1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utils._ 25import utility._ 26import xiangshan._ 27import xiangshan.backend.exu.ExuConfig 28import xiangshan.frontend.FtqPtr 29import xiangshan.backend.decode.VectorConstants 30 31class DebugMdpInfo(implicit p: Parameters) extends XSBundle{ 32 val ssid = UInt(SSIDWidth.W) 33 val waitAllStore = Bool() 34} 35 36class DebugLsInfo(implicit p: Parameters) extends XSBundle{ 37 val s1 = new Bundle{ 38 val isTlbFirstMiss = Bool() // in s1 39 val isBankConflict = Bool() // in s1 40 val isLoadToLoadForward = Bool() 41 val isReplayFast = Bool() 42 } 43 val s2 = new Bundle{ 44 val isDcacheFirstMiss = Bool() // in s2 (predicted result is in s1 when using WPU, real result is in s2) 45 val isForwardFail = Bool() // in s2 46 val isReplaySlow = Bool() 47 val isLoadReplayTLBMiss = Bool() 48 val isLoadReplayCacheMiss = Bool() 49 } 50 val replayCnt = UInt(XLEN.W) 51 52 def s1SignalEnable(ena: DebugLsInfo) = { 53 when(ena.s1.isTlbFirstMiss) { s1.isTlbFirstMiss := true.B } 54 when(ena.s1.isBankConflict) { s1.isBankConflict := true.B } 55 when(ena.s1.isLoadToLoadForward) { s1.isLoadToLoadForward := true.B } 56 when(ena.s1.isReplayFast) { 57 s1.isReplayFast := true.B 58 replayCnt := replayCnt + 1.U 59 } 60 } 61 62 def s2SignalEnable(ena: DebugLsInfo) = { 63 when(ena.s2.isDcacheFirstMiss) { s2.isDcacheFirstMiss := true.B } 64 when(ena.s2.isForwardFail) { s2.isForwardFail := true.B } 65 when(ena.s2.isLoadReplayTLBMiss) { s2.isLoadReplayTLBMiss := true.B } 66 when(ena.s2.isLoadReplayCacheMiss) { s2.isLoadReplayCacheMiss := true.B } 67 when(ena.s2.isReplaySlow) { 68 s2.isReplaySlow := true.B 69 replayCnt := replayCnt + 1.U 70 } 71 } 72 73} 74object DebugLsInfo{ 75 def init(implicit p: Parameters): DebugLsInfo = { 76 val lsInfo = Wire(new DebugLsInfo) 77 lsInfo.s1.isTlbFirstMiss := false.B 78 lsInfo.s1.isBankConflict := false.B 79 lsInfo.s1.isLoadToLoadForward := false.B 80 lsInfo.s1.isReplayFast := false.B 81 lsInfo.s2.isDcacheFirstMiss := false.B 82 lsInfo.s2.isForwardFail := false.B 83 lsInfo.s2.isReplaySlow := false.B 84 lsInfo.s2.isLoadReplayTLBMiss := false.B 85 lsInfo.s2.isLoadReplayCacheMiss := false.B 86 lsInfo.replayCnt := 0.U 87 lsInfo 88 } 89 90} 91class DebugLsInfoBundle(implicit p: Parameters) extends DebugLsInfo { 92 // unified processing at the end stage of load/store ==> s2 ==> bug that will write error robIdx data 93 val s1_robIdx = UInt(log2Ceil(RobSize).W) 94 val s2_robIdx = UInt(log2Ceil(RobSize).W) 95} 96class DebugLSIO(implicit p: Parameters) extends XSBundle { 97 val debugLsInfo = Vec(exuParameters.LduCnt + exuParameters.StuCnt, Output(new DebugLsInfoBundle)) 98} 99 100class DebugInstDB(implicit p: Parameters) extends XSBundle{ 101 val globalID = UInt(XLEN.W) 102 val robIdx = UInt(log2Ceil(RobSize).W) 103 val instType = FuType() 104 val exceptType = ExceptionVec() 105 val ivaddr = UInt(VAddrBits.W) 106 val dvaddr = UInt(VAddrBits.W) // the l/s access address 107 val dpaddr = UInt(VAddrBits.W) // need the physical address when the TLB is valid 108 val tlbLatency = UInt(XLEN.W) // original requirements is L1toL2TlbLatency 109 // val levelTlbHit = UInt(2.W) // 01, 10, 11(memory) 110 // val otherPerfNoteThing // FIXME: how much? 111 val accessLatency = UInt(XLEN.W) // RS out time --> write back time 112 val executeLatency = UInt(XLEN.W) 113 val issueLatency = UInt(XLEN.W) 114 val lsInfo = new DebugLsInfo 115 val mdpInfo = new DebugMdpInfo 116} 117 118class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 119 p => p(XSCoreParamsKey).RobSize 120) with HasCircularQueuePtrHelper { 121 122 def needFlush(redirect: Valid[Redirect]): Bool = { 123 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 124 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 125 } 126 127 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 128} 129 130object RobPtr { 131 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 132 val ptr = Wire(new RobPtr) 133 ptr.flag := f 134 ptr.value := v 135 ptr 136 } 137} 138 139class RobCSRIO(implicit p: Parameters) extends XSBundle { 140 val intrBitSet = Input(Bool()) 141 val trapTarget = Input(UInt(VAddrBits.W)) 142 val isXRet = Input(Bool()) 143 val wfiEvent = Input(Bool()) 144 145 val fflags = Output(Valid(UInt(5.W))) 146 val vxsat = Output(Valid(UInt(1.W))) 147 val dirty_fs = Output(Bool()) 148 val perfinfo = new Bundle { 149 val retiredInstr = Output(UInt(3.W)) 150 } 151 152 val vcsrFlag = Output(Bool()) 153} 154 155class RobLsqIO(implicit p: Parameters) extends XSBundle { 156 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 157 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 158 val pendingld = Output(Bool()) 159 val pendingst = Output(Bool()) 160 val commit = Output(Bool()) 161} 162 163class RobEnqIO(implicit p: Parameters) extends XSBundle { 164 val canAccept = Output(Bool()) 165 val isEmpty = Output(Bool()) 166 // valid vector, for robIdx gen and walk 167 val needAlloc = Vec(RenameWidth, Input(Bool())) 168 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 169 val resp = Vec(RenameWidth, Output(new RobPtr)) 170} 171 172class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 173 174class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 175 val io = IO(new Bundle { 176 // for commits/flush 177 val state = Input(UInt(2.W)) 178 val deq_v = Vec(CommitWidth, Input(Bool())) 179 val deq_w = Vec(CommitWidth, Input(Bool())) 180 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 181 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 182 val intrBitSetReg = Input(Bool()) 183 val hasNoSpecExec = Input(Bool()) 184 val interrupt_safe = Input(Bool()) 185 val blockCommit = Input(Bool()) 186 // output: the CommitWidth deqPtr 187 val out = Vec(CommitWidth, Output(new RobPtr)) 188 val next_out = Vec(CommitWidth, Output(new RobPtr)) 189 }) 190 191 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 192 193 // for exceptions (flushPipe included) and interrupts: 194 // only consider the first instruction 195 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 196 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 197 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 198 199 // for normal commits: only to consider when there're no exceptions 200 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 201 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 202 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 203 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 204 // when io.intrBitSetReg or there're possible exceptions in these instructions, 205 // only one instruction is allowed to commit 206 val allowOnlyOne = commit_exception || io.intrBitSetReg 207 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 208 209 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 210 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 211 212 deqPtrVec := deqPtrVec_next 213 214 io.next_out := deqPtrVec_next 215 io.out := deqPtrVec 216 217 when (io.state === 0.U) { 218 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 219 } 220 221} 222 223class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 224 val io = IO(new Bundle { 225 // for input redirect 226 val redirect = Input(Valid(new Redirect)) 227 // for enqueue 228 val allowEnqueue = Input(Bool()) 229 val hasBlockBackward = Input(Bool()) 230 val enq = Vec(RenameWidth, Input(Bool())) 231 val out = Output(Vec(RenameWidth, new RobPtr)) 232 }) 233 234 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 235 236 // enqueue 237 val canAccept = io.allowEnqueue && !io.hasBlockBackward 238 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 239 240 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 241 when(io.redirect.valid) { 242 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 243 }.otherwise { 244 ptr := ptr + dispatchNum 245 } 246 } 247 248 io.out := enqPtrVec 249 250} 251 252class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 253 // val valid = Bool() 254 val robIdx = new RobPtr 255 val exceptionVec = ExceptionVec() 256 val flushPipe = Bool() 257 val isVset = Bool() 258 val replayInst = Bool() // redirect to that inst itself 259 val singleStep = Bool() // TODO add frontend hit beneath 260 val crossPageIPFFix = Bool() 261 val trigger = new TriggerCf 262 263// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 264// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 265 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 266 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 267 // only exceptions are allowed to writeback when enqueue 268 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 269} 270 271class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 272 val io = IO(new Bundle { 273 val redirect = Input(Valid(new Redirect)) 274 val flush = Input(Bool()) 275 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 276 val wb = Vec(1 + LoadPipelineWidth + StorePipelineWidth, Flipped(ValidIO(new RobExceptionInfo))) 277 val out = ValidIO(new RobExceptionInfo) 278 val state = ValidIO(new RobExceptionInfo) 279 }) 280 281 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 282 assert(valid.length == bits.length) 283 assert(isPow2(valid.length)) 284 if (valid.length == 1) { 285 (valid, bits) 286 } else if (valid.length == 2) { 287 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 288 for (i <- res.indices) { 289 res(i).valid := valid(i) 290 res(i).bits := bits(i) 291 } 292 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 293 (Seq(oldest.valid), Seq(oldest.bits)) 294 } else { 295 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 296 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 297 getOldest(left._1 ++ right._1, left._2 ++ right._2) 298 } 299 } 300 301 val currentValid = RegInit(false.B) 302 val current = Reg(new RobExceptionInfo) 303 304 // orR the exceptionVec 305 val lastCycleFlush = RegNext(io.flush) 306 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 307 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 308 309 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 310 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 311 val csr_wb_bits = io.wb(0).bits 312 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 313 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 314 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 315 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 316 317 // s1: compare last four and current flush 318 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 319 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 320 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 321 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 322 val s1_out_bits = RegNext(compare_bits) 323 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 324 325 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 326 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 327 328 // s2: compare the input exception with the current one 329 // priorities: 330 // (1) system reset 331 // (2) current is valid: flush, remain, merge, update 332 // (3) current is not valid: s1 or enq 333 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 334 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 335 when (currentValid) { 336 when (current_flush) { 337 currentValid := Mux(s1_flush, false.B, s1_out_valid) 338 } 339 when (s1_out_valid && !s1_flush) { 340 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 341 current := s1_out_bits 342 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 343 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 344 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 345 current.replayInst := s1_out_bits.replayInst || current.replayInst 346 current.singleStep := s1_out_bits.singleStep || current.singleStep 347 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 348 } 349 } 350 }.elsewhen (s1_out_valid && !s1_flush) { 351 currentValid := true.B 352 current := s1_out_bits 353 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 354 currentValid := true.B 355 current := enq_bits 356 } 357 358 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 359 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 360 io.state.valid := currentValid 361 io.state.bits := current 362 363} 364 365class RobFlushInfo(implicit p: Parameters) extends XSBundle { 366 val ftqIdx = new FtqPtr 367 val robIdx = new RobPtr 368 val ftqOffset = UInt(log2Up(PredictWidth).W) 369 val replayInst = Bool() 370} 371 372class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter { 373 374 lazy val module = new RobImp(this) 375 376 override def generateWritebackIO( 377 thisMod: Option[HasWritebackSource] = None, 378 thisModImp: Option[HasWritebackSourceImp] = None 379 ): Unit = { 380 val sources = writebackSinksImp(thisMod, thisModImp) 381 module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 382 } 383} 384 385class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer) 386 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents with VectorConstants{ 387 val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs) 388 val numWbPorts = wbExuConfigs.map(_.length) 389 390 val io = IO(new Bundle() { 391 val hartId = Input(UInt(8.W)) 392 val redirect = Input(Valid(new Redirect)) 393 val enq = new RobEnqIO 394 val flushOut = ValidIO(new Redirect) 395 val isVsetFlushPipe = Output(Bool()) 396 val vconfigPdest = Output(UInt(PhyRegIdxWidth.W)) 397 val exception = ValidIO(new ExceptionInfo) 398 // exu + brq 399 val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 400 val commits = Output(new RobCommitIO) 401 val rabCommits = Output(new RobCommitIO) 402 val diffCommits = Output(new DiffCommitIO) 403 val lsq = new RobLsqIO 404 val robDeqPtr = Output(new RobPtr) 405 val csr = new RobCSRIO 406 val robFull = Output(Bool()) 407 val cpu_halt = Output(Bool()) 408 val wfi_enable = Input(Bool()) 409 val debug_ls = Flipped(new DebugLSIO) 410 }) 411 412 def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = { 413 wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1)) 414 } 415 val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length) 416 val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags))) 417 val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags)) 418 val vxsatWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeVxsat))) 419 val vxsatPorts = selectWb(vxsatWbSel, _.exists(_.writeVxsat)) 420 val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen))) 421 val exceptionPorts = selectWb(exceptionWbSel, _.exists(_.needExceptionGen)) 422 val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg)) 423 val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg)) 424 println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth") 425 println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 426 println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 427 println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 428 println(s"vxsat: ${vxsatPorts.map(_._1.map(_.name))}") 429 430 431 val exuWriteback = exuWbPorts.map(_._2) 432 val stdWriteback = stdWbPorts.map(_._2) 433 434 // instvalid field 435 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 436 // writeback status 437// val writebackedCounter = Mem(RobSize, UInt(log2Up(MaxUopSize * 2).W)) 438// val realDestSize = Mem(RobSize, UInt(log2Up(MaxUopSize).W)) 439 val writebackedCounter = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize+1).W)))) 440 val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize+1).W)))) 441 val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W)))) 442 val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 443 444 def isWritebacked(ptr: UInt): Bool = { 445 !writebackedCounter(ptr).orR 446 } 447 448 // data for redirect, exception, etc. 449 val flagBkup = Mem(RobSize, Bool()) 450 // some instructions are not allowed to trigger interrupts 451 // They have side effects on the states of the processor before they write back 452 val interrupt_safe = Mem(RobSize, Bool()) 453 454 // data for debug 455 // Warn: debug_* prefix should not exist in generated verilog. 456 val debug_microOp = Mem(RobSize, new MicroOp) 457 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 458 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 459 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 460 461 // pointers 462 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 463 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 464 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 465 466 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 467 val allowEnqueue = RegInit(true.B) 468 469 val enqPtr = enqPtrVec.head 470 val deqPtr = deqPtrVec(0) 471 val walkPtr = walkPtrVec(0) 472 473 val isEmpty = enqPtr === deqPtr 474 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 475 476 /** 477 * states of Rob 478 */ 479 val s_idle :: s_walk :: Nil = Enum(2) 480 val state = RegInit(s_idle) 481 482 /** 483 * Data Modules 484 * 485 * CommitDataModule: data from dispatch 486 * (1) read: commits/walk/exception 487 * (2) write: enqueue 488 * 489 * WritebackData: data from writeback 490 * (1) read: commits/walk/exception 491 * (2) write: write back from exe units 492 */ 493 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 494 val dispatchDataRead = dispatchData.io.rdata 495 496 val exceptionGen = Module(new ExceptionGen) 497 val exceptionDataRead = exceptionGen.io.state 498 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 499 val vxsatDataRead = Wire(Vec(CommitWidth, UInt(1.W))) 500 501 io.robDeqPtr := deqPtr 502 503 val rab = Module(new RenameBuffer(RabSize)) 504 rab.io.redirectValid := io.redirect.valid 505 rab.io.req.zip(io.enq.req).map{ case(dest, src) => 506 dest.bits := src.bits 507 dest.valid := src.valid && io.enq.canAccept 508 } 509 510 val realDestSizeCandidates = (0 until CommitWidth).map(i => realDestSize(Mux(state === s_idle, deqPtrVec(i).value, walkPtrVec(i).value))) 511 val wbSizeSeq = io.commits.commitValid.zip(io.commits.walkValid).zip(realDestSizeCandidates).map{ case((commitValid, walkValid), realDestSize) => 512 Mux(io.commits.isCommit, Mux(commitValid, realDestSize, 0.U), Mux(walkValid, realDestSize, 0.U)) 513 } 514 val wbSizeSum = wbSizeSeq.reduce(_ + _) 515 rab.io.commitSize := wbSizeSum 516 rab.io.walkSize := wbSizeSum 517 518 io.rabCommits := rab.io.commits 519 io.diffCommits := rab.io.diffCommits 520 /** 521 * Enqueue (from dispatch) 522 */ 523 // special cases 524 val hasBlockBackward = RegInit(false.B) 525 val hasNoSpecExec = RegInit(false.B) 526 val doingSvinval = RegInit(false.B) 527 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 528 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 529 when (isEmpty) { hasBlockBackward:= false.B } 530 // When any instruction commits, hasNoSpecExec should be set to false.B 531 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasNoSpecExec:= false.B } 532 533 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 534 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 535 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 536 val hasWFI = RegInit(false.B) 537 io.cpu_halt := hasWFI 538 // WFI Timeout: 2^20 = 1M cycles 539 val wfi_cycles = RegInit(0.U(20.W)) 540 when (hasWFI) { 541 wfi_cycles := wfi_cycles + 1.U 542 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 543 wfi_cycles := 0.U 544 } 545 val wfi_timeout = wfi_cycles.andR 546 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 547 hasWFI := false.B 548 } 549 550 // inst allocate 551 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.ctrl.firstUop))))) 552 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq 553 io.enq.resp := allocatePtrVec 554 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.ctrl.firstUop && io.enq.canAccept)) 555 val timer = GTimer() 556 for (i <- 0 until RenameWidth) { 557 // we don't check whether io.redirect is valid here since redirect has higher priority 558 when (canEnqueue(i)) { 559 val enqUop = io.enq.req(i).bits 560 val enqIndex = allocatePtrVec(i).value 561 // store uop in data module and debug_microOp Vec 562 debug_microOp(enqIndex) := enqUop 563 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 564 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 565 debug_microOp(enqIndex).debugInfo.selectTime := timer 566 debug_microOp(enqIndex).debugInfo.issueTime := timer 567 debug_microOp(enqIndex).debugInfo.writebackTime := timer 568 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 569 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 570 debug_lsInfo(enqIndex) := DebugLsInfo.init 571 when (enqUop.ctrl.blockBackward) { 572 hasBlockBackward := true.B 573 } 574 when (enqUop.ctrl.noSpecExec) { 575 hasNoSpecExec := true.B 576 } 577 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 578 val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR 579 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 580 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 581 { 582 doingSvinval := true.B 583 } 584 // the end instruction of Svinval enqs so clear doingSvinval 585 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 586 { 587 doingSvinval := false.B 588 } 589 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 590 assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) || 591 FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))) 592 when (enqUop.ctrl.isWFI && !enqHasException && !enqHasTriggerHit) { 593 hasWFI := true.B 594 } 595 } 596 } 597 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.ctrl.firstUop)), 0.U) 598 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 599 600 when (!io.wfi_enable) { 601 hasWFI := false.B 602 } 603 // sel vsetvl's flush position 604 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 605 val vsetvlState = RegInit(vs_idle) 606 607 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 608 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 609 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 610 611 val enq0 = io.enq.req(0) 612 val enq0IsVset = FuType.isIntExu(enq0.bits.ctrl.fuType) && ALUOpType.isVset(enq0.bits.ctrl.fuOpType) && enq0.bits.ctrl.lastUop && canEnqueue(0) 613 val enq0IsVsetFlush = enq0IsVset && enq0.bits.ctrl.flushPipe 614 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVecExu(req.bits.ctrl.fuType) && fire} 615 // for vs_idle 616 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 617 // for vs_waitVinstr 618 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 619 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 620 when(vsetvlState === vs_idle){ 621 firstVInstrFtqPtr := firstVInstrIdle.bits.cf.ftqPtr 622 firstVInstrFtqOffset := firstVInstrIdle.bits.cf.ftqOffset 623 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 624 }.elsewhen(vsetvlState === vs_waitVinstr){ 625 firstVInstrFtqPtr := firstVInstrWait.bits.cf.ftqPtr 626 firstVInstrFtqOffset := firstVInstrWait.bits.cf.ftqOffset 627 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 628 } 629 630 val hasVInstrAfterI = Cat(enqIsVInstrVec.drop(1)).orR 631 when(vsetvlState === vs_idle){ 632 when(enq0IsVsetFlush){ 633 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 634 } 635 }.elsewhen(vsetvlState === vs_waitVinstr){ 636 when(io.redirect.valid){ 637 vsetvlState := vs_idle 638 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 639 vsetvlState := vs_waitFlush 640 } 641 }.elsewhen(vsetvlState === vs_waitFlush){ 642 when(io.redirect.valid){ 643 vsetvlState := vs_idle 644 } 645 } 646 647 /** 648 * Writeback (from execution units) 649 */ 650 for (wb <- exuWriteback) { 651 when (wb.valid) { 652 val wbIdx = wb.bits.uop.robIdx.value 653 debug_exuData(wbIdx) := wb.bits.data 654 debug_exuDebug(wbIdx) := wb.bits.debug 655 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime 656 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime 657 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime 658 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime 659 debug_microOp(wbIdx).debugInfo.tlbFirstReqTime := wb.bits.uop.debugInfo.tlbFirstReqTime 660 debug_microOp(wbIdx).debugInfo.tlbRespTime := wb.bits.uop.debugInfo.tlbRespTime 661 662 // debug for lqidx and sqidx 663 debug_microOp(wbIdx).lqIdx := wb.bits.uop.lqIdx 664 debug_microOp(wbIdx).sqIdx := wb.bits.uop.sqIdx 665 666 val debug_Uop = debug_microOp(wbIdx) 667 XSInfo(true.B, 668 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 669 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 670 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n" 671 ) 672 } 673 } 674 val writebackNum = PopCount(exuWriteback.map(_.valid)) 675 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 676 677 678 /** 679 * RedirectOut: Interrupt and Exceptions 680 */ 681 val deqDispatchData = dispatchDataRead(0) 682 val debug_deqUop = debug_microOp(deqPtr.value) 683 684 val intrBitSetReg = RegNext(io.csr.intrBitSet) 685 val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value) 686 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 687 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 688 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 689 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 690 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 691 val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException 692 693 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 694 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 695 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 696 697 val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 698 699 val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 700 val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 701 io.isVsetFlushPipe := isVsetFlushPipe 702 io.vconfigPdest := rab.io.vconfigPdest 703 // io.flushOut will trigger redirect at the next cycle. 704 // Block any redirect or commit at the next cycle. 705 val lastCycleFlush = RegNext(io.flushOut.valid) 706 707 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 708 io.flushOut.bits := DontCare 709 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 710 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 711 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 712 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 713 io.flushOut.bits.interrupt := true.B 714 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 715 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 716 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 717 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 718 719 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 720 io.exception.valid := RegNext(exceptionHappen) 721 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 722 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 723 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 724 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 725 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 726 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 727 io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 728 729 XSDebug(io.flushOut.valid, 730 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 731 p"excp $exceptionEnable flushPipe $isFlushPipe " + 732 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 733 734 735 /** 736 * Commits (and walk) 737 * They share the same width. 738 */ 739 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 740 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 741 val walkFinished = walkCounter <= CommitWidth.U 742 rab.io.robWalkEnd := state === s_walk && walkFinished 743 require(RenameWidth <= CommitWidth) 744 745 // wiring to csr 746 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 747 val v = io.commits.commitValid(i) 748 val info = io.commits.info(i) 749 (v & info.wflags, v & info.fpWen) 750 }).unzip 751 val fflags = Wire(Valid(UInt(5.W))) 752 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 753 fflags.bits := wflags.zip(fflagsDataRead).map({ 754 case (w, f) => Mux(w, f, 0.U) 755 }).reduce(_|_) 756 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 757 758 val vxsat = Wire(Valid(UInt(1.W))) 759 vxsat.valid := io.commits.isCommit && vxsat.bits.asBool 760 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map{ 761 case(valid, vxsat) => valid & vxsat.asBool 762 }.reduce(_ | _) 763 764 // when mispredict branches writeback, stop commit in the next 2 cycles 765 // TODO: don't check all exu write back 766 val misPredWb = Cat(VecInit(exuWriteback.map(wb => 767 wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid 768 ))).orR 769 val misPredBlockCounter = Reg(UInt(3.W)) 770 misPredBlockCounter := Mux(misPredWb, 771 "b111".U, 772 misPredBlockCounter >> 1.U 773 ) 774 val misPredBlock = misPredBlockCounter(0) 775 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI 776 777 io.commits.isWalk := state === s_walk 778 io.commits.isCommit := state === s_idle && !blockCommit 779 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 780 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 781 // store will be commited iff both sta & std have been writebacked 782 val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value))) 783 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 784 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 785 val allowOnlyOneCommit = commit_exception || intrBitSetReg 786 // for instructions that may block others, we don't allow them to commit 787 for (i <- 0 until CommitWidth) { 788 // defaults: state === s_idle and instructions commit 789 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 790 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 791 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 792 io.commits.info(i) := dispatchDataRead(i) 793 794 when (state === s_walk) { 795 io.commits.walkValid(i) := shouldWalkVec(i) 796 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 797 XSError(!walk_v(i), s"why not $i???\n") 798 } 799 } 800 801 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 802 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b vxsat: %b\n", 803 debug_microOp(deqPtrVec(i).value).cf.pc, 804 io.commits.info(i).rfWen, 805 io.commits.info(i).ldest, 806 io.commits.info(i).pdest, 807 io.commits.info(i).old_pdest, 808 debug_exuData(deqPtrVec(i).value), 809 fflagsDataRead(i), 810 vxsatDataRead(i) 811 ) 812 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 813 debug_microOp(walkPtrVec(i).value).cf.pc, 814 io.commits.info(i).rfWen, 815 io.commits.info(i).ldest, 816 debug_exuData(walkPtrVec(i).value) 817 ) 818 } 819 if (env.EnableDifftest) { 820 io.commits.info.map(info => dontTouch(info.pc)) 821 } 822 823 // sync fflags/dirty_fs/vxsat to csr 824 io.csr.fflags := RegNext(fflags) 825 io.csr.dirty_fs := RegNext(dirty_fs) 826 io.csr.vxsat := RegNext(vxsat) 827 828 // sync v csr to csr 829 // for difftest 830 val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === INT_VCONFIG.U && info.rfWen }.reverse 831 io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR) 832 833 // commit load/store to lsq 834 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 835 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 836 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 837 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 838 // indicate a pending load or store 839 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 840 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 841 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 842 843 /** 844 * state changes 845 * (1) redirect: switch to s_walk 846 * (2) walk: when walking comes to the end, switch to s_idle 847 */ 848 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.rabWalkEnd, s_idle, state)) 849 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 850 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 851 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 852 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 853 state := state_next 854 855 /** 856 * pointers and counters 857 */ 858 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 859 deqPtrGenModule.io.state := state 860 deqPtrGenModule.io.deq_v := commit_v 861 deqPtrGenModule.io.deq_w := commit_w 862 deqPtrGenModule.io.exception_state := exceptionDataRead 863 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 864 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 865 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 866 deqPtrGenModule.io.blockCommit := blockCommit 867 deqPtrVec := deqPtrGenModule.io.out 868 val deqPtrVec_next = deqPtrGenModule.io.next_out 869 870 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 871 enqPtrGenModule.io.redirect := io.redirect 872 enqPtrGenModule.io.allowEnqueue := allowEnqueue 873 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 874 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.ctrl.firstUop)) 875 enqPtrVec := enqPtrGenModule.io.out 876 877 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 878 // next walkPtrVec: 879 // (1) redirect occurs: update according to state 880 // (2) walk: move forwards 881 val walkPtrVec_next = Mux(io.redirect.valid, 882 deqPtrVec_next, 883 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 884 ) 885 walkPtrVec := walkPtrVec_next 886 887 val numValidEntries = distanceBetween(enqPtr, deqPtr) 888 val commitCnt = PopCount(io.commits.commitValid) 889 890 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 891 892 val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0)) 893 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 894 when (io.redirect.valid) { 895 // full condition: 896 // +& is used here because: 897 // When rob is full and the tail instruction causes a misprediction, 898 // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance 899 // is RobSize - 1. 900 // Since misprediction does not flush the instruction itself, flushItSelf is false.B. 901 // Previously we use `+` to count the walk distance and it causes overflows 902 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 903 // The width of walkCounter also needs to be changed. 904 // empty condition: 905 // When the last instruction in ROB commits and causes a flush, a redirect 906 // will be raised later. In such circumstances, the redirect robIdx is before 907 // the deqPtrVec_next(0) and will cause underflow. 908 walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U, 909 redirectWalkDistance +& !io.redirect.bits.flushItself()) 910 }.elsewhen (state === s_walk) { 911 walkCounter := walkCounter - thisCycleWalkCount 912 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 913 } 914 915 916 /** 917 * States 918 * We put all the stage bits changes here. 919 920 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 921 * All states: (1) valid; (2) writebacked; (3) flagBkup 922 */ 923 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 924 925 // redirect logic writes 6 valid 926 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 927 val redirectTail = Reg(new RobPtr) 928 val redirectIdle :: redirectBusy :: Nil = Enum(2) 929 val redirectState = RegInit(redirectIdle) 930 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 931 when(redirectState === redirectBusy) { 932 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 933 redirectHeadVec zip invMask foreach { 934 case (redirectHead, inv) => when(inv) { 935 valid(redirectHead.value) := false.B 936 } 937 } 938 when(!invMask.last) { 939 redirectState := redirectIdle 940 } 941 } 942 when(io.redirect.valid) { 943 redirectState := redirectBusy 944 when(redirectState === redirectIdle) { 945 redirectTail := enqPtr 946 } 947 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 948 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 949 } 950 } 951 // enqueue logic writes 6 valid 952 for (i <- 0 until RenameWidth) { 953 when (canEnqueue(i) && !io.redirect.valid) { 954 valid(allocatePtrVec(i).value) := true.B 955 } 956 } 957 // dequeue logic writes 6 valid 958 for (i <- 0 until CommitWidth) { 959 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 960 when (commitValid) { 961 valid(commitReadAddr(i)) := false.B 962 } 963 } 964 965 // debug_inst update 966 for(i <- 0 until (exuParameters.LduCnt + exuParameters.StuCnt)) { 967 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 968 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 969 } 970 971 // writeback logic set numWbPorts writebacked to true 972 val blockWbSeq = Wire(Vec(exuWriteback.length, Bool())) 973 blockWbSeq.map(_ := false.B) 974 for (((wb, cfgs), blockWb) <- exuWriteback.zip(wbExuConfigs(exeWbSel)).zip(blockWbSeq)) { 975 when(wb.valid) { 976 val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR 977 val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend 978 val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 979 val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 980 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 981 } 982 } 983 984 // if the first uop of an instruction is valid , write writebackedCounter 985 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 986 val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.ctrl.firstUop) 987 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.ctrl.needWriteRf) 988 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 989 990 val enqWbSizeSeq = io.enq.req.map { req => 991 val enqHasException = ExceptionNO.selectFrontend(req.bits.cf.exceptionVec).asUInt.orR 992 val enqHasTriggerHit = req.bits.cf.trigger.getHitFrontend 993 Mux(req.bits.eliminatedMove, Mux(enqHasException || enqHasTriggerHit, 1.U, 0.U), 994 Mux(FuType.isMemExu(req.bits.ctrl.fuType) && FuType.isAMO(req.bits.ctrl.fuType), 3.U, 995 Mux(FuType.isStoreExu(req.bits.ctrl.fuType), 2.U, 1.U))) 996 } 997 val enqWbSizeSumSeq = enqRobIdxSeq.zipWithIndex.map { case (robIdx, idx) => 998 val addend = uopEnqValidSeq.zip(enqRobIdxSeq).zip(enqWbSizeSeq).take(idx + 1).map { case ((valid, uopRobIdx), uopWbSize) => Mux(valid && robIdx === uopRobIdx, uopWbSize, 0.U) } 999 addend.reduce(_ +& _) 1000 } 1001 val fflags_wb = fflagsPorts.map(_._2) 1002 val vxsat_wb = vxsatPorts.map(_._2) 1003 for(i <- 0 until RobSize){ 1004 1005 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 1006 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1007 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1008 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1009 1010 realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), 1011 realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 1012 0.U) 1013 1014 1015 val enqCnt = ParallelPriorityMux(uopCanEnqSeq.reverse :+ true.B, enqWbSizeSumSeq.reverse :+ 0.U) 1016 1017 val canWbSeq = exuWriteback.map(writeback => writeback.valid && writeback.bits.uop.robIdx.value === i.U) 1018 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb } 1019 val canStuWbSeq = stdWriteback.map(writeback => writeback.valid && writeback.bits.uop.robIdx.value === i.U) 1020 val wbCnt = PopCount(canWbNoBlockSeq ++ canStuWbSeq) 1021 1022 writebackedCounter(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), 1023 Mux(exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U, 1024 0.U, 1025 writebackedCounter(i) + enqCnt - wbCnt), 1026 0.U) 1027 1028 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.uop.robIdx.value === i.U) 1029 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map{ case(canWb, wb) => Mux(canWb, wb.bits.fflags, 0.U)}.reduce(_ | _) 1030 fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes) 1031 1032 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.uop.robIdx.value === i.U) 1033 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map{ case(canWb, wb) => Mux(canWb, wb.bits.vxsat, 0.U)}.reduce(_ | _) 1034 vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes) 1035 } 1036 1037 // flagBkup 1038 // enqueue logic set 6 flagBkup at most 1039 for (i <- 0 until RenameWidth) { 1040 when (canEnqueue(i)) { 1041 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 1042 } 1043 } 1044 1045 // interrupt_safe 1046 for (i <- 0 until RenameWidth) { 1047 // We RegNext the updates for better timing. 1048 // Note that instructions won't change the system's states in this cycle. 1049 when (RegNext(canEnqueue(i))) { 1050 // For now, we allow non-load-store instructions to trigger interrupts 1051 // For MMIO instructions, they should not trigger interrupts since they may 1052 // be sent to lower level before it writes back. 1053 // However, we cannot determine whether a load/store instruction is MMIO. 1054 // Thus, we don't allow load/store instructions to trigger an interrupt. 1055 // TODO: support non-MMIO load-store instructions to trigger interrupts 1056 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType) 1057 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 1058 } 1059 } 1060 1061 /** 1062 * read and write of data modules 1063 */ 1064 val commitReadAddr_next = Mux(state_next === s_idle, 1065 VecInit(deqPtrVec_next.map(_.value)), 1066 VecInit(walkPtrVec_next.map(_.value)) 1067 ) 1068 // NOTE: dispatch info will record the uop of inst 1069 dispatchData.io.wen := canEnqueue 1070 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1071 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 1072 wdata.ldest := req.ctrl.ldest 1073 wdata.rfWen := req.ctrl.rfWen 1074 wdata.fpWen := req.ctrl.fpWen 1075 wdata.vecWen := req.ctrl.vecWen 1076 wdata.wflags := req.ctrl.fpu.wflags 1077 wdata.commitType := req.ctrl.commitType 1078 wdata.pdest := req.pdest 1079 wdata.old_pdest := req.old_pdest 1080 wdata.ftqIdx := req.cf.ftqPtr 1081 wdata.ftqOffset := req.cf.ftqOffset 1082 wdata.isMove := req.eliminatedMove 1083 wdata.pc := req.cf.pc 1084 wdata.uopIdx := req.ctrl.uopIdx 1085 wdata.vconfig := req.ctrl.vconfig 1086 } 1087 dispatchData.io.raddr := commitReadAddr_next 1088 1089 exceptionGen.io.redirect <> io.redirect 1090 exceptionGen.io.flush := io.flushOut.valid 1091 for (i <- 0 until RenameWidth) { 1092 exceptionGen.io.enq(i).valid := canEnqueue(i) 1093 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1094 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec) 1095 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 1096 exceptionGen.io.enq(i).bits.isVset := FuType.isIntExu(io.enq.req(i).bits.ctrl.fuType) && ALUOpType.isVset(io.enq.req(i).bits.ctrl.fuOpType) 1097 exceptionGen.io.enq(i).bits.replayInst := false.B 1098 XSError(canEnqueue(i) && io.enq.req(i).bits.ctrl.replayInst, "enq should not set replayInst") 1099 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 1100 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 1101 exceptionGen.io.enq(i).bits.trigger.clear() 1102 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit 1103 } 1104 1105 println(s"ExceptionGen:") 1106 val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted) 1107 require(exceptionCases.length == exceptionGen.io.wb.length) 1108 for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) { 1109 exc_wb.valid := wb.valid 1110 exc_wb.bits.robIdx := wb.bits.uop.robIdx 1111 exc_wb.bits.exceptionVec := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs) 1112 exc_wb.bits.flushPipe := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 1113 exc_wb.bits.isVset := false.B 1114 exc_wb.bits.replayInst := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 1115 exc_wb.bits.singleStep := false.B 1116 exc_wb.bits.crossPageIPFFix := false.B 1117 // TODO: make trigger configurable 1118 exc_wb.bits.trigger.clear() 1119 exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit 1120 println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1121 s"flushPipe ${configs.exists(_.flushPipe)}, " + 1122 s"replayInst ${configs.exists(_.replayInst)}") 1123 } 1124 1125 fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value)) 1126 1127 vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value)) 1128 1129 val instrCntReg = RegInit(0.U(64.W)) 1130 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1131 val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt 1132 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1133 val instrCnt = instrCntReg + retireCounter 1134 instrCntReg := instrCnt 1135 io.csr.perfinfo.retiredInstr := retireCounter 1136 io.robFull := !allowEnqueue 1137 1138 /** 1139 * debug info 1140 */ 1141 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1142 XSDebug("") 1143 for(i <- 0 until RobSize){ 1144 XSDebug(false, !valid(i), "-") 1145 XSDebug(false, valid(i) && !writebackedCounter(i).orR, "w") 1146 XSDebug(false, valid(i) && writebackedCounter(i).orR, "v") 1147 } 1148 XSDebug(false, true.B, "\n") 1149 1150 for(i <- 0 until RobSize) { 1151 if(i % 4 == 0) XSDebug("") 1152 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 1153 XSDebug(false, !valid(i), "- ") 1154 XSDebug(false, valid(i) && !writebackedCounter(i).orR, "w ") 1155 XSDebug(false, valid(i) && writebackedCounter(i).orR, "v ") 1156 if(i % 4 == 3) XSDebug(false, true.B, "\n") 1157 } 1158 1159 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1160 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1161 1162 val commitDebugExu = deqPtrVec.map(_.value).map(debug_exuDebug(_)) 1163 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1164 val commitDebugLsInfo = deqPtrVec.map(_.value).map(debug_lsInfo(_)) 1165 XSPerfAccumulate("clock_cycle", 1.U) 1166 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 1167 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1168 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1169 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 1170 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1171 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1172 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1173 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1174 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1175 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1176 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1177 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1178 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1179 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1180 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 1181 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1182 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1183 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1184 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && !writebackedCounter(i).orR))) 1185 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1186 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1187 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1188 XSPerfAccumulate("walkCycle", state === s_walk) 1189 val deqNotWritebacked = valid(deqPtr.value) && isWritebacked(deqPtr.value) 1190 val deqUopCommitType = io.commits.info(0).commitType 1191 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1192 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1193 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1194 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1195 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1196 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1197 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1198 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1199 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1200 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1201 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1202 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1203 val accessLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1204 val tlbLatency = commitDebugUop.map(uop => uop.debugInfo.tlbRespTime - uop.debugInfo.tlbFirstReqTime) 1205 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1206 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1207 } 1208 for (fuType <- FuType.functionNameMap.keys) { 1209 val fuName = FuType.functionNameMap(fuType) 1210 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 1211 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1212 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1213 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1214 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1215 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1216 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1217 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1218 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1219 if (fuType == FuType.fmac.litValue) { 1220 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 1221 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 1222 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 1223 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 1224 } 1225 } 1226 1227 /** 1228 * DataBase info: 1229 * log trigger is at writeback valid 1230 * */ 1231 if(!env.FPGAPlatform){ 1232 val instTableName = "InstDB" + p(XSCoreParamsKey).HartId.toString 1233 val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString 1234 val debug_instTable = ChiselDB.createTable(instTableName, new DebugInstDB) 1235 // FIXME lyq: only get inst (alu, bj, ls) in exuWriteback 1236 for (wb <- exuWriteback) { 1237 when(wb.valid) { 1238 val debug_instData = Wire(new DebugInstDB) 1239 val idx = wb.bits.uop.robIdx.value 1240 debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID 1241 debug_instData.robIdx := idx 1242 debug_instData.instType := wb.bits.uop.ctrl.fuType 1243 debug_instData.ivaddr := wb.bits.uop.cf.pc 1244 debug_instData.dvaddr := wb.bits.debug.vaddr 1245 debug_instData.dpaddr := wb.bits.debug.paddr 1246 debug_instData.tlbLatency := wb.bits.uop.debugInfo.tlbRespTime - wb.bits.uop.debugInfo.tlbFirstReqTime 1247 debug_instData.accessLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime 1248 debug_instData.executeLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime 1249 debug_instData.issueLatency := wb.bits.uop.debugInfo.issueTime - wb.bits.uop.debugInfo.selectTime 1250 debug_instData.exceptType := wb.bits.uop.cf.exceptionVec 1251 debug_instData.lsInfo := debug_lsInfo(idx) 1252 debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid 1253 debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit 1254 debug_instTable.log( 1255 data = debug_instData, 1256 en = wb.valid, 1257 site = instSiteName, 1258 clock = clock, 1259 reset = reset 1260 ) 1261 } 1262 } 1263 } 1264 1265 1266 //difftest signals 1267 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1268 1269 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1270 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1271 1272 for(i <- 0 until CommitWidth) { 1273 val idx = deqPtrVec(i).value 1274 wdata(i) := debug_exuData(idx) 1275 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 1276 } 1277 1278 if (env.EnableDifftest) { 1279 for (i <- 0 until CommitWidth) { 1280 val difftest = Module(new DifftestInstrCommit) 1281 // assgin default value 1282 difftest.io := DontCare 1283 1284 difftest.io.clock := clock 1285 difftest.io.coreid := io.hartId 1286 difftest.io.index := i.U 1287 1288 val ptr = deqPtrVec(i).value 1289 val uop = commitDebugUop(i) 1290 val exuOut = debug_exuDebug(ptr) 1291 val exuData = debug_exuData(ptr) 1292 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1293 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN)))) 1294 difftest.io.instr := RegNext(RegNext(RegNext(uop.cf.instr))) 1295 difftest.io.robIdx := RegNext(RegNext(RegNext(ZeroExt(ptr, 10)))) 1296 difftest.io.lqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7)))) 1297 difftest.io.sqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7)))) 1298 difftest.io.isLoad := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD))) 1299 difftest.io.isStore := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE))) 1300 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 1301 // when committing an eliminated move instruction, 1302 // we must make sure that skip is properly set to false (output from EXU is random value) 1303 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1304 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.cf.pd.isRVC))) 1305 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 1306 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen))) 1307 difftest.io.vecwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).vecWen))) 1308 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1309 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1310 // // runahead commit hint 1311 // val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1312 // runahead_commit.io.clock := clock 1313 // runahead_commit.io.coreid := io.hartId 1314 // runahead_commit.io.index := i.U 1315 // runahead_commit.io.valid := difftest.io.valid && 1316 // (commitBranchValid(i) || commitIsStore(i)) 1317 // // TODO: is branch or store 1318 // runahead_commit.io.pc := difftest.io.pc 1319 } 1320 } 1321 else if (env.AlwaysBasicDiff) { 1322 // These are the structures used by difftest only and should be optimized after synthesis. 1323 val dt_eliminatedMove = Mem(RobSize, Bool()) 1324 val dt_isRVC = Mem(RobSize, Bool()) 1325 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1326 for (i <- 0 until RenameWidth) { 1327 when (canEnqueue(i)) { 1328 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1329 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC 1330 } 1331 } 1332 for (wb <- exuWriteback) { 1333 when (wb.valid) { 1334 val wbIdx = wb.bits.uop.robIdx.value 1335 dt_exuDebug(wbIdx) := wb.bits.debug 1336 } 1337 } 1338 // Always instantiate basic difftest modules. 1339 for (i <- 0 until CommitWidth) { 1340 val commitInfo = io.commits.info(i) 1341 val ptr = deqPtrVec(i).value 1342 val exuOut = dt_exuDebug(ptr) 1343 val eliminatedMove = dt_eliminatedMove(ptr) 1344 val isRVC = dt_isRVC(ptr) 1345 1346 val difftest = Module(new DifftestBasicInstrCommit) 1347 difftest.io.clock := clock 1348 difftest.io.coreid := io.hartId 1349 difftest.io.index := i.U 1350 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1351 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1352 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1353 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1354 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1355 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen))) 1356 difftest.io.vecwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).vecWen))) 1357 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1358 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1359 } 1360 } 1361 1362 if (env.EnableDifftest) { 1363 for (i <- 0 until CommitWidth) { 1364 val difftest = Module(new DifftestLoadEvent) 1365 difftest.io.clock := clock 1366 difftest.io.coreid := io.hartId 1367 difftest.io.index := i.U 1368 1369 val ptr = deqPtrVec(i).value 1370 val uop = commitDebugUop(i) 1371 val exuOut = debug_exuDebug(ptr) 1372 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1373 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1374 difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType))) 1375 difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType))) 1376 } 1377 } 1378 1379 // Always instantiate basic difftest modules. 1380 if (env.EnableDifftest) { 1381 val dt_isXSTrap = Mem(RobSize, Bool()) 1382 for (i <- 0 until RenameWidth) { 1383 when (canEnqueue(i)) { 1384 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1385 } 1386 } 1387 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1388 val hitTrap = trapVec.reduce(_||_) 1389 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1390 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1391 val difftest = Module(new DifftestTrapEvent) 1392 difftest.io.clock := clock 1393 difftest.io.coreid := io.hartId 1394 difftest.io.valid := hitTrap 1395 difftest.io.code := trapCode 1396 difftest.io.pc := trapPC 1397 difftest.io.cycleCnt := timer 1398 difftest.io.instrCnt := instrCnt 1399 difftest.io.hasWFI := hasWFI 1400 } 1401 else if (env.AlwaysBasicDiff) { 1402 val dt_isXSTrap = Mem(RobSize, Bool()) 1403 for (i <- 0 until RenameWidth) { 1404 when (canEnqueue(i)) { 1405 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1406 } 1407 } 1408 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1409 val hitTrap = trapVec.reduce(_||_) 1410 val difftest = Module(new DifftestBasicTrapEvent) 1411 difftest.io.clock := clock 1412 difftest.io.coreid := io.hartId 1413 difftest.io.valid := hitTrap 1414 difftest.io.cycleCnt := timer 1415 difftest.io.instrCnt := instrCnt 1416 } 1417 1418 val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64)))) 1419 val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b)) 1420 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1421 val commitLoadVec = VecInit(commitLoadValid) 1422 val commitBranchVec = VecInit(commitBranchValid) 1423 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1424 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1425 val perfEvents = Seq( 1426 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1427 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1428 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1429 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1430 ("rob_commitUop ", ifCommit(commitCnt) ), 1431 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1432 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1433 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1434 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1435 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1436 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1437 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1438 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1439 ("rob_walkCycle ", (state === s_walk) ), 1440 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1441 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1442 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1443 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1444 ) 1445 generatePerfEvent() 1446} 1447