xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 4365a7a75aa771315c433fda18d154781aabd60f)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utils._
25import utility._
26import xiangshan._
27import xiangshan.backend.exu.ExuConfig
28import xiangshan.frontend.FtqPtr
29import xiangshan.backend.decode.VectorConstants
30
31class DebugMdpInfo(implicit p: Parameters) extends XSBundle{
32  val ssid = UInt(SSIDWidth.W)
33  val waitAllStore = Bool()
34}
35
36class DebugLsInfo(implicit p: Parameters) extends XSBundle{
37  val s1 = new Bundle{
38    val isTlbFirstMiss = Bool() // in s1
39    val isBankConflict = Bool() // in s1
40    val isLoadToLoadForward = Bool()
41    val isReplayFast = Bool()
42  }
43  val s2 = new Bundle{
44    val isDcacheFirstMiss = Bool() // in s2 (predicted result is in s1 when using WPU, real result is in s2)
45    val isForwardFail = Bool() // in s2
46    val isReplaySlow = Bool()
47    val isLoadReplayTLBMiss = Bool()
48    val isLoadReplayCacheMiss = Bool()
49  }
50  val replayCnt = UInt(XLEN.W)
51
52  def s1SignalEnable(ena: DebugLsInfo) = {
53    when(ena.s1.isTlbFirstMiss) { s1.isTlbFirstMiss := true.B }
54    when(ena.s1.isBankConflict) { s1.isBankConflict := true.B }
55    when(ena.s1.isLoadToLoadForward) { s1.isLoadToLoadForward := true.B }
56    when(ena.s1.isReplayFast) {
57      s1.isReplayFast := true.B
58      replayCnt := replayCnt + 1.U
59    }
60  }
61
62  def s2SignalEnable(ena: DebugLsInfo) = {
63    when(ena.s2.isDcacheFirstMiss) { s2.isDcacheFirstMiss := true.B }
64    when(ena.s2.isForwardFail) { s2.isForwardFail := true.B }
65    when(ena.s2.isLoadReplayTLBMiss) { s2.isLoadReplayTLBMiss := true.B }
66    when(ena.s2.isLoadReplayCacheMiss) { s2.isLoadReplayCacheMiss := true.B }
67    when(ena.s2.isReplaySlow) {
68      s2.isReplaySlow := true.B
69      replayCnt := replayCnt + 1.U
70    }
71  }
72
73}
74object DebugLsInfo{
75  def init(implicit p: Parameters): DebugLsInfo = {
76    val lsInfo = Wire(new DebugLsInfo)
77    lsInfo.s1.isTlbFirstMiss := false.B
78    lsInfo.s1.isBankConflict := false.B
79    lsInfo.s1.isLoadToLoadForward := false.B
80    lsInfo.s1.isReplayFast := false.B
81    lsInfo.s2.isDcacheFirstMiss := false.B
82    lsInfo.s2.isForwardFail := false.B
83    lsInfo.s2.isReplaySlow := false.B
84    lsInfo.s2.isLoadReplayTLBMiss := false.B
85    lsInfo.s2.isLoadReplayCacheMiss := false.B
86    lsInfo.replayCnt := 0.U
87    lsInfo
88  }
89
90}
91class DebugLsInfoBundle(implicit p: Parameters) extends DebugLsInfo {
92  // unified processing at the end stage of load/store  ==> s2  ==> bug that will write error robIdx data
93  val s1_robIdx = UInt(log2Ceil(RobSize).W)
94  val s2_robIdx = UInt(log2Ceil(RobSize).W)
95}
96class DebugLSIO(implicit p: Parameters) extends XSBundle {
97  val debugLsInfo = Vec(exuParameters.LduCnt + exuParameters.StuCnt, Output(new DebugLsInfoBundle))
98}
99
100class DebugInstDB(implicit p: Parameters) extends XSBundle{
101  val globalID = UInt(XLEN.W)
102  val robIdx = UInt(log2Ceil(RobSize).W)
103  val instType = FuType()
104  val exceptType = ExceptionVec()
105  val ivaddr = UInt(VAddrBits.W)
106  val dvaddr = UInt(VAddrBits.W) // the l/s access address
107  val dpaddr = UInt(VAddrBits.W) // need the physical address when the TLB is valid
108  val tlbLatency = UInt(XLEN.W)  // original requirements is L1toL2TlbLatency
109  // val levelTlbHit = UInt(2.W) // 01, 10, 11(memory)
110  // val otherPerfNoteThing // FIXME: how much?
111  val accessLatency = UInt(XLEN.W)  // RS out time --> write back time
112  val executeLatency = UInt(XLEN.W)
113  val issueLatency = UInt(XLEN.W)
114  val lsInfo = new DebugLsInfo
115  val mdpInfo = new DebugMdpInfo
116}
117
118class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr](
119  p => p(XSCoreParamsKey).RobSize
120) with HasCircularQueuePtrHelper {
121
122  def needFlush(redirect: Valid[Redirect]): Bool = {
123    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
124    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
125  }
126
127  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
128}
129
130object RobPtr {
131  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
132    val ptr = Wire(new RobPtr)
133    ptr.flag := f
134    ptr.value := v
135    ptr
136  }
137}
138
139class RobCSRIO(implicit p: Parameters) extends XSBundle {
140  val intrBitSet = Input(Bool())
141  val trapTarget = Input(UInt(VAddrBits.W))
142  val isXRet     = Input(Bool())
143  val wfiEvent   = Input(Bool())
144
145  val fflags     = Output(Valid(UInt(5.W)))
146  val vxsat      = Output(Valid(UInt(1.W)))
147  val dirty_fs   = Output(Bool())
148  val perfinfo   = new Bundle {
149    val retiredInstr = Output(UInt(3.W))
150  }
151
152  val vcsrFlag   = Output(Bool())
153}
154
155class RobLsqIO(implicit p: Parameters) extends XSBundle {
156  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
157  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
158  val pendingld = Output(Bool())
159  val pendingst = Output(Bool())
160  val commit = Output(Bool())
161}
162
163class RobEnqIO(implicit p: Parameters) extends XSBundle {
164  val canAccept = Output(Bool())
165  val isEmpty = Output(Bool())
166  // valid vector, for robIdx gen and walk
167  val needAlloc = Vec(RenameWidth, Input(Bool()))
168  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
169  val resp = Vec(RenameWidth, Output(new RobPtr))
170}
171
172class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
173
174class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
175  val io = IO(new Bundle {
176    // for commits/flush
177    val state = Input(UInt(2.W))
178    val deq_v = Vec(CommitWidth, Input(Bool()))
179    val deq_w = Vec(CommitWidth, Input(Bool()))
180    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
181    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
182    val intrBitSetReg = Input(Bool())
183    val hasNoSpecExec = Input(Bool())
184    val interrupt_safe = Input(Bool())
185    val blockCommit = Input(Bool())
186    // output: the CommitWidth deqPtr
187    val out = Vec(CommitWidth, Output(new RobPtr))
188    val next_out = Vec(CommitWidth, Output(new RobPtr))
189  })
190
191  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
192
193  // for exceptions (flushPipe included) and interrupts:
194  // only consider the first instruction
195  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
196  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
197  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
198
199  // for normal commits: only to consider when there're no exceptions
200  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
201  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
202  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
203  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
204  // when io.intrBitSetReg or there're possible exceptions in these instructions,
205  // only one instruction is allowed to commit
206  val allowOnlyOne = commit_exception || io.intrBitSetReg
207  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
208
209  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
210  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
211
212  deqPtrVec := deqPtrVec_next
213
214  io.next_out := deqPtrVec_next
215  io.out      := deqPtrVec
216
217  when (io.state === 0.U) {
218    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
219  }
220
221}
222
223class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
224  val io = IO(new Bundle {
225    // for input redirect
226    val redirect = Input(Valid(new Redirect))
227    // for enqueue
228    val allowEnqueue = Input(Bool())
229    val hasBlockBackward = Input(Bool())
230    val enq = Vec(RenameWidth, Input(Bool()))
231    val out = Output(Vec(RenameWidth, new RobPtr))
232  })
233
234  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
235
236  // enqueue
237  val canAccept = io.allowEnqueue && !io.hasBlockBackward
238  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
239
240  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
241    when(io.redirect.valid) {
242      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
243    }.otherwise {
244      ptr := ptr + dispatchNum
245    }
246  }
247
248  io.out := enqPtrVec
249
250}
251
252class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
253  // val valid = Bool()
254  val robIdx = new RobPtr
255  val exceptionVec = ExceptionVec()
256  val flushPipe = Bool()
257  val isVset = Bool()
258  val replayInst = Bool() // redirect to that inst itself
259  val singleStep = Bool() // TODO add frontend hit beneath
260  val crossPageIPFFix = Bool()
261  val trigger = new TriggerCf
262
263//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
264//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
265  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
266  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
267  // only exceptions are allowed to writeback when enqueue
268  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
269}
270
271class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
272  val io = IO(new Bundle {
273    val redirect = Input(Valid(new Redirect))
274    val flush = Input(Bool())
275    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
276    val wb = Vec(1 + LoadPipelineWidth + StorePipelineWidth, Flipped(ValidIO(new RobExceptionInfo)))
277    val out = ValidIO(new RobExceptionInfo)
278    val state = ValidIO(new RobExceptionInfo)
279  })
280
281  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
282    assert(valid.length == bits.length)
283    assert(isPow2(valid.length))
284    if (valid.length == 1) {
285      (valid, bits)
286    } else if (valid.length == 2) {
287      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
288      for (i <- res.indices) {
289        res(i).valid := valid(i)
290        res(i).bits := bits(i)
291      }
292      val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
293      (Seq(oldest.valid), Seq(oldest.bits))
294    } else {
295      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
296      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
297      getOldest(left._1 ++ right._1, left._2 ++ right._2)
298    }
299  }
300
301  val currentValid = RegInit(false.B)
302  val current = Reg(new RobExceptionInfo)
303
304  // orR the exceptionVec
305  val lastCycleFlush = RegNext(io.flush)
306  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
307  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
308
309  // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth)
310  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
311  val csr_wb_bits = io.wb(0).bits
312  val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0)
313  val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0)
314  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _))))
315  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
316
317  // s1: compare last four and current flush
318  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
319  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
320  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
321  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
322  val s1_out_bits = RegNext(compare_bits)
323  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
324
325  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
326  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
327
328  // s2: compare the input exception with the current one
329  // priorities:
330  // (1) system reset
331  // (2) current is valid: flush, remain, merge, update
332  // (3) current is not valid: s1 or enq
333  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
334  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
335  when (currentValid) {
336    when (current_flush) {
337      currentValid := Mux(s1_flush, false.B, s1_out_valid)
338    }
339    when (s1_out_valid && !s1_flush) {
340      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
341        current := s1_out_bits
342      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
343        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
344        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
345        current.replayInst := s1_out_bits.replayInst || current.replayInst
346        current.singleStep := s1_out_bits.singleStep || current.singleStep
347        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
348      }
349    }
350  }.elsewhen (s1_out_valid && !s1_flush) {
351    currentValid := true.B
352    current := s1_out_bits
353  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
354    currentValid := true.B
355    current := enq_bits
356  }
357
358  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
359  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
360  io.state.valid := currentValid
361  io.state.bits  := current
362
363}
364
365class RobFlushInfo(implicit p: Parameters) extends XSBundle {
366  val ftqIdx = new FtqPtr
367  val robIdx = new RobPtr
368  val ftqOffset = UInt(log2Up(PredictWidth).W)
369  val replayInst = Bool()
370}
371
372class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter {
373
374  lazy val module = new RobImp(this)
375
376  override def generateWritebackIO(
377    thisMod: Option[HasWritebackSource] = None,
378    thisModImp: Option[HasWritebackSourceImp] = None
379  ): Unit = {
380    val sources = writebackSinksImp(thisMod, thisModImp)
381    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
382  }
383}
384
385class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer)
386  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents with VectorConstants{
387  val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs)
388  val numWbPorts = wbExuConfigs.map(_.length)
389
390  val io = IO(new Bundle() {
391    val hartId = Input(UInt(8.W))
392    val redirect = Input(Valid(new Redirect))
393    val enq = new RobEnqIO
394    val flushOut = ValidIO(new Redirect)
395    val isVsetFlushPipe = Output(Bool())
396    val vconfigPdest = Output(UInt(PhyRegIdxWidth.W))
397    val exception = ValidIO(new ExceptionInfo)
398    // exu + brq
399    val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput)))))
400    val commits = Output(new RobCommitIO)
401    val rabCommits = Output(new RobCommitIO)
402    val diffCommits = Output(new DiffCommitIO)
403    val lsq = new RobLsqIO
404    val robDeqPtr = Output(new RobPtr)
405    val csr = new RobCSRIO
406    val robFull = Output(Bool())
407    val cpu_halt = Output(Bool())
408    val wfi_enable = Input(Bool())
409    val debug_ls = Flipped(new DebugLSIO)
410  })
411
412  def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = {
413    wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1))
414  }
415  val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length)
416  val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags)))
417  val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags))
418  val vxsatWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeVxsat)))
419  val vxsatPorts = selectWb(vxsatWbSel, _.exists(_.writeVxsat))
420  val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen)))
421  val exceptionPorts = selectWb(exceptionWbSel, _.exists(_.needExceptionGen))
422  val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg))
423  val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg))
424  println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth")
425  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
426  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
427  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
428  println(s"vxsat: ${vxsatPorts.map(_._1.map(_.name))}")
429
430
431  val exuWriteback = exuWbPorts.map(_._2)
432  val stdWriteback = stdWbPorts.map(_._2)
433
434  // instvalid field
435  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
436  // writeback status
437//  val writebackedCounter = Mem(RobSize, UInt(log2Up(MaxUopSize * 2).W))
438//  val realDestSize = Mem(RobSize, UInt(log2Up(MaxUopSize).W))
439  val writebackedCounter = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize+1).W))))
440  val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize+1).W))))
441  val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W))))
442  val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
443
444  def isWritebacked(ptr: UInt): Bool = {
445    !writebackedCounter(ptr).orR
446  }
447
448  // data for redirect, exception, etc.
449  val flagBkup = Mem(RobSize, Bool())
450  // some instructions are not allowed to trigger interrupts
451  // They have side effects on the states of the processor before they write back
452  val interrupt_safe = Mem(RobSize, Bool())
453
454  // data for debug
455  // Warn: debug_* prefix should not exist in generated verilog.
456  val debug_microOp = Mem(RobSize, new MicroOp)
457  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
458  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
459  val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init)))
460
461  // pointers
462  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
463  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
464  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
465
466  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
467  val allowEnqueue = RegInit(true.B)
468
469  val enqPtr = enqPtrVec.head
470  val deqPtr = deqPtrVec(0)
471  val walkPtr = walkPtrVec(0)
472
473  val isEmpty = enqPtr === deqPtr
474  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
475
476  /**
477    * states of Rob
478    */
479  val s_idle :: s_walk :: Nil = Enum(2)
480  val state = RegInit(s_idle)
481
482  /**
483    * Data Modules
484    *
485    * CommitDataModule: data from dispatch
486    * (1) read: commits/walk/exception
487    * (2) write: enqueue
488    *
489    * WritebackData: data from writeback
490    * (1) read: commits/walk/exception
491    * (2) write: write back from exe units
492    */
493  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
494  val dispatchDataRead = dispatchData.io.rdata
495
496  val exceptionGen = Module(new ExceptionGen)
497  val exceptionDataRead = exceptionGen.io.state
498  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
499  val vxsatDataRead = Wire(Vec(CommitWidth, UInt(1.W)))
500
501  io.robDeqPtr := deqPtr
502
503  val rab = Module(new RenameBuffer(RabSize))
504  rab.io.redirectValid := io.redirect.valid
505  rab.io.req.zip(io.enq.req).map{ case(dest, src) =>
506    dest.bits := src.bits
507    dest.valid := src.valid && io.enq.canAccept
508  }
509
510  val realDestSizeCandidates = (0 until CommitWidth).map(i => realDestSize(Mux(state === s_idle, deqPtrVec(i).value, walkPtrVec(i).value)))
511  val wbSizeSeq = io.commits.commitValid.zip(io.commits.walkValid).zip(realDestSizeCandidates).map{ case((commitValid, walkValid), realDestSize) =>
512    Mux(io.commits.isCommit, Mux(commitValid, realDestSize, 0.U), Mux(walkValid, realDestSize, 0.U))
513  }
514  val wbSizeSum = wbSizeSeq.reduce(_ + _)
515  rab.io.commitSize := wbSizeSum
516  rab.io.walkSize := wbSizeSum
517
518  io.rabCommits := rab.io.commits
519  io.diffCommits := rab.io.diffCommits
520  /**
521    * Enqueue (from dispatch)
522    */
523  // special cases
524  val hasBlockBackward = RegInit(false.B)
525  val hasNoSpecExec = RegInit(false.B)
526  val doingSvinval = RegInit(false.B)
527  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
528  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
529  when (isEmpty) { hasBlockBackward:= false.B }
530  // When any instruction commits, hasNoSpecExec should be set to false.B
531  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasNoSpecExec:= false.B }
532
533  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
534  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
535  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
536  val hasWFI = RegInit(false.B)
537  io.cpu_halt := hasWFI
538  // WFI Timeout: 2^20 = 1M cycles
539  val wfi_cycles = RegInit(0.U(20.W))
540  when (hasWFI) {
541    wfi_cycles := wfi_cycles + 1.U
542  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
543    wfi_cycles := 0.U
544  }
545  val wfi_timeout = wfi_cycles.andR
546  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
547    hasWFI := false.B
548  }
549
550  // inst allocate
551  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.ctrl.firstUop)))))
552  io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq
553  io.enq.resp      := allocatePtrVec
554  val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.ctrl.firstUop && io.enq.canAccept))
555  val timer = GTimer()
556  for (i <- 0 until RenameWidth) {
557    // we don't check whether io.redirect is valid here since redirect has higher priority
558    when (canEnqueue(i)) {
559      val enqUop = io.enq.req(i).bits
560      val enqIndex = allocatePtrVec(i).value
561      // store uop in data module and debug_microOp Vec
562      debug_microOp(enqIndex) := enqUop
563      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
564      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
565      debug_microOp(enqIndex).debugInfo.selectTime := timer
566      debug_microOp(enqIndex).debugInfo.issueTime := timer
567      debug_microOp(enqIndex).debugInfo.writebackTime := timer
568      debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer
569      debug_microOp(enqIndex).debugInfo.tlbRespTime := timer
570      debug_lsInfo(enqIndex) := DebugLsInfo.init
571      when (enqUop.ctrl.blockBackward) {
572        hasBlockBackward := true.B
573      }
574      when (enqUop.ctrl.noSpecExec) {
575        hasNoSpecExec := true.B
576      }
577      val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend
578      val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR
579      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
580      when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
581      {
582        doingSvinval := true.B
583      }
584      // the end instruction of Svinval enqs so clear doingSvinval
585      when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
586      {
587        doingSvinval := false.B
588      }
589      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
590      assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) ||
591        FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)))
592      when (enqUop.ctrl.isWFI && !enqHasException && !enqHasTriggerHit) {
593        hasWFI := true.B
594      }
595    }
596  }
597  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.ctrl.firstUop)), 0.U)
598  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
599
600  when (!io.wfi_enable) {
601    hasWFI := false.B
602  }
603  // sel vsetvl's flush position
604  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
605  val vsetvlState = RegInit(vs_idle)
606
607  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
608  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
609  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
610
611  val enq0            = io.enq.req(0)
612  val enq0IsVset      = FuType.isIntExu(enq0.bits.ctrl.fuType) && ALUOpType.isVset(enq0.bits.ctrl.fuOpType) && enq0.bits.ctrl.lastUop && canEnqueue(0)
613  val enq0IsVsetFlush = enq0IsVset && enq0.bits.ctrl.flushPipe
614  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVecExu(req.bits.ctrl.fuType) && fire}
615  // for vs_idle
616  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
617  // for vs_waitVinstr
618  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
619  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
620  when(vsetvlState === vs_idle){
621    firstVInstrFtqPtr    := firstVInstrIdle.bits.cf.ftqPtr
622    firstVInstrFtqOffset := firstVInstrIdle.bits.cf.ftqOffset
623    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
624  }.elsewhen(vsetvlState === vs_waitVinstr){
625    firstVInstrFtqPtr    := firstVInstrWait.bits.cf.ftqPtr
626    firstVInstrFtqOffset := firstVInstrWait.bits.cf.ftqOffset
627    firstVInstrRobIdx    := firstVInstrWait.bits.robIdx
628  }
629
630  val hasVInstrAfterI = Cat(enqIsVInstrVec.drop(1)).orR
631  when(vsetvlState === vs_idle){
632    when(enq0IsVsetFlush){
633      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
634    }
635  }.elsewhen(vsetvlState === vs_waitVinstr){
636    when(io.redirect.valid){
637      vsetvlState := vs_idle
638    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
639      vsetvlState := vs_waitFlush
640    }
641  }.elsewhen(vsetvlState === vs_waitFlush){
642    when(io.redirect.valid){
643      vsetvlState := vs_idle
644    }
645  }
646
647  /**
648    * Writeback (from execution units)
649    */
650  for (wb <- exuWriteback) {
651    when (wb.valid) {
652      val wbIdx = wb.bits.uop.robIdx.value
653      debug_exuData(wbIdx) := wb.bits.data
654      debug_exuDebug(wbIdx) := wb.bits.debug
655      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime
656      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime
657      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime
658      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime
659      debug_microOp(wbIdx).debugInfo.tlbFirstReqTime := wb.bits.uop.debugInfo.tlbFirstReqTime
660      debug_microOp(wbIdx).debugInfo.tlbRespTime := wb.bits.uop.debugInfo.tlbRespTime
661
662      // debug for lqidx and sqidx
663      debug_microOp(wbIdx).lqIdx := wb.bits.uop.lqIdx
664      debug_microOp(wbIdx).sqIdx := wb.bits.uop.sqIdx
665
666      val debug_Uop = debug_microOp(wbIdx)
667      XSInfo(true.B,
668        p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " +
669        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " +
670        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n"
671      )
672    }
673  }
674  val writebackNum = PopCount(exuWriteback.map(_.valid))
675  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
676
677
678  /**
679    * RedirectOut: Interrupt and Exceptions
680    */
681  val deqDispatchData = dispatchDataRead(0)
682  val debug_deqUop = debug_microOp(deqPtr.value)
683
684  val intrBitSetReg = RegNext(io.csr.intrBitSet)
685  val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value)
686  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
687  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
688    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
689  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
690  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
691  val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException
692
693  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
694  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
695  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
696
697  val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
698
699  val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
700  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
701  io.isVsetFlushPipe := isVsetFlushPipe
702  io.vconfigPdest := rab.io.vconfigPdest
703  // io.flushOut will trigger redirect at the next cycle.
704  // Block any redirect or commit at the next cycle.
705  val lastCycleFlush = RegNext(io.flushOut.valid)
706
707  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
708  io.flushOut.bits := DontCare
709  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
710  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
711  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
712  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
713  io.flushOut.bits.interrupt := true.B
714  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
715  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
716  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
717  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
718
719  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
720  io.exception.valid := RegNext(exceptionHappen)
721  io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen)
722  io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen)
723  io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
724  io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
725  io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
726  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
727  io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
728
729  XSDebug(io.flushOut.valid,
730    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " +
731    p"excp $exceptionEnable flushPipe $isFlushPipe " +
732    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
733
734
735  /**
736    * Commits (and walk)
737    * They share the same width.
738    */
739  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
740  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
741  val walkFinished = walkCounter <= CommitWidth.U
742  rab.io.robWalkEnd := state === s_walk && walkFinished
743  require(RenameWidth <= CommitWidth)
744
745  // wiring to csr
746  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
747    val v = io.commits.commitValid(i)
748    val info = io.commits.info(i)
749    (v & info.wflags, v & info.fpWen)
750  }).unzip
751  val fflags = Wire(Valid(UInt(5.W)))
752  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
753  fflags.bits := wflags.zip(fflagsDataRead).map({
754    case (w, f) => Mux(w, f, 0.U)
755  }).reduce(_|_)
756  val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR
757
758  val vxsat = Wire(Valid(UInt(1.W)))
759  vxsat.valid := io.commits.isCommit && vxsat.bits.asBool
760  vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map{
761    case(valid, vxsat) => valid & vxsat.asBool
762  }.reduce(_ | _)
763
764  // when mispredict branches writeback, stop commit in the next 2 cycles
765  // TODO: don't check all exu write back
766  val misPredWb = Cat(VecInit(exuWriteback.map(wb =>
767    wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid
768  ))).orR
769  val misPredBlockCounter = Reg(UInt(3.W))
770  misPredBlockCounter := Mux(misPredWb,
771    "b111".U,
772    misPredBlockCounter >> 1.U
773  )
774  val misPredBlock = misPredBlockCounter(0)
775  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI
776
777  io.commits.isWalk := state === s_walk
778  io.commits.isCommit := state === s_idle && !blockCommit
779  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
780  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
781  // store will be commited iff both sta & std have been writebacked
782  val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value)))
783  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
784  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
785  val allowOnlyOneCommit = commit_exception || intrBitSetReg
786  // for instructions that may block others, we don't allow them to commit
787  for (i <- 0 until CommitWidth) {
788    // defaults: state === s_idle and instructions commit
789    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
790    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
791    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
792    io.commits.info(i)  := dispatchDataRead(i)
793
794    when (state === s_walk) {
795      io.commits.walkValid(i) := shouldWalkVec(i)
796      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
797        XSError(!walk_v(i), s"why not $i???\n")
798      }
799    }
800
801    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
802      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b vxsat: %b\n",
803      debug_microOp(deqPtrVec(i).value).cf.pc,
804      io.commits.info(i).rfWen,
805      io.commits.info(i).ldest,
806      io.commits.info(i).pdest,
807      io.commits.info(i).old_pdest,
808      debug_exuData(deqPtrVec(i).value),
809      fflagsDataRead(i),
810      vxsatDataRead(i)
811    )
812    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
813      debug_microOp(walkPtrVec(i).value).cf.pc,
814      io.commits.info(i).rfWen,
815      io.commits.info(i).ldest,
816      debug_exuData(walkPtrVec(i).value)
817    )
818  }
819  if (env.EnableDifftest) {
820    io.commits.info.map(info => dontTouch(info.pc))
821  }
822
823  // sync fflags/dirty_fs/vxsat to csr
824  io.csr.fflags := RegNext(fflags)
825  io.csr.dirty_fs := RegNext(dirty_fs)
826  io.csr.vxsat := RegNext(vxsat)
827
828  // sync v csr to csr
829  // for difftest
830  val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === INT_VCONFIG.U && info.rfWen }.reverse
831  io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR)
832
833  // commit load/store to lsq
834  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
835  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
836  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
837  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
838  // indicate a pending load or store
839  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
840  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
841  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
842
843  /**
844    * state changes
845    * (1) redirect: switch to s_walk
846    * (2) walk: when walking comes to the end, switch to s_idle
847    */
848  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.rabWalkEnd, s_idle, state))
849  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
850  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
851  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
852  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
853  state := state_next
854
855  /**
856    * pointers and counters
857    */
858  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
859  deqPtrGenModule.io.state := state
860  deqPtrGenModule.io.deq_v := commit_v
861  deqPtrGenModule.io.deq_w := commit_w
862  deqPtrGenModule.io.exception_state := exceptionDataRead
863  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
864  deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec
865  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
866  deqPtrGenModule.io.blockCommit := blockCommit
867  deqPtrVec := deqPtrGenModule.io.out
868  val deqPtrVec_next = deqPtrGenModule.io.next_out
869
870  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
871  enqPtrGenModule.io.redirect := io.redirect
872  enqPtrGenModule.io.allowEnqueue := allowEnqueue
873  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
874  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.ctrl.firstUop))
875  enqPtrVec := enqPtrGenModule.io.out
876
877  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
878  // next walkPtrVec:
879  // (1) redirect occurs: update according to state
880  // (2) walk: move forwards
881  val walkPtrVec_next = Mux(io.redirect.valid,
882    deqPtrVec_next,
883    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
884  )
885  walkPtrVec := walkPtrVec_next
886
887  val numValidEntries = distanceBetween(enqPtr, deqPtr)
888  val commitCnt = PopCount(io.commits.commitValid)
889
890  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
891
892  val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0))
893  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
894  when (io.redirect.valid) {
895    // full condition:
896    // +& is used here because:
897    // When rob is full and the tail instruction causes a misprediction,
898    // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance
899    // is RobSize - 1.
900    // Since misprediction does not flush the instruction itself, flushItSelf is false.B.
901    // Previously we use `+` to count the walk distance and it causes overflows
902    // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
903    // The width of walkCounter also needs to be changed.
904    // empty condition:
905    // When the last instruction in ROB commits and causes a flush, a redirect
906    // will be raised later. In such circumstances, the redirect robIdx is before
907    // the deqPtrVec_next(0) and will cause underflow.
908    walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U,
909                       redirectWalkDistance +& !io.redirect.bits.flushItself())
910  }.elsewhen (state === s_walk) {
911    walkCounter := walkCounter - thisCycleWalkCount
912    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
913  }
914
915
916  /**
917    * States
918    * We put all the stage bits changes here.
919
920    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
921    * All states: (1) valid; (2) writebacked; (3) flagBkup
922    */
923  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
924
925  // redirect logic writes 6 valid
926  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
927  val redirectTail = Reg(new RobPtr)
928  val redirectIdle :: redirectBusy :: Nil = Enum(2)
929  val redirectState = RegInit(redirectIdle)
930  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
931  when(redirectState === redirectBusy) {
932    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
933    redirectHeadVec zip invMask foreach {
934      case (redirectHead, inv) => when(inv) {
935        valid(redirectHead.value) := false.B
936      }
937    }
938    when(!invMask.last) {
939      redirectState := redirectIdle
940    }
941  }
942  when(io.redirect.valid) {
943    redirectState := redirectBusy
944    when(redirectState === redirectIdle) {
945      redirectTail := enqPtr
946    }
947    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
948      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
949    }
950  }
951  // enqueue logic writes 6 valid
952  for (i <- 0 until RenameWidth) {
953    when (canEnqueue(i) && !io.redirect.valid) {
954      valid(allocatePtrVec(i).value) := true.B
955    }
956  }
957  // dequeue logic writes 6 valid
958  for (i <- 0 until CommitWidth) {
959    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
960    when (commitValid) {
961      valid(commitReadAddr(i)) := false.B
962    }
963  }
964
965  // debug_inst update
966  for(i <- 0 until (exuParameters.LduCnt + exuParameters.StuCnt)) {
967    debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i))
968    debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i))
969  }
970
971  // writeback logic set numWbPorts writebacked to true
972  val blockWbSeq = Wire(Vec(exuWriteback.length, Bool()))
973  blockWbSeq.map(_ := false.B)
974  for (((wb, cfgs), blockWb) <- exuWriteback.zip(wbExuConfigs(exeWbSel)).zip(blockWbSeq)) {
975    when(wb.valid) {
976      val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR
977      val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend
978      val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
979      val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
980      blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
981    }
982  }
983
984  // if the first uop of an instruction is valid , write writebackedCounter
985  val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid)
986  val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.ctrl.firstUop)
987  val enqNeedWriteRFSeq = io.enq.req.map(_.bits.ctrl.needWriteRf)
988  val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value)
989
990  val enqWbSizeSeq = io.enq.req.map { req =>
991    val enqHasException = ExceptionNO.selectFrontend(req.bits.cf.exceptionVec).asUInt.orR
992    val enqHasTriggerHit = req.bits.cf.trigger.getHitFrontend
993    Mux(req.bits.eliminatedMove, Mux(enqHasException || enqHasTriggerHit, 1.U, 0.U),
994      Mux(FuType.isMemExu(req.bits.ctrl.fuType) && FuType.isAMO(req.bits.ctrl.fuType), 3.U,
995        Mux(FuType.isStoreExu(req.bits.ctrl.fuType), 2.U, 1.U)))
996  }
997  val enqWbSizeSumSeq = enqRobIdxSeq.zipWithIndex.map { case (robIdx, idx) =>
998    val addend = uopEnqValidSeq.zip(enqRobIdxSeq).zip(enqWbSizeSeq).take(idx + 1).map { case ((valid, uopRobIdx), uopWbSize) => Mux(valid && robIdx === uopRobIdx, uopWbSize, 0.U) }
999    addend.reduce(_ +& _)
1000  }
1001  val fflags_wb = fflagsPorts.map(_._2)
1002  val vxsat_wb = vxsatPorts.map(_._2)
1003  for(i <- 0 until RobSize){
1004
1005    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U)
1006    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
1007    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
1008    val instCanEnqFlag = Cat(instCanEnqSeq).orR
1009
1010    realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i),
1011                         realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }),
1012                         0.U)
1013
1014
1015    val enqCnt = ParallelPriorityMux(uopCanEnqSeq.reverse :+ true.B, enqWbSizeSumSeq.reverse :+ 0.U)
1016
1017    val canWbSeq = exuWriteback.map(writeback => writeback.valid && writeback.bits.uop.robIdx.value === i.U)
1018    val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb }
1019    val canStuWbSeq = stdWriteback.map(writeback => writeback.valid && writeback.bits.uop.robIdx.value === i.U)
1020    val wbCnt = PopCount(canWbNoBlockSeq ++ canStuWbSeq)
1021
1022    writebackedCounter(i) := Mux(!valid(i) && instCanEnqFlag || valid(i),
1023                              Mux(exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U,
1024                                0.U,
1025                                writebackedCounter(i) + enqCnt - wbCnt),
1026                              0.U)
1027
1028    val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.uop.robIdx.value === i.U)
1029    val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map{ case(canWb, wb) => Mux(canWb, wb.bits.fflags, 0.U)}.reduce(_ | _)
1030    fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes)
1031
1032    val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.uop.robIdx.value === i.U)
1033    val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map{ case(canWb, wb) => Mux(canWb, wb.bits.vxsat, 0.U)}.reduce(_ | _)
1034    vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes)
1035  }
1036
1037  // flagBkup
1038  // enqueue logic set 6 flagBkup at most
1039  for (i <- 0 until RenameWidth) {
1040    when (canEnqueue(i)) {
1041      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
1042    }
1043  }
1044
1045  // interrupt_safe
1046  for (i <- 0 until RenameWidth) {
1047    // We RegNext the updates for better timing.
1048    // Note that instructions won't change the system's states in this cycle.
1049    when (RegNext(canEnqueue(i))) {
1050      // For now, we allow non-load-store instructions to trigger interrupts
1051      // For MMIO instructions, they should not trigger interrupts since they may
1052      // be sent to lower level before it writes back.
1053      // However, we cannot determine whether a load/store instruction is MMIO.
1054      // Thus, we don't allow load/store instructions to trigger an interrupt.
1055      // TODO: support non-MMIO load-store instructions to trigger interrupts
1056      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType)
1057      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
1058    }
1059  }
1060
1061  /**
1062    * read and write of data modules
1063    */
1064  val commitReadAddr_next = Mux(state_next === s_idle,
1065    VecInit(deqPtrVec_next.map(_.value)),
1066    VecInit(walkPtrVec_next.map(_.value))
1067  )
1068  // NOTE: dispatch info will record the uop of inst
1069  dispatchData.io.wen := canEnqueue
1070  dispatchData.io.waddr := allocatePtrVec.map(_.value)
1071  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
1072    wdata.ldest := req.ctrl.ldest
1073    wdata.rfWen := req.ctrl.rfWen
1074    wdata.fpWen := req.ctrl.fpWen
1075    wdata.vecWen := req.ctrl.vecWen
1076    wdata.wflags := req.ctrl.fpu.wflags
1077    wdata.commitType := req.ctrl.commitType
1078    wdata.pdest := req.pdest
1079    wdata.old_pdest := req.old_pdest
1080    wdata.ftqIdx := req.cf.ftqPtr
1081    wdata.ftqOffset := req.cf.ftqOffset
1082    wdata.isMove := req.eliminatedMove
1083    wdata.pc := req.cf.pc
1084    wdata.uopIdx := req.ctrl.uopIdx
1085    wdata.vconfig := req.ctrl.vconfig
1086  }
1087  dispatchData.io.raddr := commitReadAddr_next
1088
1089  exceptionGen.io.redirect <> io.redirect
1090  exceptionGen.io.flush := io.flushOut.valid
1091  for (i <- 0 until RenameWidth) {
1092    exceptionGen.io.enq(i).valid := canEnqueue(i)
1093    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1094    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec)
1095    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe
1096    exceptionGen.io.enq(i).bits.isVset := FuType.isIntExu(io.enq.req(i).bits.ctrl.fuType) && ALUOpType.isVset(io.enq.req(i).bits.ctrl.fuOpType)
1097    exceptionGen.io.enq(i).bits.replayInst := false.B
1098    XSError(canEnqueue(i) && io.enq.req(i).bits.ctrl.replayInst, "enq should not set replayInst")
1099    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep
1100    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix
1101    exceptionGen.io.enq(i).bits.trigger.clear()
1102    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit
1103  }
1104
1105  println(s"ExceptionGen:")
1106  val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted)
1107  require(exceptionCases.length == exceptionGen.io.wb.length)
1108  for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) {
1109    exc_wb.valid                := wb.valid
1110    exc_wb.bits.robIdx          := wb.bits.uop.robIdx
1111    exc_wb.bits.exceptionVec    := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs)
1112    exc_wb.bits.flushPipe       := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
1113    exc_wb.bits.isVset          := false.B
1114    exc_wb.bits.replayInst      := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
1115    exc_wb.bits.singleStep      := false.B
1116    exc_wb.bits.crossPageIPFFix := false.B
1117    // TODO: make trigger configurable
1118    exc_wb.bits.trigger.clear()
1119    exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit
1120    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1121      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1122      s"replayInst ${configs.exists(_.replayInst)}")
1123  }
1124
1125  fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value))
1126
1127  vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value))
1128
1129  val instrCntReg = RegInit(0.U(64.W))
1130  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1131  val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt
1132  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1133  val instrCnt = instrCntReg + retireCounter
1134  instrCntReg := instrCnt
1135  io.csr.perfinfo.retiredInstr := retireCounter
1136  io.robFull := !allowEnqueue
1137
1138  /**
1139    * debug info
1140    */
1141  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1142  XSDebug("")
1143  for(i <- 0 until RobSize){
1144    XSDebug(false, !valid(i), "-")
1145    XSDebug(false, valid(i) && !writebackedCounter(i).orR, "w")
1146    XSDebug(false, valid(i) && writebackedCounter(i).orR, "v")
1147  }
1148  XSDebug(false, true.B, "\n")
1149
1150  for(i <- 0 until RobSize) {
1151    if(i % 4 == 0) XSDebug("")
1152    XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc)
1153    XSDebug(false, !valid(i), "- ")
1154    XSDebug(false, valid(i) && !writebackedCounter(i).orR, "w ")
1155    XSDebug(false, valid(i) && writebackedCounter(i).orR, "v ")
1156    if(i % 4 == 3) XSDebug(false, true.B, "\n")
1157  }
1158
1159  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1160  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1161
1162  val commitDebugExu = deqPtrVec.map(_.value).map(debug_exuDebug(_))
1163  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1164  val commitDebugLsInfo = deqPtrVec.map(_.value).map(debug_lsInfo(_))
1165  XSPerfAccumulate("clock_cycle", 1.U)
1166  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
1167  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1168  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1169  val commitIsMove = commitDebugUop.map(_.ctrl.isMove)
1170  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1171  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1172  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1173  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1174  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1175  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1176  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1177  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1178  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1179  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1180  val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit)
1181  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1182  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1183  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1184  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && !writebackedCounter(i).orR)))
1185  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1186  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1187  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1188  XSPerfAccumulate("walkCycle", state === s_walk)
1189  val deqNotWritebacked = valid(deqPtr.value) && isWritebacked(deqPtr.value)
1190  val deqUopCommitType = io.commits.info(0).commitType
1191  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1192  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1193  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1194  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1195  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1196  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1197  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1198  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1199  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1200  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1201  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1202  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1203  val accessLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1204  val tlbLatency = commitDebugUop.map(uop => uop.debugInfo.tlbRespTime - uop.debugInfo.tlbFirstReqTime)
1205  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1206    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1207  }
1208  for (fuType <- FuType.functionNameMap.keys) {
1209    val fuName = FuType.functionNameMap(fuType)
1210    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U )
1211    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1212    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1213    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1214    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1215    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1216    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1217    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1218    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1219    if (fuType == FuType.fmac.litValue) {
1220      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 )
1221      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
1222      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
1223      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
1224    }
1225  }
1226
1227  /**
1228    * DataBase info:
1229    * log trigger is at writeback valid
1230    * */
1231  if(!env.FPGAPlatform){
1232    val instTableName = "InstDB" + p(XSCoreParamsKey).HartId.toString
1233    val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString
1234    val debug_instTable = ChiselDB.createTable(instTableName, new DebugInstDB)
1235    // FIXME lyq: only get inst (alu, bj, ls) in exuWriteback
1236    for (wb <- exuWriteback) {
1237      when(wb.valid) {
1238        val debug_instData = Wire(new DebugInstDB)
1239        val idx = wb.bits.uop.robIdx.value
1240        debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID
1241        debug_instData.robIdx := idx
1242        debug_instData.instType := wb.bits.uop.ctrl.fuType
1243        debug_instData.ivaddr := wb.bits.uop.cf.pc
1244        debug_instData.dvaddr := wb.bits.debug.vaddr
1245        debug_instData.dpaddr := wb.bits.debug.paddr
1246        debug_instData.tlbLatency := wb.bits.uop.debugInfo.tlbRespTime - wb.bits.uop.debugInfo.tlbFirstReqTime
1247        debug_instData.accessLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime
1248        debug_instData.executeLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime
1249        debug_instData.issueLatency := wb.bits.uop.debugInfo.issueTime - wb.bits.uop.debugInfo.selectTime
1250        debug_instData.exceptType := wb.bits.uop.cf.exceptionVec
1251        debug_instData.lsInfo := debug_lsInfo(idx)
1252        debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid
1253        debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit
1254        debug_instTable.log(
1255          data = debug_instData,
1256          en = wb.valid,
1257          site = instSiteName,
1258          clock = clock,
1259          reset = reset
1260        )
1261      }
1262    }
1263  }
1264
1265
1266  //difftest signals
1267  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1268
1269  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1270  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1271
1272  for(i <- 0 until CommitWidth) {
1273    val idx = deqPtrVec(i).value
1274    wdata(i) := debug_exuData(idx)
1275    wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN)
1276  }
1277
1278  if (env.EnableDifftest) {
1279    for (i <- 0 until CommitWidth) {
1280      val difftest = Module(new DifftestInstrCommit)
1281      // assgin default value
1282      difftest.io := DontCare
1283
1284      difftest.io.clock    := clock
1285      difftest.io.coreid   := io.hartId
1286      difftest.io.index    := i.U
1287
1288      val ptr = deqPtrVec(i).value
1289      val uop = commitDebugUop(i)
1290      val exuOut = debug_exuDebug(ptr)
1291      val exuData = debug_exuData(ptr)
1292      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1293      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN))))
1294      difftest.io.instr    := RegNext(RegNext(RegNext(uop.cf.instr)))
1295      difftest.io.robIdx   := RegNext(RegNext(RegNext(ZeroExt(ptr, 10))))
1296      difftest.io.lqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7))))
1297      difftest.io.sqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7))))
1298      difftest.io.isLoad   := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD)))
1299      difftest.io.isStore  := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE)))
1300      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1301      // when committing an eliminated move instruction,
1302      // we must make sure that skip is properly set to false (output from EXU is random value)
1303      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1304      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.cf.pd.isRVC)))
1305      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1306      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen)))
1307      difftest.io.vecwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).vecWen)))
1308      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1309      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1310      // // runahead commit hint
1311      // val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1312      // runahead_commit.io.clock := clock
1313      // runahead_commit.io.coreid := io.hartId
1314      // runahead_commit.io.index := i.U
1315      // runahead_commit.io.valid := difftest.io.valid &&
1316      //   (commitBranchValid(i) || commitIsStore(i))
1317      // // TODO: is branch or store
1318      // runahead_commit.io.pc    := difftest.io.pc
1319    }
1320  }
1321  else if (env.AlwaysBasicDiff) {
1322    // These are the structures used by difftest only and should be optimized after synthesis.
1323    val dt_eliminatedMove = Mem(RobSize, Bool())
1324    val dt_isRVC = Mem(RobSize, Bool())
1325    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1326    for (i <- 0 until RenameWidth) {
1327      when (canEnqueue(i)) {
1328        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1329        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC
1330      }
1331    }
1332    for (wb <- exuWriteback) {
1333      when (wb.valid) {
1334        val wbIdx = wb.bits.uop.robIdx.value
1335        dt_exuDebug(wbIdx) := wb.bits.debug
1336      }
1337    }
1338    // Always instantiate basic difftest modules.
1339    for (i <- 0 until CommitWidth) {
1340      val commitInfo = io.commits.info(i)
1341      val ptr = deqPtrVec(i).value
1342      val exuOut = dt_exuDebug(ptr)
1343      val eliminatedMove = dt_eliminatedMove(ptr)
1344      val isRVC = dt_isRVC(ptr)
1345
1346      val difftest = Module(new DifftestBasicInstrCommit)
1347      difftest.io.clock   := clock
1348      difftest.io.coreid  := io.hartId
1349      difftest.io.index   := i.U
1350      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1351      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1352      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1353      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1354      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1355      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen)))
1356      difftest.io.vecwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).vecWen)))
1357      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1358      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1359    }
1360  }
1361
1362  if (env.EnableDifftest) {
1363    for (i <- 0 until CommitWidth) {
1364      val difftest = Module(new DifftestLoadEvent)
1365      difftest.io.clock  := clock
1366      difftest.io.coreid := io.hartId
1367      difftest.io.index  := i.U
1368
1369      val ptr = deqPtrVec(i).value
1370      val uop = commitDebugUop(i)
1371      val exuOut = debug_exuDebug(ptr)
1372      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1373      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1374      difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType)))
1375      difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType)))
1376    }
1377  }
1378
1379  // Always instantiate basic difftest modules.
1380  if (env.EnableDifftest) {
1381    val dt_isXSTrap = Mem(RobSize, Bool())
1382    for (i <- 0 until RenameWidth) {
1383      when (canEnqueue(i)) {
1384        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1385      }
1386    }
1387    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1388    val hitTrap = trapVec.reduce(_||_)
1389    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1390    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1391    val difftest = Module(new DifftestTrapEvent)
1392    difftest.io.clock    := clock
1393    difftest.io.coreid   := io.hartId
1394    difftest.io.valid    := hitTrap
1395    difftest.io.code     := trapCode
1396    difftest.io.pc       := trapPC
1397    difftest.io.cycleCnt := timer
1398    difftest.io.instrCnt := instrCnt
1399    difftest.io.hasWFI   := hasWFI
1400  }
1401  else if (env.AlwaysBasicDiff) {
1402    val dt_isXSTrap = Mem(RobSize, Bool())
1403    for (i <- 0 until RenameWidth) {
1404      when (canEnqueue(i)) {
1405        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1406      }
1407    }
1408    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1409    val hitTrap = trapVec.reduce(_||_)
1410    val difftest = Module(new DifftestBasicTrapEvent)
1411    difftest.io.clock    := clock
1412    difftest.io.coreid   := io.hartId
1413    difftest.io.valid    := hitTrap
1414    difftest.io.cycleCnt := timer
1415    difftest.io.instrCnt := instrCnt
1416  }
1417
1418  val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64))))
1419  val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b))
1420  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1421  val commitLoadVec = VecInit(commitLoadValid)
1422  val commitBranchVec = VecInit(commitBranchValid)
1423  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1424  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1425  val perfEvents = Seq(
1426    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1427    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1428    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1429    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1430    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1431    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1432    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1433    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1434    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1435    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1436    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1437    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1438    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1439    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1440    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1441    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1442    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1443    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1444  )
1445  generatePerfEvent()
1446}
1447