1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3.ExcitingUtils._ 21import chisel3._ 22import chisel3.util._ 23import xiangshan._ 24import utils._ 25import xiangshan.frontend.FtqPtr 26import difftest._ 27 28class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 29 p => p(XSCoreParamsKey).RobSize 30) with HasCircularQueuePtrHelper { 31 32 def needFlush(redirect: Valid[Redirect]): Bool = { 33 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 34 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 35 } 36 37 override def cloneType = (new RobPtr).asInstanceOf[this.type] 38} 39 40object RobPtr { 41 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 42 val ptr = Wire(new RobPtr) 43 ptr.flag := f 44 ptr.value := v 45 ptr 46 } 47} 48 49class RobCSRIO(implicit p: Parameters) extends XSBundle { 50 val intrBitSet = Input(Bool()) 51 val trapTarget = Input(UInt(VAddrBits.W)) 52 val isXRet = Input(Bool()) 53 54 val fflags = Output(Valid(UInt(5.W))) 55 val dirty_fs = Output(Bool()) 56 val perfinfo = new Bundle { 57 val retiredInstr = Output(UInt(3.W)) 58 } 59} 60 61class RobLsqIO(implicit p: Parameters) extends XSBundle { 62 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 63 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 64 val pendingld = Output(Bool()) 65 val pendingst = Output(Bool()) 66 val commit = Output(Bool()) 67 val storeDataRobWb = Input(Vec(StorePipelineWidth, Valid(new RobPtr))) 68} 69 70class RobEnqIO(implicit p: Parameters) extends XSBundle { 71 val canAccept = Output(Bool()) 72 val isEmpty = Output(Bool()) 73 // valid vector, for robIdx gen and walk 74 val needAlloc = Vec(RenameWidth, Input(Bool())) 75 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 76 val resp = Vec(RenameWidth, Output(new RobPtr)) 77} 78 79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 80 81class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 82 val io = IO(new Bundle { 83 // for commits/flush 84 val state = Input(UInt(2.W)) 85 val deq_v = Vec(CommitWidth, Input(Bool())) 86 val deq_w = Vec(CommitWidth, Input(Bool())) 87 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 88 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 89 val intrBitSetReg = Input(Bool()) 90 val hasNoSpecExec = Input(Bool()) 91 val commitType = Input(CommitType()) 92 val misPredBlock = Input(Bool()) 93 val isReplaying = Input(Bool()) 94 // output: the CommitWidth deqPtr 95 val out = Vec(CommitWidth, Output(new RobPtr)) 96 val next_out = Vec(CommitWidth, Output(new RobPtr)) 97 }) 98 99 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 100 101 // for exceptions (flushPipe included) and interrupts: 102 // only consider the first instruction 103 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && !CommitType.isLoadStore(io.commitType) 104 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && !io.exception_state.bits.flushPipe && io.exception_state.bits.robIdx === deqPtrVec(0) 105 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 106 107 // for normal commits: only to consider when there're no exceptions 108 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 109 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 110 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying)) 111 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 112 // when io.intrBitSetReg or there're possible exceptions in these instructions, 113 // only one instruction is allowed to commit 114 val allowOnlyOne = commit_exception || io.intrBitSetReg 115 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 116 117 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 118 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec) 119 120 deqPtrVec := deqPtrVec_next 121 122 io.next_out := deqPtrVec_next 123 io.out := deqPtrVec 124 125 when (io.state === 0.U) { 126 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 127 } 128 129} 130 131class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 132 val io = IO(new Bundle { 133 // for input redirect 134 val redirect = Input(Valid(new Redirect)) 135 // for enqueue 136 val allowEnqueue = Input(Bool()) 137 val hasBlockBackward = Input(Bool()) 138 val enq = Vec(RenameWidth, Input(Bool())) 139 val out = Output(new RobPtr) 140 }) 141 142 val enqPtr = RegInit(0.U.asTypeOf(new RobPtr)) 143 144 // enqueue 145 val canAccept = io.allowEnqueue && !io.hasBlockBackward 146 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 147 148 when (io.redirect.valid) { 149 enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U) 150 }.otherwise { 151 enqPtr := enqPtr + dispatchNum 152 } 153 154 io.out := enqPtr 155 156} 157 158class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 159 // val valid = Bool() 160 val robIdx = new RobPtr 161 val exceptionVec = ExceptionVec() 162 val flushPipe = Bool() 163 val replayInst = Bool() // redirect to that inst itself 164 val singleStep = Bool() 165 val crossPageIPFFix = Bool() 166 val trigger = new TriggerCf 167 168 // make sure chains are fired at same timing 169 def trigger_vec_fix = VecInit(trigger.triggerHitVec.zipWithIndex.map{ case (hit, i) => 170 def chain = trigger.triggerChainVec(i / 2) 171 if (i % 2 == 0) 172 Mux(chain, (trigger.triggerHitVec(i ) && trigger.triggerHitVec(i + 1)), trigger.triggerHitVec(i)) 173 else 174 Mux(chain, (trigger.triggerHitVec(i ) && trigger.triggerHitVec(i - 1)), trigger.triggerHitVec(i)) 175 }) 176 177 def trigger_before = trigger_vec_fix.zip(trigger.triggerTiming).map{ case (hit, timing) => hit && !timing}.reduce(_ | _) 178 def trigger_after = trigger_vec_fix.zip(trigger.triggerTiming).map{ case (hit, timing) => hit && timing}.reduce(_ | _) 179 180 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger_vec_fix.asUInt.orR 181 // only exceptions are allowed to writeback when enqueue 182 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger_before 183} 184 185class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 186 val io = IO(new Bundle { 187 val redirect = Input(Valid(new Redirect)) 188 val flush = Input(Bool()) 189 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 190 val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo))) 191 val out = ValidIO(new RobExceptionInfo) 192 val state = ValidIO(new RobExceptionInfo) 193 }) 194 195 val current = Reg(Valid(new RobExceptionInfo)) 196 197 // orR the exceptionVec 198 val lastCycleFlush = RegNext(io.flush) 199 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 200 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 201 202 // s0: compare wb(1),wb(2) and wb(3),wb(4) 203 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 204 val csr_wb_bits = io.wb(0).bits 205 val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits) 206 val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits) 207 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4)))) 208 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 209 210 // s1: compare last four and current flush 211 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 212 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 213 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 214 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 215 val s1_out_bits = RegNext(compare_bits) 216 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 217 218 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 219 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 220 221 // s2: compare the input exception with the current one 222 // priorities: 223 // (1) system reset 224 // (2) current is valid: flush, remain, merge, update 225 // (3) current is not valid: s1 or enq 226 val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush 227 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 228 when (reset.asBool) { 229 current.valid := false.B 230 }.elsewhen (current.valid) { 231 when (current_flush) { 232 current.valid := Mux(s1_flush, false.B, s1_out_valid) 233 } 234 when (s1_out_valid && !s1_flush) { 235 when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) { 236 current.bits := s1_out_bits 237 }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) { 238 current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 239 current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe 240 current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst 241 current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep 242// current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf) 243 } 244 } 245 }.elsewhen (s1_out_valid && !s1_flush) { 246 current.valid := true.B 247 current.bits := s1_out_bits 248 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 249 current.valid := true.B 250 current.bits := enq_bits 251 } 252 253 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 254 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 255 io.state := current 256 257} 258 259class RobFlushInfo(implicit p: Parameters) extends XSBundle { 260 val ftqIdx = new FtqPtr 261 val robIdx = new RobPtr 262 val ftqOffset = UInt(log2Up(PredictWidth).W) 263 val replayInst = Bool() 264} 265 266class Rob(numWbPorts: Int)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 267 val io = IO(new Bundle() { 268 val hartId = Input(UInt(8.W)) 269 val redirect = Input(Valid(new Redirect)) 270 val enq = new RobEnqIO 271 val flushOut = ValidIO(new Redirect) 272 val exception = ValidIO(new ExceptionInfo) 273 // exu + brq 274 val exeWbResults = Vec(numWbPorts, Flipped(ValidIO(new ExuOutput))) 275 val commits = new RobCommitIO 276 val lsq = new RobLsqIO 277 val bcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 278 val robDeqPtr = Output(new RobPtr) 279 val csr = new RobCSRIO 280 val robFull = Output(Bool()) 281 }) 282 283 println("Rob: size:" + RobSize + " wbports:" + numWbPorts + " commitwidth:" + CommitWidth) 284 285 // instvalid field 286 // val valid = RegInit(VecInit(List.fill(RobSize)(false.B))) 287 val valid = Mem(RobSize, Bool()) 288 // writeback status 289 // val writebacked = Reg(Vec(RobSize, Bool())) 290 val writebacked = Mem(RobSize, Bool()) 291 val store_data_writebacked = Mem(RobSize, Bool()) 292 // data for redirect, exception, etc. 293 // val flagBkup = RegInit(VecInit(List.fill(RobSize)(false.B))) 294 val flagBkup = Mem(RobSize, Bool()) 295 296 // data for debug 297 // Warn: debug_* prefix should not exist in generated verilog. 298 val debug_microOp = Mem(RobSize, new MicroOp) 299 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 300 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 301 302 // pointers 303 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 304 val enqPtr = Wire(new RobPtr) 305 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 306 307 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 308 val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W)) 309 val allowEnqueue = RegInit(true.B) 310 311 val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i)))) 312 val deqPtr = deqPtrVec(0) 313 val walkPtr = walkPtrVec(0) 314 315 val isEmpty = enqPtr === deqPtr 316 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 317 318 /** 319 * states of Rob 320 */ 321 val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3) 322 val state = RegInit(s_idle) 323 324 /** 325 * Data Modules 326 * 327 * CommitDataModule: data from dispatch 328 * (1) read: commits/walk/exception 329 * (2) write: enqueue 330 * 331 * WritebackData: data from writeback 332 * (1) read: commits/walk/exception 333 * (2) write: write back from exe units 334 */ 335 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 336 val dispatchDataRead = dispatchData.io.rdata 337 338 val exceptionGen = Module(new ExceptionGen) 339 val exceptionDataRead = exceptionGen.io.state 340 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 341 342 io.robDeqPtr := deqPtr 343 344 /** 345 * Enqueue (from dispatch) 346 */ 347 // special cases 348 val hasBlockBackward = RegInit(false.B) 349 val hasNoSpecExec = RegInit(false.B) 350 val doingSvinval = RegInit(false.B) 351 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 352 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 353 when (isEmpty) { hasBlockBackward:= false.B } 354 // When any instruction commits, hasNoSpecExec should be set to false.B 355 when (io.commits.valid.asUInt.orR && state =/= s_extrawalk) { hasNoSpecExec:= false.B } 356 357 io.enq.canAccept := allowEnqueue && !hasBlockBackward 358 io.enq.resp := enqPtrVec 359 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 360 val timer = GTimer() 361 for (i <- 0 until RenameWidth) { 362 // we don't check whether io.redirect is valid here since redirect has higher priority 363 when (canEnqueue(i)) { 364 // store uop in data module and debug_microOp Vec 365 debug_microOp(enqPtrVec(i).value) := io.enq.req(i).bits 366 debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer 367 debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer 368 debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer 369 debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer 370 debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer 371 when (io.enq.req(i).bits.ctrl.blockBackward) { 372 hasBlockBackward := true.B 373 } 374 when (io.enq.req(i).bits.ctrl.noSpecExec) { 375 hasNoSpecExec := true.B 376 } 377 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 378 when(!Cat(io.enq.req(i).bits.cf.exceptionVec).orR && FuType.isSvinvalBegin(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe)) 379 { 380 doingSvinval := true.B 381 } 382 // the end instruction of Svinval enqs so clear doingSvinval 383 when(!Cat(io.enq.req(i).bits.cf.exceptionVec).orR && FuType.isSvinvalEnd(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe)) 384 { 385 doingSvinval := false.B 386 } 387 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 388 assert( !doingSvinval || (FuType.isSvinval(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe) || FuType.isSvinvalEnd(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe))) 389 } 390 } 391 val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U) 392 io.enq.isEmpty := RegNext(isEmpty && dispatchNum === 0.U) 393 394 // debug info for enqueue (dispatch) 395 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 396 XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n") 397 398 399 /** 400 * Writeback (from execution units) 401 */ 402 for (i <- 0 until numWbPorts) { 403 when (io.exeWbResults(i).valid) { 404 val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value 405 debug_microOp(wbIdx).cf.exceptionVec := io.exeWbResults(i).bits.uop.cf.exceptionVec 406 debug_microOp(wbIdx).ctrl.flushPipe := io.exeWbResults(i).bits.uop.ctrl.flushPipe 407 debug_microOp(wbIdx).ctrl.replayInst := io.exeWbResults(i).bits.uop.ctrl.replayInst 408 debug_microOp(wbIdx).diffTestDebugLrScValid := io.exeWbResults(i).bits.uop.diffTestDebugLrScValid 409 debug_exuData(wbIdx) := io.exeWbResults(i).bits.data 410 debug_exuDebug(wbIdx) := io.exeWbResults(i).bits.debug 411 debug_microOp(wbIdx).debugInfo.enqRsTime := io.exeWbResults(i).bits.uop.debugInfo.enqRsTime 412 debug_microOp(wbIdx).debugInfo.selectTime := io.exeWbResults(i).bits.uop.debugInfo.selectTime 413 debug_microOp(wbIdx).debugInfo.issueTime := io.exeWbResults(i).bits.uop.debugInfo.issueTime 414 debug_microOp(wbIdx).debugInfo.writebackTime := io.exeWbResults(i).bits.uop.debugInfo.writebackTime 415 416 val debug_Uop = debug_microOp(wbIdx) 417 XSInfo(true.B, 418 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 419 p"data 0x${Hexadecimal(io.exeWbResults(i).bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 420 p"skip ${io.exeWbResults(i).bits.debug.isMMIO} robIdx: ${io.exeWbResults(i).bits.uop.robIdx}\n" 421 ) 422 } 423 } 424 val writebackNum = PopCount(io.exeWbResults.map(_.valid)) 425 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 426 427 428 /** 429 * RedirectOut: Interrupt and Exceptions 430 */ 431 val deqDispatchData = dispatchDataRead(0) 432 val debug_deqUop = debug_microOp(deqPtr.value) 433 434 // For MMIO instructions, they should not trigger interrupts since they may be sent to lower level before it writes back. 435 // However, we cannot determine whether a load/store instruction is MMIO. 436 // Thus, we don't allow load/store instructions to trigger an interrupt. 437 val intrBitSetReg = RegNext(io.csr.intrBitSet) 438 val intrEnable = intrBitSetReg && !hasNoSpecExec && !CommitType.isLoadStore(deqDispatchData.commitType) 439 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 440 val triggerBefore = deqHasExceptionOrFlush && exceptionDataRead.bits.trigger_before 441 val triggerAfter = deqHasExceptionOrFlush && exceptionDataRead.bits.trigger_after && !exceptionDataRead.bits.trigger_before 442 val deqHasException = deqHasExceptionOrFlush && exceptionDataRead.bits.exceptionVec.asUInt.orR 443 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 444 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 445 val exceptionEnable = writebacked(deqPtr.value) && deqHasException// && triggerBefore 446 447 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst || triggerAfter) 448 449 // io.flushOut will trigger redirect at the next cycle. 450 // Block any redirect or commit at the next cycle. 451 val lastCycleFlush = RegNext(io.flushOut.valid) 452 453 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 454 io.flushOut.bits := DontCare 455 io.flushOut.bits.robIdx := deqPtr 456 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 457 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 458 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) 459 io.flushOut.bits.interrupt := true.B 460 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 461 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 462 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 463 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 464 465 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 466 io.exception.valid := RegNext(exceptionHappen) 467 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 468 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 469 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 470 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 471 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 472 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 473 io.exception.bits.uop.cf.trigger.triggerHitVec := RegEnable(exceptionDataRead.bits.trigger_vec_fix, exceptionHappen) 474 475 XSDebug(io.flushOut.valid, 476 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 477 p"excp $exceptionEnable flushPipe $isFlushPipe " + 478 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 479 480 481 /** 482 * Commits (and walk) 483 * They share the same width. 484 */ 485 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 486 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 487 val walkFinished = walkCounter <= CommitWidth.U 488 489 // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap 490 require(RenameWidth <= CommitWidth) 491 val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData)) 492 val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool())) 493 when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) { 494 usedSpaceForMPR := io.enq.needAlloc 495 extraSpaceForMPR := dispatchData.io.wdata 496 XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt) 497 } 498 499 // wiring to csr 500 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 501 val v = io.commits.valid(i) 502 val info = io.commits.info(i) 503 (v & info.wflags, v & info.fpWen) 504 }).unzip 505 val fflags = Wire(Valid(UInt(5.W))) 506 fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR()) 507 fflags.bits := wflags.zip(fflagsDataRead).map({ 508 case (w, f) => Mux(w, f, 0.U) 509 }).reduce(_|_) 510 val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR()) 511 512 // when mispredict branches writeback, stop commit in the next 2 cycles 513 // TODO: don't check all exu write back 514 val misPredWb = Cat(VecInit((0 until numWbPorts).map(i => 515 io.exeWbResults(i).bits.redirect.cfiUpdate.isMisPred && io.exeWbResults(i).bits.redirectValid 516 ))).orR() 517 val misPredBlockCounter = Reg(UInt(3.W)) 518 misPredBlockCounter := Mux(misPredWb, 519 "b111".U, 520 misPredBlockCounter >> 1.U 521 ) 522 val misPredBlock = misPredBlockCounter(0) 523 524 io.commits.isWalk := state =/= s_idle 525 val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value)))) 526 // store will be commited iff both sta & std have been writebacked 527 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 528 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 529 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 530 val allowOnlyOneCommit = commit_exception || intrBitSetReg 531 // for instructions that may block others, we don't allow them to commit 532 for (i <- 0 until CommitWidth) { 533 // defaults: state === s_idle and instructions commit 534 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 535 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 536 io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush 537 io.commits.info(i) := dispatchDataRead(i) 538 539 when (state === s_walk) { 540 io.commits.valid(i) := commit_v(i) && shouldWalkVec(i) 541 }.elsewhen(state === s_extrawalk) { 542 io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B) 543 io.commits.info(i) := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare) 544 } 545 546 XSInfo(state === s_idle && io.commits.valid(i), 547 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 548 debug_microOp(deqPtrVec(i).value).cf.pc, 549 io.commits.info(i).rfWen, 550 io.commits.info(i).ldest, 551 io.commits.info(i).pdest, 552 io.commits.info(i).old_pdest, 553 debug_exuData(deqPtrVec(i).value), 554 fflagsDataRead(i) 555 ) 556 XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n", 557 debug_microOp(walkPtrVec(i).value).cf.pc, 558 io.commits.info(i).rfWen, 559 io.commits.info(i).ldest, 560 debug_exuData(walkPtrVec(i).value) 561 ) 562 XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n", 563 io.commits.info(i).rfWen, 564 io.commits.info(i).ldest 565 ) 566 } 567 if (env.EnableDifftest) { 568 io.commits.info.map(info => dontTouch(info.pc)) 569 } 570 571 // sync fflags/dirty_fs to csr 572 io.csr.fflags := fflags 573 io.csr.dirty_fs := dirty_fs 574 575 // commit branch to brq 576 val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)}) 577 io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec)) 578 579 // commit load/store to lsq 580 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 581 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE)) 582 io.lsq.lcommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec))) 583 io.lsq.scommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec))) 584 io.lsq.pendingld := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 585 io.lsq.pendingst := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 586 io.lsq.commit := RegNext(!io.commits.isWalk && io.commits.valid(0)) 587 588 /** 589 * state changes 590 * (1) exceptions: when exception occurs, cancels all and switch to s_idle 591 * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1) 592 * (3) walk: when walking comes to the end, switch to s_walk 593 * (4) s_extrawalk to s_walk 594 */ 595 val state_next = Mux(io.redirect.valid, 596 Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk), 597 Mux(state === s_walk && walkFinished, 598 s_idle, 599 Mux(state === s_extrawalk, s_walk, state) 600 ) 601 ) 602 state := state_next 603 604 /** 605 * pointers and counters 606 */ 607 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 608 deqPtrGenModule.io.state := state 609 deqPtrGenModule.io.deq_v := commit_v 610 deqPtrGenModule.io.deq_w := commit_w 611 deqPtrGenModule.io.exception_state := exceptionDataRead 612 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 613 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 614 deqPtrGenModule.io.commitType := deqDispatchData.commitType 615 616 deqPtrGenModule.io.misPredBlock := misPredBlock 617 deqPtrGenModule.io.isReplaying := isReplaying 618 deqPtrVec := deqPtrGenModule.io.out 619 val deqPtrVec_next = deqPtrGenModule.io.next_out 620 621 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 622 enqPtrGenModule.io.redirect := io.redirect 623 enqPtrGenModule.io.allowEnqueue := allowEnqueue 624 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 625 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 626 enqPtr := enqPtrGenModule.io.out 627 628 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 629 // next walkPtrVec: 630 // (1) redirect occurs: update according to state 631 // (2) walk: move backwards 632 val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk, 633 Mux(state === s_walk, 634 VecInit(walkPtrVec.map(_ - thisCycleWalkCount)), 635 VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U)) 636 ), 637 Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec) 638 ) 639 walkPtrVec := walkPtrVec_next 640 641 val lastCycleRedirect = RegNext(io.redirect.valid) 642 val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter) 643 val commitCnt = PopCount(io.commits.valid) 644 validCounter := Mux(state === s_idle, 645 (validCounter - commitCnt) + dispatchNum, 646 trueValidCounter 647 ) 648 649 allowEnqueue := Mux(state === s_idle, 650 validCounter + dispatchNum <= (RobSize - RenameWidth).U, 651 trueValidCounter <= (RobSize - RenameWidth).U 652 ) 653 654 val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U) 655 val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx) 656 when (io.redirect.valid) { 657 walkCounter := Mux(state === s_walk, 658 // NOTE: +& is used here because: 659 // When rob is full and the head instruction causes an exception, 660 // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is 661 // enqPtr - 1.U and redirectWalkDistance is RobSize - 1. 662 // Since exceptions flush the instruction itself, flushItSelf is true.B. 663 // Previously we use `+` to count the walk distance and it causes overflows 664 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 665 // The width of walkCounter also needs to be changed. 666 redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt, 667 redirectWalkDistance +& io.redirect.bits.flushItself() 668 ) 669 }.elsewhen (state === s_walk) { 670 walkCounter := walkCounter - commitCnt 671 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 672 } 673 674 675 /** 676 * States 677 * We put all the stage bits changes here. 678 679 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 680 * All states: (1) valid; (2) writebacked; (3) flagBkup 681 */ 682 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 683 684 // enqueue logic writes 6 valid 685 for (i <- 0 until RenameWidth) { 686 when (canEnqueue(i) && !io.redirect.valid) { 687 valid(enqPtrVec(i).value) := true.B 688 } 689 } 690 // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time 691 for (i <- 0 until CommitWidth) { 692 when (io.commits.valid(i) && state =/= s_extrawalk) { 693 valid(commitReadAddr(i)) := false.B 694 } 695 } 696 // reset: when exception, reset all valid to false 697 when (reset.asBool) { 698 for (i <- 0 until RobSize) { 699 valid(i) := false.B 700 } 701 } 702 703 // status field: writebacked 704 // enqueue logic set 6 writebacked to false 705 for (i <- 0 until RenameWidth) { 706 when (canEnqueue(i)) { 707 writebacked(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove && !io.enq.req(i).bits.cf.exceptionVec.asUInt.orR 708 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 709 store_data_writebacked(enqPtrVec(i).value) := !isStu 710 } 711 } 712 when (exceptionGen.io.out.valid) { 713 val wbIdx = exceptionGen.io.out.bits.robIdx.value 714 writebacked(wbIdx) := true.B 715 store_data_writebacked(wbIdx) := true.B 716 } 717 // writeback logic set numWbPorts writebacked to true 718 for (i <- 0 until numWbPorts) { 719 when (io.exeWbResults(i).valid) { 720 val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value 721 val block_wb = 722 selectAll(io.exeWbResults(i).bits.uop.cf.exceptionVec, false, true).asUInt.orR || 723 io.exeWbResults(i).bits.uop.ctrl.flushPipe || 724 io.exeWbResults(i).bits.uop.ctrl.replayInst 725 writebacked(wbIdx) := !block_wb 726 } 727 } 728 // store data writeback logic mark store as data_writebacked 729 for (i <- 0 until StorePipelineWidth) { 730 when(RegNext(io.lsq.storeDataRobWb(i).valid)) { 731 store_data_writebacked(RegNext(io.lsq.storeDataRobWb(i).bits.value)) := true.B 732 } 733 } 734 735 // flagBkup 736 // enqueue logic set 6 flagBkup at most 737 for (i <- 0 until RenameWidth) { 738 when (canEnqueue(i)) { 739 flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag 740 } 741 } 742 743 744 /** 745 * read and write of data modules 746 */ 747 val commitReadAddr_next = Mux(state_next === s_idle, 748 VecInit(deqPtrVec_next.map(_.value)), 749 VecInit(walkPtrVec_next.map(_.value)) 750 ) 751 dispatchData.io.wen := canEnqueue 752 dispatchData.io.waddr := enqPtrVec.map(_.value) 753 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 754 wdata.ldest := req.ctrl.ldest 755 wdata.rfWen := req.ctrl.rfWen 756 wdata.fpWen := req.ctrl.fpWen 757 wdata.wflags := req.ctrl.fpu.wflags 758 wdata.commitType := req.ctrl.commitType 759 wdata.pdest := req.pdest 760 wdata.old_pdest := req.old_pdest 761 wdata.ftqIdx := req.cf.ftqPtr 762 wdata.ftqOffset := req.cf.ftqOffset 763 wdata.pc := req.cf.pc 764 } 765 dispatchData.io.raddr := commitReadAddr_next 766 767 exceptionGen.io.redirect <> io.redirect 768 exceptionGen.io.flush := io.flushOut.valid 769 for (i <- 0 until RenameWidth) { 770 exceptionGen.io.enq(i).valid := canEnqueue(i) 771 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 772 exceptionGen.io.enq(i).bits.exceptionVec := selectFrontend(io.enq.req(i).bits.cf.exceptionVec, false, true) 773 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 774 exceptionGen.io.enq(i).bits.replayInst := io.enq.req(i).bits.ctrl.replayInst 775 assert(exceptionGen.io.enq(i).bits.replayInst === false.B) 776 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 777 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 778 exceptionGen.io.enq(i).bits.trigger := io.enq.req(i).bits.cf.trigger 779 } 780 781 // TODO: don't hard code these idxes 782 val numIntWbPorts = exuParameters.AluCnt + exuParameters.LduCnt + exuParameters.MduCnt 783 // CSR is after Alu and Load 784 def csr_wb_idx = exuParameters.AluCnt + exuParameters.LduCnt 785 def atomic_wb_idx = exuParameters.AluCnt // first port for load 786 def load_wb_idxes = Seq(exuParameters.AluCnt + 1) // second port for load 787 def store_wb_idxes = io.exeWbResults.indices.takeRight(2) 788 val all_exception_possibilities = Seq(csr_wb_idx, atomic_wb_idx) ++ load_wb_idxes ++ store_wb_idxes 789 all_exception_possibilities.zipWithIndex.foreach{ case (p, i) => connect_exception(i, p) } 790 def connect_exception(index: Int, wb_index: Int) = { 791 exceptionGen.io.wb(index).valid := io.exeWbResults(wb_index).valid 792 // A temporary fix for float load writeback 793 // TODO: let int/fp load use the same two wb ports 794 if (wb_index == atomic_wb_idx || load_wb_idxes.contains(wb_index)) { 795 when (io.exeWbResults(wb_index - exuParameters.AluCnt + numIntWbPorts + exuParameters.FmacCnt).valid) { 796 exceptionGen.io.wb(index).valid := true.B 797 } 798 } 799 exceptionGen.io.wb(index).bits.robIdx := io.exeWbResults(wb_index).bits.uop.robIdx 800 val selectFunc = if (wb_index == csr_wb_idx) selectCSR _ 801 else if (wb_index == atomic_wb_idx) selectAtomics _ 802 else if (load_wb_idxes.contains(wb_index)) selectLoad _ 803 else { 804 assert(store_wb_idxes.contains(wb_index)) 805 selectStore _ 806 } 807 exceptionGen.io.wb(index).bits.exceptionVec := selectFunc(io.exeWbResults(wb_index).bits.uop.cf.exceptionVec, false, true) 808 exceptionGen.io.wb(index).bits.flushPipe := io.exeWbResults(wb_index).bits.uop.ctrl.flushPipe 809 exceptionGen.io.wb(index).bits.replayInst := io.exeWbResults(wb_index).bits.uop.ctrl.replayInst 810 exceptionGen.io.wb(index).bits.singleStep := false.B 811 exceptionGen.io.wb(index).bits.crossPageIPFFix := false.B 812 exceptionGen.io.wb(index).bits.trigger := io.exeWbResults(wb_index).bits.uop.cf.trigger 813 } 814 815 // 4 fmac + 2 fmisc + 1 i2f 816 val fmacWb = (0 until exuParameters.FmacCnt).map(_ + numIntWbPorts) 817 val fmiscWb = (0 until exuParameters.FmiscCnt).map(_ + numIntWbPorts + exuParameters.FmacCnt + 2) 818 val i2fWb = Seq(numIntWbPorts - 1) // last port in int 819 val fflags_wb = io.exeWbResults.zipWithIndex.filter(w => { 820 (fmacWb ++ fmiscWb ++ i2fWb).contains(w._2) 821 }).map(_._1) 822 val fflagsDataModule = Module(new SyncDataModuleTemplate( 823 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 824 ) 825 for(i <- fflags_wb.indices){ 826 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 827 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 828 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 829 } 830 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 831 fflagsDataRead := fflagsDataModule.io.rdata 832 833 834 val instrCnt = RegInit(0.U(64.W)) 835 val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) }) 836 val trueCommitCnt = commitCnt +& fuseCommitCnt 837 val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U) 838 instrCnt := instrCnt + retireCounter 839 io.csr.perfinfo.retiredInstr := RegNext(retireCounter) 840 io.robFull := !allowEnqueue 841 842 /** 843 * debug info 844 */ 845 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 846 XSDebug("") 847 for(i <- 0 until RobSize){ 848 XSDebug(false, !valid(i), "-") 849 XSDebug(false, valid(i) && writebacked(i), "w") 850 XSDebug(false, valid(i) && !writebacked(i), "v") 851 } 852 XSDebug(false, true.B, "\n") 853 854 for(i <- 0 until RobSize) { 855 if(i % 4 == 0) XSDebug("") 856 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 857 XSDebug(false, !valid(i), "- ") 858 XSDebug(false, valid(i) && writebacked(i), "w ") 859 XSDebug(false, valid(i) && !writebacked(i), "v ") 860 if(i % 4 == 3) XSDebug(false, true.B, "\n") 861 } 862 863 def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter) 864 865 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 866 XSPerfAccumulate("clock_cycle", 1.U) 867 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 868 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 869 XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt)) 870 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 871 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))) 872 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 873 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e }))) 874 XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt)) 875 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 876 val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t } 877 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 878 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 879 val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t } 880 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 881 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 882 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 883 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 884 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))) 885 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 886 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire()))) 887 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 888 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)) 889 XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk) 890 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 891 val deqUopCommitType = io.commits.info(0).commitType 892 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 893 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 894 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 895 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 896 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 897 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 898 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 899 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 900 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 901 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 902 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 903 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 904 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 905 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 906 } 907 for (fuType <- FuType.functionNameMap.keys) { 908 val fuName = FuType.functionNameMap(fuType) 909 val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 910 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 911 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 912 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 913 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 914 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 915 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 916 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 917 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 918 if (fuType == FuType.fmac.litValue()) { 919 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 920 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 921 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 922 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 923 } 924 } 925 926 //difftest signals 927 val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value 928 929 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 930 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 931 932 for(i <- 0 until CommitWidth) { 933 val idx = deqPtrVec(i).value 934 wdata(i) := debug_exuData(idx) 935 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 936 } 937 val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter) 938 val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN) 939 val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr) 940 941 if (env.EnableDifftest) { 942 for (i <- 0 until CommitWidth) { 943 val difftest = Module(new DifftestInstrCommit) 944 difftest.io.clock := clock 945 difftest.io.coreid := io.hartId 946 difftest.io.index := i.U 947 948 val ptr = deqPtrVec(i).value 949 val uop = commitDebugUop(i) 950 val exuOut = debug_exuDebug(ptr) 951 val exuData = debug_exuData(ptr) 952 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 953 difftest.io.pc := RegNext(SignExt(uop.cf.pc, XLEN)) 954 difftest.io.instr := RegNext(uop.cf.instr) 955 difftest.io.special := RegNext(CommitType.isFused(io.commits.info(i).commitType)) 956 // when committing an eliminated move instruction, 957 // we must make sure that skip is properly set to false (output from EXU is random value) 958 difftest.io.skip := RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)) 959 difftest.io.isRVC := RegNext(uop.cf.pd.isRVC) 960 difftest.io.scFailed := RegNext(!uop.diffTestDebugLrScValid && 961 uop.ctrl.fuType === FuType.mou && 962 (uop.ctrl.fuOpType === LSUOpType.sc_d || uop.ctrl.fuOpType === LSUOpType.sc_w)) 963 difftest.io.wen := RegNext(io.commits.valid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U) 964 difftest.io.wpdest := RegNext(io.commits.info(i).pdest) 965 difftest.io.wdest := RegNext(io.commits.info(i).ldest) 966 967 // runahead commit hint 968 val runahead_commit = Module(new DifftestRunaheadCommitEvent) 969 runahead_commit.io.clock := clock 970 runahead_commit.io.coreid := io.hartId 971 runahead_commit.io.index := i.U 972 runahead_commit.io.valid := difftest.io.valid && 973 (commitBranchValid(i) || commitIsStore(i)) 974 // TODO: is branch or store 975 runahead_commit.io.pc := difftest.io.pc 976 } 977 } 978 else if (env.AlwaysBasicDiff) { 979 // These are the structures used by difftest only and should be optimized after synthesis. 980 val dt_eliminatedMove = Mem(RobSize, Bool()) 981 val dt_isRVC = Mem(RobSize, Bool()) 982 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 983 for (i <- 0 until RenameWidth) { 984 when (canEnqueue(i)) { 985 dt_eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 986 dt_isRVC(enqPtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC 987 } 988 } 989 for (i <- 0 until numWbPorts) { 990 when (io.exeWbResults(i).valid) { 991 val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value 992 dt_exuDebug(wbIdx) := io.exeWbResults(i).bits.debug 993 } 994 } 995 // Always instantiate basic difftest modules. 996 for (i <- 0 until CommitWidth) { 997 val commitInfo = io.commits.info(i) 998 val ptr = deqPtrVec(i).value 999 val exuOut = dt_exuDebug(ptr) 1000 val eliminatedMove = dt_eliminatedMove(ptr) 1001 val isRVC = dt_isRVC(ptr) 1002 1003 val difftest = Module(new DifftestBasicInstrCommit) 1004 difftest.io.clock := clock 1005 difftest.io.coreid := io.hartId 1006 difftest.io.index := i.U 1007 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 1008 difftest.io.special := RegNext(CommitType.isFused(commitInfo.commitType)) 1009 difftest.io.skip := RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)) 1010 difftest.io.isRVC := RegNext(isRVC) 1011 difftest.io.wen := RegNext(io.commits.valid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U) 1012 difftest.io.wpdest := RegNext(commitInfo.pdest) 1013 difftest.io.wdest := RegNext(commitInfo.ldest) 1014 } 1015 } 1016 1017 if (env.EnableDifftest) { 1018 for (i <- 0 until CommitWidth) { 1019 val difftest = Module(new DifftestLoadEvent) 1020 difftest.io.clock := clock 1021 difftest.io.coreid := io.hartId 1022 difftest.io.index := i.U 1023 1024 val ptr = deqPtrVec(i).value 1025 val uop = commitDebugUop(i) 1026 val exuOut = debug_exuDebug(ptr) 1027 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 1028 difftest.io.paddr := RegNext(exuOut.paddr) 1029 difftest.io.opType := RegNext(uop.ctrl.fuOpType) 1030 difftest.io.fuType := RegNext(uop.ctrl.fuType) 1031 } 1032 } 1033 1034 // Always instantiate basic difftest modules. 1035 if (env.EnableDifftest) { 1036 val dt_isXSTrap = Mem(RobSize, Bool()) 1037 for (i <- 0 until RenameWidth) { 1038 when (canEnqueue(i)) { 1039 dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1040 } 1041 } 1042 val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) } 1043 val hitTrap = trapVec.reduce(_||_) 1044 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1045 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1046 val difftest = Module(new DifftestTrapEvent) 1047 difftest.io.clock := clock 1048 difftest.io.coreid := io.hartId 1049 difftest.io.valid := hitTrap 1050 difftest.io.code := trapCode 1051 difftest.io.pc := trapPC 1052 difftest.io.cycleCnt := timer 1053 difftest.io.instrCnt := instrCnt 1054 } 1055 else if (env.AlwaysBasicDiff) { 1056 val dt_isXSTrap = Mem(RobSize, Bool()) 1057 for (i <- 0 until RenameWidth) { 1058 when (canEnqueue(i)) { 1059 dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1060 } 1061 } 1062 val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) } 1063 val hitTrap = trapVec.reduce(_||_) 1064 val difftest = Module(new DifftestBasicTrapEvent) 1065 difftest.io.clock := clock 1066 difftest.io.coreid := io.hartId 1067 difftest.io.valid := hitTrap 1068 difftest.io.cycleCnt := timer 1069 difftest.io.instrCnt := instrCnt 1070 } 1071 1072 val perfinfo = IO(new Bundle(){ 1073 val perfEvents = Output(new PerfEventsBundle(18)) 1074 }) 1075 val perfEvents = Seq( 1076 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1077 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1078 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1079 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1080 ("rob_commitUop ", ifCommit(commitCnt) ), 1081 ("rob_commitInstr ", ifCommit(trueCommitCnt) ), 1082 ("rob_commitInstrMove ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })) ), 1083 ("rob_commitInstrFused ", ifCommit(fuseCommitCnt) ), 1084 ("rob_commitInstrLoad ", ifCommit(PopCount(commitLoadValid)) ), 1085 ("rob_commitInstrLoad ", ifCommit(PopCount(commitBranchValid)) ), 1086 ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })) ), 1087 ("rob_commitInstrStore ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })) ), 1088 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U) ), 1089 ("rob_walkCycle ", (state === s_walk || state === s_extrawalk) ), 1090 ("rob_1/4_valid ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U)) ), 1091 ("rob_2/4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U)) ), 1092 ("rob_3/4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))), 1093 ("rob_4/4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U)) ), 1094 ) 1095 1096 for (((perf_out,(perf_name,perf)),i) <- perfinfo.perfEvents.perf_events.zip(perfEvents).zipWithIndex) { 1097 perf_out.incr_step := RegNext(perf) 1098 } 1099} 1100