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map { case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1068  val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map { case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt
1069  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1070  val instrCnt = instrCntReg + retireCounter
1071  instrCntReg := instrCnt
1072  io.csr.perfinfo.retiredInstr := retireCounter
1073  io.robFull := !allowEnqueue
1074  io.headNotReady := commit_vDeqGroup.head && !commit_wDeqGroup.head
1075
1076  /**
1077   * debug info
1078   */
1079  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1080  XSDebug("")
1081  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
1082  for (i <- 0 until RobSize) {
1083    XSDebug(false, !robEntries(i).valid, "-")
1084    XSDebug(false, robEntries(i).valid && robEntries(i).isWritebacked, "w")
1085    XSDebug(false, robEntries(i).valid && !robEntries(i).isWritebacked, "v")
1086  }
1087  XSDebug(false, true.B, "\n")
1088
1089  for (i <- 0 until RobSize) {
1090    if (i % 4 == 0) XSDebug("")
1091    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
1092    XSDebug(false, !robEntries(i).valid, "- ")
1093    XSDebug(false, robEntries(i).valid && robEntries(i).isWritebacked, "w ")
1094    XSDebug(false, robEntries(i).valid && !robEntries(i).isWritebacked, "v ")
1095    if (i % 4 == 3) XSDebug(false, true.B, "\n")
1096  }
1097
1098  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1099
1100  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1101
1102  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1103  XSPerfAccumulate("clock_cycle", 1.U)
1104  QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U)
1105  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1106  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1107  XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset)
1108  XSPerfRolling("cpi", perfCnt = 1.U /*Cycle*/ , eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset)
1109  val commitIsMove = commitInfo.map(_.isMove)
1110  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map { case (v, m) => v && m })))
1111  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1112  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1113  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1114  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1115  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map { case (v, t) => v && t }
1116  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1117  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1118  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map { case (v, t) => v && t }
1119  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1120  val commitLoadWaitBit = commitInfo.map(_.loadWaitBit)
1121  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map { case (v, w) => v && w })))
1122  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1123  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map { case (v, t) => v && t })))
1124  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => robEntries(i).valid && robEntries(i).isWritebacked)))
1125  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1126  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1127  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1128  XSPerfAccumulate("walkCycleTotal", state === s_walk)
1129  XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd)
1130  private val walkCycle = RegInit(0.U(8.W))
1131  private val waitRabWalkCycle = RegInit(0.U(8.W))
1132  walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1133  waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1134
1135  XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32)
1136  XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32)
1137  XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32)
1138
1139  private val deqNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).isWritebacked
1140  private val deqStdNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).stdWritebacked
1141  private val deqUopNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).isUopWritebacked
1142  private val deqHeadInfo = debug_microOp(deqPtr.value)
1143  val deqUopCommitType = debug_microOp(deqPtr.value).commitType
1144
1145  XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U)
1146  XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U)
1147  XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U)
1148  XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U)
1149  XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U)
1150  XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U)
1151  XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U)
1152  XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U)
1153  XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U)
1154  XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1155  XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1156  XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1157  XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U)
1158
1159  XSPerfAccumulate("waitVfaluCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfalu.U)
1160  XSPerfAccumulate("waitVfmaCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfma.U)
1161  XSPerfAccumulate("waitVfdivCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfdiv.U)
1162
1163  val vfalufuop = Seq(VfaluType.vfadd, VfaluType.vfwadd, VfaluType.vfwadd_w, VfaluType.vfsub, VfaluType.vfwsub, VfaluType.vfwsub_w, VfaluType.vfmin, VfaluType.vfmax,
1164    VfaluType.vfmerge, VfaluType.vfmv, VfaluType.vfsgnj, VfaluType.vfsgnjn, VfaluType.vfsgnjx, VfaluType.vfeq, VfaluType.vfne, VfaluType.vflt, VfaluType.vfle, VfaluType.vfgt,
1165    VfaluType.vfge, VfaluType.vfclass, VfaluType.vfmv_f_s, VfaluType.vfmv_s_f, VfaluType.vfredusum, VfaluType.vfredmax, VfaluType.vfredmin, VfaluType.vfredosum, VfaluType.vfwredosum)
1166
1167  vfalufuop.zipWithIndex.map{
1168    case(fuoptype,i) =>  XSPerfAccumulate(s"waitVfalu_${i}Cycle", deqStdNotWritebacked && deqHeadInfo.fuOpType === fuoptype && deqHeadInfo.fuType === FuType.vfalu.U)
1169  }
1170
1171
1172
1173  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1174  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1175  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1176  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1177  XSPerfAccumulate("robHeadPC", io.commits.info(0).debug_pc.getOrElse(0.U))
1178  XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U }))
1179  (2 to RenameWidth).foreach(i =>
1180    XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.instrSize === i.U }))
1181  )
1182  XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _))
1183  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1184  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1185  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1186  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1187  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1188  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1189  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1190
1191  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1192    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1193  }
1194
1195  for (fuType <- FuType.functionNameMap.keys) {
1196    val fuName = FuType.functionNameMap(fuType)
1197    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U)
1198    XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset)
1199    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1200    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1201    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1202    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1203    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1204    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1205    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1206    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1207  }
1208  XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt)
1209
1210  // top-down info
1211  io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid
1212  io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits
1213  io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid
1214  io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits
1215  io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt)
1216  io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value)
1217  io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value)
1218  io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx
1219
1220  // rolling
1221  io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt)
1222
1223  /**
1224   * DataBase info:
1225   * log trigger is at writeback valid
1226   * */
1227
1228  /**
1229   * @todo add InstInfoEntry back
1230   * @author Maxpicca-Li
1231   */
1232
1233  //difftest signals
1234  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1235
1236  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1237  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1238
1239  for (i <- 0 until CommitWidth) {
1240    val idx = deqPtrVec(i).value
1241    wdata(i) := debug_exuData(idx)
1242    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1243  }
1244
1245  if (env.EnableDifftest || env.AlwaysBasicDiff) {
1246    // These are the structures used by difftest only and should be optimized after synthesis.
1247    val dt_eliminatedMove = Mem(RobSize, Bool())
1248    val dt_isRVC = Mem(RobSize, Bool())
1249    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1250    for (i <- 0 until RenameWidth) {
1251      when(canEnqueue(i)) {
1252        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1253        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1254      }
1255    }
1256    for (wb <- exuWBs) {
1257      when(wb.valid) {
1258        val wbIdx = wb.bits.robIdx.value
1259        dt_exuDebug(wbIdx) := wb.bits.debug
1260      }
1261    }
1262    // Always instantiate basic difftest modules.
1263    for (i <- 0 until CommitWidth) {
1264      val uop = commitDebugUop(i)
1265      val commitInfo = io.commits.info(i)
1266      val ptr = deqPtrVec(i).value
1267      val exuOut = dt_exuDebug(ptr)
1268      val eliminatedMove = dt_eliminatedMove(ptr)
1269      val isRVC = dt_isRVC(ptr)
1270
1271      val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true)
1272      val dt_skip = Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)
1273      difftest.coreid := io.hartId
1274      difftest.index := i.U
1275      difftest.valid := io.commits.commitValid(i) && io.commits.isCommit
1276      difftest.skip := dt_skip
1277      difftest.isRVC := isRVC
1278      difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.debug_ldest.get =/= 0.U
1279      difftest.fpwen := io.commits.commitValid(i) && uop.fpWen
1280      difftest.wpdest := commitInfo.debug_pdest.get
1281      difftest.wdest := commitInfo.debug_ldest.get
1282      difftest.nFused := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U
1283      when(difftest.valid) {
1284        assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U)
1285      }
1286      if (env.EnableDifftest) {
1287        val uop = commitDebugUop(i)
1288        difftest.pc := SignExt(uop.pc, XLEN)
1289        difftest.instr := uop.instr
1290        difftest.robIdx := ZeroExt(ptr, 10)
1291        difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7)
1292        difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7)
1293        difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD
1294        difftest.isStore := io.commits.info(i).commitType === CommitType.STORE
1295        // Check LoadEvent only when isAmo or isLoad and skip MMIO
1296        val difftestLoadEvent = DifftestModule(new DiffLoadEvent, delay = 3)
1297        difftestLoadEvent.coreid := io.hartId
1298        difftestLoadEvent.index := i.U
1299        val loadCheck = (FuType.isAMO(uop.fuType) || FuType.isLoad(uop.fuType)) && !dt_skip
1300        difftestLoadEvent.valid    := io.commits.commitValid(i) && io.commits.isCommit && loadCheck
1301        difftestLoadEvent.paddr    := exuOut.paddr
1302        difftestLoadEvent.opType   := uop.fuOpType
1303        difftestLoadEvent.isAtomic := FuType.isAMO(uop.fuType)
1304        difftestLoadEvent.isLoad   := FuType.isLoad(uop.fuType)
1305      }
1306    }
1307  }
1308
1309  if (env.EnableDifftest || env.AlwaysBasicDiff) {
1310    val dt_isXSTrap = Mem(RobSize, Bool())
1311    for (i <- 0 until RenameWidth) {
1312      when(canEnqueue(i)) {
1313        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1314      }
1315    }
1316    val trapVec = io.commits.commitValid.zip(deqPtrVec).map { case (v, d) =>
1317      io.commits.isCommit && v && dt_isXSTrap(d.value)
1318    }
1319    val hitTrap = trapVec.reduce(_ || _)
1320    val difftest = DifftestModule(new DiffTrapEvent, dontCare = true)
1321    difftest.coreid := io.hartId
1322    difftest.hasTrap := hitTrap
1323    difftest.cycleCnt := timer
1324    difftest.instrCnt := instrCnt
1325    difftest.hasWFI := hasWFI
1326
1327    if (env.EnableDifftest) {
1328      val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1329      val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 -> x._1)), XLEN)
1330      difftest.code := trapCode
1331      difftest.pc := trapPC
1332    }
1333  }
1334
1335  val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(robEntries.map(_.valid).drop(i * 32).take(32))))
1336  val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _))
1337  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map { case (v, m) => v && m })
1338  val commitLoadVec = VecInit(commitLoadValid)
1339  val commitBranchVec = VecInit(commitBranchValid)
1340  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map { case (v, w) => v && w })
1341  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map { case (v, t) => v && t })
1342  val perfEvents = Seq(
1343    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable),
1344    ("rob_exception_num      ", io.flushOut.valid && deqHasException),
1345    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe),
1346    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst),
1347    ("rob_commitUop          ", ifCommit(commitCnt)),
1348    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)),
1349    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))),
1350    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)),
1351    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))),
1352    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))),
1353    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))),
1354    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))),
1355    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)),
1356    ("rob_walkCycle          ", (state === s_walk)),
1357    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U),
1358    ("rob_2_4_valid          ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U),
1359    ("rob_3_4_valid          ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1360    ("rob_4_4_valid          ", validEntries > (RobSize * 3 / 4).U),
1361  )
1362  generatePerfEvent()
1363
1364  // dontTouch for debug
1365  if (backendParams.debugEn) {
1366    dontTouch(enqPtrVec)
1367    dontTouch(deqPtrVec)
1368    dontTouch(robEntries)
1369    dontTouch(robDeqGroup)
1370    dontTouch(robBanks)
1371    dontTouch(robBanksRaddrThisLine)
1372    dontTouch(robBanksRaddrNextLine)
1373    dontTouch(robBanksRdataThisLine)
1374    dontTouch(robBanksRdataNextLine)
1375    dontTouch(robBanksRdataThisLineUpdate)
1376    dontTouch(robBanksRdataNextLineUpdate)
1377    dontTouch(needUpdate)
1378    val exceptionWBsVec = MixedVecInit(exceptionWBs)
1379    dontTouch(exceptionWBsVec)
1380    dontTouch(commit_wDeqGroup)
1381    dontTouch(commit_vDeqGroup)
1382    dontTouch(commitSizeSumSeq)
1383    dontTouch(walkSizeSumSeq)
1384    dontTouch(commitSizeSumCond)
1385    dontTouch(walkSizeSumCond)
1386    dontTouch(commitSizeSum)
1387    dontTouch(walkSizeSum)
1388    dontTouch(realDestSizeSeq)
1389    dontTouch(walkDestSizeSeq)
1390    dontTouch(io.commits)
1391    dontTouch(commitIsVTypeVec)
1392    dontTouch(walkIsVTypeVec)
1393    dontTouch(commitValidThisLine)
1394    dontTouch(commitReadAddr_next)
1395    dontTouch(donotNeedWalk)
1396    dontTouch(walkPtrVec_next)
1397    dontTouch(walkPtrVec)
1398    dontTouch(deqPtrVec_next)
1399    dontTouch(deqPtrVecForWalk)
1400    dontTouch(snapPtrReadBank)
1401    dontTouch(snapPtrVecForWalk)
1402    dontTouch(shouldWalkVec)
1403    dontTouch(walkFinished)
1404    dontTouch(changeBankAddrToDeqPtr)
1405  }
1406  if (env.EnableDifftest) {
1407    io.commits.info.map(info => dontTouch(info.debug_pc.get))
1408  }
1409}
1410